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3. Our trans-Atlantic experiments demonstrate that these structures enabled bivalve

reef formation by: (a) facilitating larval recruitment via species-specific settlement
substrates, and (b) enhancing post-settlement survival by lowering predation. In
the Netherlands, structures with coir rope most strongly facilitated mussels by
providing fibrous settlement substrate, and predation-lowering spatially complex
hard attachment substrate. In Florida, oysters were greatly facilitated by hard sub-

strates, while coir rope proved unbeneficial.

4. Synthesis and applications. Our findings demonstrate that artificial biodegradable

reefs can enhance bivalve reef restoration across the Atlantic by mimicking emer-
gent traits that ameliorate multiple bottlenecks over the reef-forming organism’
life cycle. This highlights the potential of our approach as a cost-effective and
practical tool for nature managers to restore systems dominated by habitat modi-
fiers whose natural recovery is hampered by multiple life stage-dependent bottle-
necks. Therefore, investment in understanding how to achieve life cycle informed

restoration on larger scales and whether the method it is applicable to restore

KEYWORDS

settlement survival

1 | INTRODUCTION

Natural ecosystems generate many important ecosystem services,
including carbon storage, shoreline protection, improved water qual-
ity, food provisioning and support for biodiversity (Zedler & Kercher,
2005). However, these services and the ecosystems that sustain
them are rapidly declining due to overexploitation, land-use change,
eutrophication and other climate and human stressors (IPBES, 2019).
Supported by the United Nations’ call to action in the ‘UN Decade on
Ecosystem Restoration’, governments, industry and nature organiza-
tions increasingly elevate restoration as a vital tool to reverse these
losses (Suding et al., 2015). However, restoration of ecosystems that
occur in hash environments, such as drylands, peat bogs, coastal
dunes, salt marshes, seagrasses and marine reefs is currently expen-
sive and prone to failure (e.g. Bayraktarov et al., 2016). Mounting
evidence shows that establishment of the habitat-forming organ-
isms shaping these ecosystems—often termed ecosystem engineers,
habitat-forming species or foundation species (Jones et al., 1994,
hereafter called habitat-forming species)—hinges on the initiation
of self-facilitating feedbacks generated by emergent traits (Silliman
et al., 2015; Temmink et al., 2020; Temmink, Cruijsen, et al., 2021).
These traits are not expressed by individuals or small clones but
emerge when individuals aggregate or form large clones or patches.
Emergent traits in turn facilitate conspecifics for instance by en-
hancing local rainwater infiltration in drylands (Tirado et al., 2015),
or by stabilizing soils and providing attachment substrate in hydro-
dynamically exposed coastal zones (Bersoza Hernandez et al., 2018;

Maxwell et al., 2016). However, because these emergent traits

other ecosystems is now required.

bivalve, coastal restoration, ecosystem engineers, habitat modification, mussel, oyster, post-

require a certain minimum organism density and patch size to oper-
ate adequately, establishment of these organisms is impeded below
such density or size thresholds (Temmink et al., 2020).

To overcome establishment thresholds, restoration practitioners
either transplant adult or juvenile habitat-forming species in clumped
rather than more commonly used dispersed designs or deploy tem-
porary or permanent structures (Bakrin Sofawi et al., 2017; Johnson
et al., 2019; Silliman et al., 2015). The first approach is often used to
restore both terrestrial and aquatic vegetation (Silliman et al., 2015),
while the latter technique involving permanent structures is often
pursued to support marine reef formation (Bersoza Hernandez
et al., 2018; van der Heide et al., 2014; Zu Ermgassen et al., 2020).
Although these stress-mitigating techniques are important advance-
ments, they typically only facilitate a single life stage, such as trans-
planting of adults, seeding propagules or stimulating recruitment
(Bersoza Hernandez et al., 2018; Silliman et al., 2015; van Katwijk
et al., 2016; Zu Ermgassen et al., 2020). Yet, many habitat-forming
organisms experience multiple bottlenecks throughout their life as
they transition from seed/larvae to recruits, recruits to juveniles and
juveniles to adults (Figure 1; Balke et al., 2011; de Paoli et al., 2015).
Moreover, for many habitat-forming species, an individual's ability to
overcome consecutive bottlenecks often depends on intraspecific
facilitation by established conspecifics or requires a window of op-
portunity (i.e. a sufficiently long period of calm low-stress conditions
during which individuals can either establish or grown enough to ad-
vance to the next life stage; Balke et al., 2011; Tirado et al., 2015).

