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METHODOLOGY

Foxtail mosaic virus-induced gene silencing 
(VIGS) in switchgrass (Panicum virgatum L.)
Kira Tiedge1,2*  , Janessa Destremps1, Janet Solano‑Sanchez1, Magda Lisette Arce‑Rodriguez1   and 
Philipp Zerbe1   

Abstract 

Background: Although the genome for the allotetraploid bioenergy crop switchgrass (Panicum virgatum) has been 
established, limitations in mutant resources have hampered in planta gene function studies toward crop optimization. 
Virus‑induced gene silencing (VIGS) is a versatile technique for transient genetic studies. Here we report the imple‑
mentation of foxtail mosaic virus (FoMV)‑mediated gene silencing in switchgrass in above‑ and below‑ground tissues 
and at different developmental stages.

Results: The study demonstrated that leaf rub‑inoculation is a suitable method for systemic gene silencing in switch‑
grass. For all three visual marker genes, Magnesium chelatase subunit D (ChlD) and I (ChlI) as well as phytoene desatu-
rase (PDS), phenotypic changes were observed in leaves, albeit at different intensities. Gene silencing efficiency was 
verified by RT‑PCR for all tested genes. Notably, systemic gene silencing was also observed in roots, although silencing 
efficiency was stronger in leaves (~ 63–94%) as compared to roots (~ 48–78%). Plants at a later developmental stage 
were moderately less amenable to VIGS than younger plants, but also less perturbed by the viral infection.

Conclusions: Using FoMV‑mediated VIGS could be achieved in switchgrass leaves and roots, providing an alternative 
approach for studying gene functions and physiological traits in this important bioenergy crop.

Keywords: Switchgrass (Panicum virgatum), Virus‑induced gene silencing (VIGS), Bioenergy crops, Foxtail mosaic 
virus (FoMV)
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Background
The perennial grass switchgrass (Panicum virgatum L.) is 
a major species of the North American tallgrass prairies 
and of agroeconomic importance as a C4 lignocellulosic 
biofuel feedstock crop. Its high net energy efficiency and 
environmental hardiness allow biofuel production on 
marginal lands with minimal agricultural input [1–3]. 
Two major switchgrass ecotypes, lowland and upland, 
are distinguished that feature large variation in habitat 
adaptation, morphological characteristics and ploidy lev-
els [4]. Lowland ecotypes are predominantly tetraploid, 

while upland ecotypes mostly contain octoploid genomes 
[2, 4, 5]. Recent sequencing of the allotetraploid genome 
of the lowland ecotype Alamo AP13 has enabled the 
investigation of gene functions and corresponding 
physiological traits, which lays the foundation for crop 
optimization through increasing switchgrasses’ environ-
mental resilience [2]. However, the genetic diversity and 
high self-incompatibility of switchgrass ecotypes have 
limited genetic studies and the development of mutant 
resources [6, 7]. Transformation protocols and methods 
for CRISPR/Cas9- and RNAi-mediated gene editing in 
switchgrass have been reported [8–13]. For example, the 
pANIC vector collection has been successfully employed 
for the stable downregulation of lignin biosynthetic genes 
in transgenic embryogenic callus cultures [14, 15] and 
have been used in transgenic RNAi studies to analyze 

Open Access

Plant Methods

*Correspondence:  k.j.tiedge@rug.nl

1 Department of Plant Biology, University of California, Davis, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7239-6767
http://orcid.org/0000-0002-9141-1213
http://orcid.org/0000-0001-5163-9523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-022-00903-0&domain=pdf


Page 2 of 11Tiedge et al. Plant Methods           (2022) 18:71 

and regulate cellulose and lignin biosynthesis in switch-
grass [10, 16]. These and other efforts have further been 
integrated to reduce cell wall recalcitrance in transgenic 
switchgrass lines to enable more cost-efficient lignocellu-
losic biofuel production [8, 11].