In this study, we hypothesize that by alleviating survival bot-

tlenecks across multiple life stages—via mimicry of emergent traits
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FIGURE 1 Life cycle informed restoration. Habitat-modifying species often face multiple bottlenecks as they mature from seeds/
propagules to juveniles to adults (assuming there are sufficient seeds/broodstock), life stage-specific bottlenecks are often ameliorated by
adult conspecifics (a, numbers show the definition of each symbol representing a bottleneck on the left and mechanism of facilitation on the
right). Note: the list of limiting factors and faciliation mechanisms is not exhaustive. Arid shrublands (b), peat bogs (c), mussel beds (d), coral
reefs (e), seagrass meadows (f) and mangrove forests (g) are all examples of habitats where adults facilitate the recruitment, survival and
growth of conspecifics by alleivating multiple, ecosystem-specific, bottlenecks. To rejuvenate degraded ecosystems or create new habitats,
life cycle informed restoration approaches thus mimick adult habitats by strategically facilitating habitat-modifying species across multiple
life stages to reduce bottlenecks to their establishment. Pictures: (b) Han Ollf, (c and d) R.J.M.T,, (e) Jimmy de Fouw (f and g) L.P.M.L.

that generate facilitation among conspecifics in naturally estab- approach would eliminate the need for transplanting adults to re-
lished larger clones or patches—restoration practitioners can stim- generate facilitation (Figure 1), and thus any dependence on often

ulate ecosystem recovery. Such a ‘life cycle informed restoration’ limiting donor source populations. To investigate our hypothesis and
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FIGURE 2 Field sites and experimental setup. Location of the field site near Ameland in the Netherlands (a) and near Cedar Key in Florida
US (b). Overview of the experimental units in the Netherlands (c) and Florida (d) with a closeup of a cage, fully covered in fine mesh to
exclude predators (), and a cage control (one side open, the rest covered in fine mesh) with a structure with rope inside in the Netherlands
(f). The green mesh is the gabion that supports the fine mesh (f). Schematic of the experimental treatments, and details regarding the
experiment duration and plot dimensions for each of the three experiments (g). (1) Do engineered establishment structures (ESS) facilitate
reef development? (2) Are species-specific settlement substrates required for reef development? (3) What is the importance of post-
settlement predation in controlling reef development and can engineered ESS reduce this stress? Gabions (square lattice panels) were used
for structural support for the ropes and mesh. Pictures: R.J.M.T. (c, d and f) and G.S.F. (e). Map data made with Natural Earth

test our approach as a general proof of concept—to show whether
we can initiate reef formation by facilitating settlement by provid-
ing suitable substrate and subsequently enhance post-settlement
survival by reducing predation, we carried out a trans-Atlantic ex-
periment in which we aim to facilitate reef formation by aggregat-
ing epibenthic bivalves in intertidal soft-sediment ecosystems. As
model systems, we focused on reefs naturally formed by oysters or
mussels in Florida and the Netherlands. Specifically, in Florida, we
aimed to facilitate the primary reef-building native Eastern oyster
Crassostrea virginica, and potentially also the native hooked mussel
Ischadium recurvum that is often found growing on oyster beds. In
the Netherlands, we targeted the primary reef-building native blue
mussel Mytilus edulis. In addition, our approach could also facilitate
native European flat oysters Ostrea edulis, or the non-native invasive
Pacific oyster Crassostrea gigas that was introduced by fishermen
when the native oyster declined (see study system description; Fey
et al., 2010). World-wide, bivalve reefs have deteriorated in extent
and quality over the last centuries (Lotze et al., 2006). Restoration is
challenging because of multiple bottlenecks that occur throughout
these organism's life cycles as highlighted below.

Although each bivalve species needs to overcome multiple bot-
tlenecks to form reefs, the requirements of these species differ due
to their own distinct life-history and functional traits. In many bi-
valve species, adults release eggs and sperm into the water column
where fertilization occurs and embryos develop into free-swimming
larvae that (except e.g. O. edulis, where fertilization occurs internally
in the females), after several weeks, settle as spat on the seafloor.
Oyster spat preferentially settle on hard, stable substrates on which
they cement themselves in place, such as oyster shells or concrete
(Bersoza Hernandez et al., 2018; Christianen et al., 2018; Preston
et al., 2020; Rodriguez-Perez et al., 2019). After this, they are ses-
sile filter feeders and highly dependent on the quality of the local
environment for their survival, growth and reproduction (Burreson
& Ragone, 1996; Peyre et al., 2016; Pogoda et al., 2019). Mussel
spat, in constrast, typically settle in/on fibrous substrates for refuge,
such as byssal threads of adult conspecifics or natural fiber-based
substrates (Carl et al., 2012; van der Heide et al., 2014; Walters &
Wethey, 1996). They remain mobile to some extent and gradually
move outward from the small crevices they settle in as they grow
larger in later life stages (Bayne, 1964). After settlement, mussel and
oyster recruits are often at risk of being dislodged by currents and
waves and can be heavily predated, severely hampering juvenile sur-
vival of both species (Brown et al., 2008; de Paoli et al., 2015; van
der Heide et al., 2014). On established reefs, adult conspecifics pro-