Virus-induced gene silencing (VIGS) has been estab-
lished as an alternate tool for transient gene function 
studies [17, 18]. VIGS takes advantage of evolutionarily 
conserved antiviral defense mechanisms via post-tran-
scriptional gene silencing of viral RNA [19]. In general, 
integration of a target gene into a viral vector system is 
used to trigger the degradation of specific plant genes of 
interest [20, 21]. In the past decade, VIGS has been suc-
cessfully used to investigate the function of genes with 
relevance to plant development and stress defenses in 
several monocot crops, including rice (Oryza sativa) [22, 
23], maize (Zea mays) [24–30], wheat (Triticum aesti-
vum)[30], and barley (Hordeum vulgare) [31, 32]. A range 
of different VIGS vectors is now available that offer a 
broad host range and high silencing efficiency and dura-
tion and have proven useful for gene function studies 
associated with stress resistance in monocot plants [26, 
27, 31, 33, 34]. For example, foxtail mosaic virus (FoMV) 
has been shown to successfully silence gene expression in 
a range of monocot species, including barley, wheat, fox-
tail millet (Setaria italica, and maize [26, 31], thus pro-
viding a promising tool for gene silencing in switchgrass. 
The independence of VIGS-mediated gene silencing with 
respect to stable transformation protocols and defined 
genetic backgrounds further provides a versatile resource 
for transient gene function studies that impact pathways 
and traits that vary across tissues and plant develop-
mental stages. For example, barley stripe mosaic virus 
(BSMV)-enabled VIGS was used to affect gene silencing 
in wheat leaves, roots and grain tissue as well as differ-
ent developmental stages [35, 36]. Similarly, key enzymes 
involved in the production of defensive, specialized gly-
coalkaloid metabolites were confirmed via a combina-
tion of VIGS, quantitative trait loci (QTL) analysis and 
metabolomics in tomato (Solanum sp.) [37].

In this study, we selected three widely used marker 
genes, namely Magnesium chelatase subunit D (ChlD) 
and subunit I (ChlI) involved in chlorophyll biosynthesis 
[38, 39] and phytoene desaturase (PDS) functioning in 
carotenoid metabolism [40] to establish FoMV-mediated 
VIGS in different switchgrass tissues and developmental 
stages.

Methods
Gene identification and construct generation
Given the allotetraploid genome of Panicum virgatum, 
orthologues of the targeted marker genes PDS, ChlD, and 
ChlI were identified via annotation search and a BLAST 

search with the ZmPDS (GRMZM2G410515) sequence 
[26] of the switchgrass reference genome (Alamo AP13, 
v5; [2]). Nucleotide sequences were aligned in Geneious 
Prime (Biomatters, USA) and highly conserved 200–
400 bp nucleotide fragments for each gene were selected 
for VIGS. These fragments were amplified from switch-
grass cDNA with forward and reverse oligonucleotides 
adding XbaI and PacI restriction sites, respectively 
(Additional file 1: Table S3). Amplicons were then ligated 
into the infectious FoMV vector [26]. The final constructs 
were transformed into E. coli DH5α (New England Bio-
labs, USA) and sequence verified prior to experimental 
use.

Plant cultivation
Seeds of switchgrass (Panicum virgatum var. Alamo 
AP13) were obtained from the U.S. Department of Agri-
culture Germplasm Resources Information Network 
(accession no. PI 422006). Seeds of N. benthamiana were 
kindly provided by Dr. Katayoon Dehesh (University of 
California, Riverside, USA). For both N. benthamiana 
and switchgrass, approximately 6–8 seeds were planted 
in 3 × 3 inch pots in growth chambers at 23  °C, 16  h 
light/8  h dark cycles, and watered at weekly intervals. 
After two weeks, successfully germinated seedlings were 
transferred to individual 6 × 6 inch pots and grown under 
the same conditions until infiltration. The temperature 
was lowered to 21  °C after Agrobacterium tumefaciens 
GV3101 infiltration.

Agroinfiltration of N. benthamiana
Transformation of A. tumefaciens with the generated 
constructs was performed as reported before [41]. Here, 
competent A. tumefaciens GV3101 cells were trans-
formed via heat shock and tested for the presence of 
the targeted inserts. Transformed A. tumefaciens were 
streaked on LB agar plates containing 50  µg/ml kana-
mycin and rifampicin and incubated at 28 °C for 2 days. 
A single colony of A. tumefaciens was used to inoculate 
5 ml LB liquid medium with the aforementioned antibi-
otics and incubated at 28  °C for 24  h at 180  rpm, after 
which 5  ml LB culture was used to inoculate 30  ml of 
LB medium with the antibiotics and subsequent incu-
bation at the above conditions. Transformed cells were 
pelleted by centrifugation at 3000  rpm for 15  min and 
resuspended twice in 30  ml of 10  mM  MgCl2. Fresh 
infiltration solution was used to resuspend the cells, fol-
lowed by incubation at 28  °C for 3–4  h at 200  rpm at 
which time the culture was diluted to an  OD600nm of 1 
with infiltration medium (prepare fresh before infiltra-
tion: 10  mM MgCl2, 10  mM 2-(N-morpholino)ethane-
sulfonic acid (MES), and 150 μm acetosyringone). Finally, 
4.6  µl of Silwet L-77 (Bioworld, USA) was added with 
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further incubation for 10  min. For agroinfiltration, the 
abaxial side of two leaves was infiltrated per plant with 
a 1 ml needleless syringe and placed in a growth cham-
ber at 21 °C without light for 24 h and then with light for 
3 weeks post-infiltration.

To confirm the systemic virus infection of the N. 
benthamiana plants, leaf and root tissue was harvested 
for RT-PCR, sequence verification, and stored at − 80 °C 
until further analysis. Subsequently, the tissue was 
ground to a fine powder with autoclaved and bleached 
mortars and pestles for RNA extractions (Monarch Total 
RNA Miniprep Kit, New England Biolabs), cDNA synthe-
sis (SuperScript™ III First-Strand Synthesis System, Inv-
itrogen) and PCR  (GoTaq® DNA Polymerase, Promega). 
The amplification protocol was as follows: initial dena-
turation at 95 °C for 2 min; followed by 35 cycles of dena-
turation at 95 °C for 30 s, annealing at 60 °C for 45 s, and 
extension at 72 °C for 60 s; completed by final elongation. 
Oligonucleotide sequences are given in Additional file 1: 
Table  S3. Amplicons were analyzed via sanger sequenc-
ing (Quintarabio, USA).

Rub‑inoculation of switchgrass
To prepare the virus-containing N. benthamiana sap, 4 g 
of leaf material displaying viral symptoms (as confirmed 
by RT-PCR) were collected. Rub-inoculation of P. vir-
gatum seedlings that reached either elongation stage E1 
or elongation stage E3 followed an established proto-
col ([26]. N. benthamiana leaf tissue was ground using 
a mortar and pestle in 16  ml of KP inoculation buffer 
with 500  mg of silicon carbide powder (600 grit; Beta 
Diamond Products, USA) added. For rub-inoculation, 
sterile cotton swabs were dipped into the sap and used 
to inoculate the second and third leaf from the apex 
(Additional file  1: Fig. S1). The rub-inoculation should 
be forceful enough to mediate the infection while pre-
venting extensive leaf damage (a squeaking sound from 
stripping the wax layer of the leaves should be audible). 
Inoculated seedlings were maintained in growth cham-
bers at 21 °C or 22 °C without light for 24 h and then with 
a 16  h photoperiod. Symptoms of infection were moni-
tored 1–3 weeks post-inoculation. After a period of four 
weeks, inoculated seedlings were harvested for analysis 
at a range of timepoints to assess construct stability and 
silencing efficiency.

Confirmation of systemic virus infection
Confirmation of virus infection in P. virgatum was car-
ried out four weeks post-inoculation. Root and leaf tis-
sue was harvested, immediately flash frozen in liquid 
nitrogen, and stored at − 80 °C. Plant tissue was ground 
in bleached and twice-autoclaved mortar and pestles fol-
lowed by RNA extraction using the Monarch Total RNA 

Miniprep Kit (New England Biolabs, USA). RT-PCR 
experiments were performed to detect the FoMV vector 
and the ChlD, ChlI, and PDS target genes using gene-
specific oligonucleotides (Additional file  1: Table  S3). 
Wild-type RNA was used as a negative control.  GoTaq® 
Green Master Mix (Promega, USA) was used to conduct 
RT-PCR amplification. The amplification protocol was as 
follows: initial denaturation at 95 °C for 2 min; followed 
by 35 cycles of denaturation at 95 °C for 30 s, annealing 
at 60  °C for 45  s, and extension at 72  °C for 60  s; com-
pleted by final elongation. The oligonucleotides used can 
be found in Additional file 1: Table S3. Amplicons were 
analyzed via Sanger sequencing (Quintarabio, USA).

Validation of silencing efficiency via qPCR
For qPCR analysis, 18SrRNA (18SrRNA1) and actin 
(ACT12) were used as reference genes based on previ-
ous studies in P. virgatum [42, 43], as well as efficiency 
tests using different template concentrations (oligonucle-
otide sequences are given in Additional file 1: Table S3). 
Primers for target genes were designed outside the insert 
regions and tested for product specificity and an effi-
ciency of 100 ± 5%. QPRC reactions were performed 
in a 10 μl volume with 5 μl iTaq Universal SYBR Green 
Supermix (Bio-Rad Laboratories, USA), 2 × 0.2 μl of oli-
gonucleotides, and 2 μl of the respective cDNA with the 
following parameters: initial denaturation at 95  °C for 
30 s; 40 cycles of denaturation at 95 °C for 10 s, anneal-
ing at 60 °C for 10 s, and extension at 72 °C for 20 s. After 
quality analysis of melting curves, Bio-Rad CFX Manager 
3.1 was used to calculate the  Ct values. Data analysis was 
performed using the ΔΔCt method as described previ-
ously [44, 45]. Gene expression values were calculated on 
the basis of six biological replicates and calculated as the 
normalized relative quantity (NRQ) compared to the wild 
type. Statistical significance for gene expression was ana-
lyzed using a heteroscedastic Student’s t-Test with a two-
tailed distribution (p-value < 0.05).

Results
Systemic infection of switchgrass plants
FoMV-mediated VIGS has been successfully used to 
silence genes in monocot crops, including maize and 
Setaria viridis [26, 27, 31]. In addition, the suitability 
of mechanically inoculating plants by rubbing sap of 
infected N. benthamiana plants onto the leaves has been 
demonstrated in maize and other species [26]. Adopt-
ing this strategy to achieve gene silencing in switchgrass, 
three marker genes, switchgrass (P. virgatum var Alamo 
AP13) magnesium chelatase subunits D (ChlD) and I 
(ChlI) as well as phytoene desaturase (PDS) were chosen 
for gene silencing. The function of magnesium chelatase 
and phytoene desaturase in chlorophyll and carotenoid 
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metabolism, respectively, results in a bleaching pheno-
type that enables visual screening for successful gene 
silencing [38–40]. Mining of the switchgrass genome (P. 
virgatum Alamo AP13 v5.1) revealed two highly con-
served gene copies of each ChlD and ChlI with 98% and 
89% protein sequence similarity, respectively. For puta-
tive PDS genes, six less conserved copies were identified 
which share an average sequence similarity of 26% (Addi-
tional file  1: Table  S1). To achieve an efficient silencing 
of these identified genes, conserved regions for each gene 
group were identified (Additional file 1: Table S2). Using 
the resulting FoMV:ChlD, FoMV:ChlI and FoMV:PDS 

constructs, three-week-old N. benthamiana plants were 
agroinfiltrated either with the empty FoMV vector or one 
of the constructs for multiplication of the virus (Fig. 1).

Two weeks after infiltration, gene-specific RT-PCR 
analysis verified the presence of the viral load in systemic 
leaves and roots for all infected tobacco plants (Fig. 2A). It 
should be noted that in case of the FoMV:PDS construct, 
RT-PCR indicated a deletion within the FoMV:PDS con-
struct in new leaves and roots of some plants (Fig. 2A), 
a phenomenon observed frequently in VIGS studies [27]. 
Additionally, RT-PCR products were sequenced to verify 
successful infection of N. benthamiana with the correct 

Fig.1 Workflow for VIGS in switchgrass. Fragments of the target genes inserted into the foxtail mosaic vector (FoMV) system are first transfected 
into Nicotiana benthamiana leaves for multiplication of the virus. After PCR verification of successful transformation, leaf sap is extracted and used 
to mechanically rub‑inoculate switchgrass leaves, followed by PCR‑verification of transformants and gene expression analysis of target genes via 
RT‑PCR

Fig. 2 RT‑PCR analysis of construct presence and integrity in N. benthamiana and P. virgatum. RT‑PCR assays of systemic N. benthamiana (A) and P. 
virgatum (B) leaves and roots verifying the presence of the constructs FoMV:PDS, FoMV:ChlI or FoMV:ChlD as compared to wild type plants (no virus) 
and FoMV transfection only. Expected amplicon size is 314 bp for FoMV, 410 bp for FoMV:PDS, 424 bp for FoMV:ChlI, and 369 bp for FoMV:ChlD. 
Oligonucleotide sequences are listed in Additional file 1: Table S3
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constructs. Having established sufficient virus produc-
tion in N. benthamiana, the second and third leaf from 
the apex of 3-week-old P. virgatum seedlings were inoc-
ulated using rub-inoculation with N. benthamiana sap 
containing the respective constructs or FoMV empty vec-
tor as a negative control. RT-PCR analysis showed suc-
cessful systemic infection in newly emerged leaves of all 
inoculated plants (n = 45), and in 28% of the tested plants 
a systemic infection was also observed in roots. In other 
monocot crops like maize a systemic FoMV infection of 
the seedlings established itself around 14 days post-inoc-
ulation (dpi) [27]. Considering the relative slower growth 
rate of switchgrass as compared to these crops, we tested 
different intervals between inoculation and sampling to 
achieve a suitable balance between stability of the con-
structs and efficient silencing, which became established 
at approximately 28–32 dpi (Additional file  1: Fig. S3). 
Stability of the construct and of the silencing effect was 
assessed via RT-PCR and qRT-PCR, respectively. In most 
cases, the silencing effect remained stable up to 48 dpi, 
but for FoMV:ChlD leaves as well as roots the efficiency 
decreased drastically after 44 dpi (Additional file  1: Fig. 
S3).

Phenotypic changes
Infection of N. benthamiana with the FoMV:PDS, 
FoMV:ChlI or FoMV:ChlD constructs did not result in 
a substantial bleaching phenotype in N. benthamiana 
plants, likely due to the sequence differences between the 
switchgrass and N. benthamiana genes for PDS, ChlI and 
ChlD, which share 80% or less similarity at the nucleo-
tide level (Additional file 1: Figs. S4–S6). However, some 
N. benthamiana leaves displayed a mosaic pattern after 

successful infiltration, which was also visible in plants 
containing only the empty FoMV vector and hence is 
presumably caused by the FoMV infection (Additional 
file 1: Fig. S2).

After rub-inoculation with N. benthamiana leaf sap, 
switchgrass plants exhibited a range of phenotypes that 
varied between developmental stages and the construct 
used (Fig.  3, Additional file  1: Fig. S7). The two tested 
developmental stages included switchgrass plants that 
were inoculated at elongation stage 1 (E1) and plants that 
were inoculated at elongation stage 3 (E3). For plants 
that were inoculated at the E1 stage, leaves of untreated 
wild type plants (WT) showed a dark green pigmenta-
tion (Fig. 3A). Among the targeted genes, ChlD silencing 
resulted in the strongest bleaching phenotype in leaves, 
followed by ChlI and PDS (Fig. 3A). The leaves of plants 
infected with the empty FoMV vector showed less discol-
oration compared to plants infected with FoMV:ChlD, 
FoMV:ChlI, or FoMV:PDS (Fig. 3A). In older plants that 
were inoculated at the E3 stage similar, yet more pro-
nounced, visual phenotypic patterns were observed 
(Fig.  3B). All FoMV:ChlD, FoMV:ChlI or FoMV:PDS 
plants showed phenotypic differences compared to 
the control plants. The strongest bleaching effect was 
detected in FoMV:ChlD plants, whereas the FoMV:ChlI 
plants only showed moderate bleaching comparable to 
the empty vector control plants (Fig. 3B). Not all plants 
in this study showed a bleaching phenotype and of those 
plants that showed a phenotype, mostly the older leaves 
were impacted. The total number of plants exhibiting a 
bleaching phenotype was 5–13% higher in plants that 
were inoculated at a later developmental stage and 20% 

BA

Fig. 3 Phenotypic differences among older and younger switchgrass leaves 4 weeks post‑inoculation (A) in younger plants that were infected at 
the E1 stage, (B) in older plants that were infected at the E3 stage. WT: wildtype/untreated plants; FoMV: empty vector control; ChlD: plants infected 
with FoMV:ChlD; ChlI: plants infected with FoMV:ChlI; PDS: plants infected with FoMV:PDS
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higher in the empty vector control plants (Additional 
file 1: Table S4).

Tissue‑specific gene silencing
Having detected systemic viral infection in both switch-
grass leaves and roots (Fig. 2), we next assessed the gene 
silencing efficiency of our constructs 28 days after inoc-
ulation using RT-qPCR with leaf and root samples of 
switchgrass plants at the E1 stage and compared the rela-
tive gene expression to untreated wild type and empty 
vector control plants.  For all three tested genes, gene 
expression was significantly decreased in infected seed-
lings as compared to the empty FoMV vector and wild 
type plants (Fig.  4). In leaf tissue, the average (n = 35) 
gene silencing efficiency was 87% for FoMV:ChlD, 90% 
for FoMV:ChlI, and 74.5% for FoMV:PDS as compared to 
wild type plants (Fig.  4A, C, E). Expectedly, FoMV vec-
tor control samples also were significantly different from 
wild type plants, reflecting the detrimental effect of viral 

infection on young leaves. In root tissue, a strong silenc-
ing effect was also observed, albeit less pronounced as 
compared to leaves. The average gene silencing effi-
ciency was measured at 48% for FoMV:ChlD, 78% for 
FoMV:ChlI, and 76% for FoMV:PDS. In contrast to leaf 
tissue, the effect of viral infection itself on gene expres-
sion in roots was not significant, with the exception of 
FoMV:PDS (Fig. 4F).

Gene silencing efficiency at different growth stages
To next evaluate gene silencing efficiency in older switch-
grass, plants at the E3 developmental stage were analyzed 
via RT-qPCR and compared to plants at the E1 stage. In 
contrast to E1 plants, with the exception of FoMV:PDS 
leaves, gene expression in older E3 plants was not sig-
nificantly impacted by the viral infection, resulting in 
similar expression levels between wild type and FoMV 
vector controls (Fig.  5). In some cases, a slight increase 
of transcript was detected in the empty vector control 
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plants (Fig. 5B, E, F). For FoMV:ChlD a reduction in gene 
expression of 81% in leaves and 73% in roots was calcu-
lated, whereas FoMV:ChlI showed a decrease of 80% in 
leaves and 65% in roots as compared to 63% in leaves and 
78% in roots for FoMV:PDS (Fig.  5). Thus, E3 seedlings 
displayed moderately stronger gene silencing in leaves 
as compared to the roots, similar to the younger plants. 
Collectively, these findings show that gene silencing had 
a comparable efficiency in leaves and a higher efficiency 
in roots of E3 plants compared to E1 plants, while the 
younger E1 seedlings showed more pronounced detri-
mental impact by the viral infection.

Discussion
Advances in omics technologies have dramatically 
increased the availability of plant genomes and compu-
tational gene function annotations. Forward and reverse 
genetic studies are critical to empirically validate func-
tional predictions in planta, yet remain challenging for 
many crops. Although CRISPR/Cas9 and RNAi proto-
cols have been successfully employed in switchgrass [8, 

10, 11, 14, 46, 47] , the complex allotetraploid genome 
and largely outcrossing nature of switchgrass complicate 
genetic studies. In this study, we used the FoMV vector 
and mechanical rub-inoculation, previously established 
in maize, sorghum, and wheat [26, 48, 49] to achieve 
VIGS in switchgrass. Using this approach, systemic infec-
tion was achieved in approximately one quarter (~ 28%) 
of the tested 3- or 8-week-old switchgrass seedlings. This 
infection efficiency is consistent with other monocot spe-
cies, where plant susceptibility to viral infection has been 
shown to be impacted by other factors such as genotype/
cultivar, vector chassis, construct design, and growth 
conditions [48, 49]. The relevance of optimizing construct 
design is exemplified by the instability of the FoMV:PDS 
construct observed in this study. We observed what pre-
sumably are deletion products of the construct in select 
samples. This might point to a possible issue of construct 
stability as described earlier in this study. This phenom-
enon has been a long-standing impediment for this tech-
nology, and efforts have already been made to improve 
the insert stability, for example through modified viral 
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vectors and adjustment of environmental conditions [24, 
50, 51]. In addition, the presence of gene copies for each 
of the ChlD, ChlI and PDS marker genes in the allotetra-
ploid switchgrass genome necessitated the careful design 
of target gene fragments to avoid limitations in VIGS effi-
ciency due to gene functional redundancies.

To visualize the knock-down, we used three different 
reporter genes which are commonly employed in gene 
editing studies and which are resulting in a visible phe-
notype in case of a successful silencing event. Magnesium 
chelatase subunits D (ChlD) and I (ChlI) act as regulators 
in the biosynthetic pathway of chlorophyll. Therefore, 
a loss of function in ChlD and ChlI inhibits chlorophyll 
biosynthesis resulting in a bleaching phenotype [38]. In 
addition, the targeted endogenous phytoene desaturase 
(PDS) encodes an enzyme catalyzing the first step in the 
carotenoid biosynthetic pathway. Carotenoids act as pho-
toprotectants, therefore the knock-down of the transcript 
results in white leaves due to a photobleaching effect [40]. 
At the phenotypic level, the presence of mild bleaching 
of switchgrass leaves upon infection with the FoMV vec-
tor is similar to observations for FoMV infection in other 
monocot species [27]. For example, gene silencing of 
PDS or ChlH did not result in leaf bleaching in sorghum 
[48]. Although a stronger bleaching phenotype could 
be observed for all constructs targeted in this study, for 
FoMV:ChlD, FoMV:ChlI and FoMV:PDS, the phenotypic 
changes showed a large degree of variation. It is possible 
that different levels of bleaching symptoms caused by the 
FoMV infection alone mask the gene silencing effects of 
the target gene [48]. In addition, since two or more gene 
copies were targeted for each marker gene, the amount of 
functional protein produced may differ between infected 
switchgrass plants. It also cannot be excluded that in 
addition to the photosensitization-preventing mecha-
nisms of carotenoids switchgrass can employ alterna-
tive mechanisms/pathways to provide photoprotection 
as shown in other crops [52]. The phenotypic variation 
among even successfully infected plants highlights the 
importance of verifying gene silencing at the molecular 
level. Indeed, RT-PCR analysis verified the successful 
silencing of all target genes with efficiencies of 74–90% 
in leaves and 48–78% in roots of 3-week-old switchgrass 
seedlings. Since experiments with different time periods 
between inoculation and sampling have shown that effi-
ciencies can be impacted by extending the inoculation 
period, it is advisable to adjust the experimental design 
according to the used switchgrass variety, growth condi-
tions and gene constructs.

The systemic gene silencing in both switchgrass leaf 
and root tissue can enable the analysis of metabolic pro-
cesses and pathways that function in a spatiotemporal 
manner. Prominently, this includes defensive specialized 

metabolite pathways that are often expressed in specific 
tissues, at specific developmental stages and in response 
to environmental stimuli as demonstrated for monocot 
crops including switchgrass, rice, and maize [53–58]. 
Although ChlD, ChlI, and PDS gene silencing was slightly 
less efficient on average in switchgrass roots than in 
leaves, the detected gene silencing levels in roots were 
comparable to other crops including BSMV-mediated 
VIGS in wheat [35], bean pod mottle virus (BPMV)-ena-
bled silencing in peas (Pisum sativum) [59], and cassava 
(Manihot esculenta) using the cassava gemini virus [60].

The majority of VIGS studies focuses on early develop-
mental stages to take advantage of the higher gene silenc-
ing efficiency in younger plants, even though younger 
plants are also more susceptible to the viral infection as 
shown in Arabidopsis and other plant species [17, 61–
63]. However, expanding VIGS studies across develop-
mental stages can enable the investigation of biological 
processes and pathways that function only at later devel-
opmental stages. Hence, we here tested the efficiency of 
VIGS in switchgrass seedlings infected at two growth 
stages using 3- and 8-week-old seedlings at the E1 and 
E3 stage, respectively. 3-week-old plants exhibited a less 
pronounced bleaching phenotype and were more sus-
ceptible to viral infection as reflected in a lower relative 
gene expression in FoMV empty vector control plants. By 
contrast, accompanying a lower virus susceptibility, VIGS 
efficiency in leaves of 8-week-old plants was reduced by 
only 6–12%. In the 8-week-old seedlings, in some cases 
an increase of gene expression was detected in the empty 
vector control plants, which has been observed in other 
plant species before [64–66]. Surprisingly, with the 
exception of FoMV:ChlI, gene silencing efficiency was 
increased in roots of older switchgrass seedlings. This 
result shows that the efficiency of VIGS can be substan-
tially impacted by the developmental stage of the plants 
used for silencing of specific genes. This effect has already 
been observed in other crops such as opium poppy [67] 
and gerbera [68]. A plausible explanation for this varia-
tion in VIGS efficiency includes differences in the activity 
of the host RNAi and of constitutive promotors including 
the Cauliflower mosaic virus 35S promoter of the FoMV 
vector at different developmental stages, especially in 
monocot plants [69, 70]. For example, expression levels 
driven by the same promoter were strong and constitu-
tive in some studied lines, but in other lines expression 
levels were only increased in metabolically more active 
tissues [70]. While a deeper understanding of the under-
lying mechanisms would require extensive future studies 
as more constructs are being tested in switchgrass, these 
results indicate the suitability of older switchgrass plants 
for tissue-specific VIGS studies.
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Conclusions
VIGS offers a powerful tool for transient gene function 
studies, especially for species where plant transforma-
tion, regeneration, and genetic backgrounds present 
experimental challenges. Although variable pheno-
typic results and the presence of multiple gene copies 
in the switchgrass genome will likely require protocol 
and construct optimization of individual target genes, 
this study highlights the suitability of FoMV-mediated 
VIGS via rub-inoculation in switchgrass. Efficient sys-
temic gene silencing in leaves and roots of switchgrass 
plants at different growth stages provides a resource 
for the in planta analysis of spatiotemporal genes and 
pathways in this bioenergy crop.
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