vide attachment substrate, ameliorate physcial stress and provide

shelter from predation by forming spatially complex habitats (Carl
et al., 2012; Donadi et al., 2013).

To succesfully apply life cycle informed restoration for our model
systems, we propose that the different life stages and species-
specific requirements need to be considered and integrated to create
self-sustaining ecosystems (Figure 1). As a general proof of concept,
we deployed biodegradable engineered establishment structures to
temporarily simulate emergent traits found in established bivalve
reefs (Figure 2d,f). Specifically, we aim to use the structures to both
facilitate settlement by providing a suitable substrate, and thereaf-
ter enhance post-settlement survival by reducing predation to levels
that allow reef formation (e.g. by birds and crabs). Eventually, a reef
should develop such that it sustains its own suitable settlement and
growing conditions, at which point the structure itself naturally bio-
degrades. To investigate our concept and its generality, we imple-
mented various complementary field experiments (Figure 2). First,
we determined whether the structures can initiate reef formation in
two contrasting ecosystems across the Atlantic (Trans-Atlantic reef
formation experiment). Second, we tested if we differentially can
stimulate bivalve recruitment depending on their requirements by
incorporating a second, distinct settlement substrate—fibrous coir
rope—into the structure (which itself provides hard, stable substrate;
Settlement substrate experiment). Last, we determined whether the
structures reduce predation by excluding predators (Predation ex-
periment). We demonstrate that restoration yields can be greatly
enhanced through the amelioration of multiple bottlenecks with

temporary structures throughout an organism's life.

2 | MATERIALS AND METHODS
2.1 | Study sites

To provide proof of concept for life cycle informed restoration, we
carried out experiments with biodegradable engineered establish-
ment structures on the intertidal flats of the Gulf of Mexico (Cedar
Key, Florida, US, 29°9'48.03"N, 82°59'46.59"W) and the Wadden
Sea (Ameland, the Netherlands, 53°25'9.57"N, 5°40'9.20"E) be-
tween 2016 and 2018 (Figure 2).

In Florida, we targeted the native Eastern oyster C. virginica,
which is the primary reef-building species, and potentially also the
native hooked mussel I. recurvum that is often found growing on
native oyster beds or other hard structures. In the Netherlands,
we targeted the reef-building native blue mussel M. edulis. In ad-

dition, the structures could also facilitate the native European flat
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oyster O. edulis, or the non-native pacific oyster C. gigas that was
introduced in 1983. Fishermen actively introduced the non-native
C. gigas as an alternative to the native O. edulis when this species
became virtually extinct due to a combination of disease and a very
cold winter in 1960s (Fey et al., 2010). As a consequence, most reefs
in the Netherlands now consist of mixed beds of native M. edulis and
non-native C. gigas, assemblages that are, on rare occasions comple-
mented by a native O. edulis individual.

Larvae of C. virginica, I. recurvum, M. edulis and C. gigas were gen-
erally abundant in the water column of their respective ecosystems
and could potentially settle as spat in our experiment. Larval den-
sities of the native O. edulis were virtually absent as this species is
functionally extinctin the Wadden Sea (e.g. De Vooys, 1999; Johnson
et al., 2019). Course shell hash sediment typified the site in Florida,
with small clumps of the native Eastern oyster C. virginica that were
found scattered in a very low density. Bare, sandy sediment char-
acterized the site in the Netherlands. Here, a small intertidal mixed
mussel-oyster bed consisting of native M. edulis and non-native C.
gigas, respectively, was located 300 m from the experiment.

2.2 | Experimental setups
2.2.1 | Trans-Atlantic reef formation experiment

To investigate whether our temporary structures can facilitate reef
natural establishment and survival of reef-forming bivalves (native
C. virginica or native I. recurvum in Florida, and native M. edulis, na-
tive O. edulis or non-native C. gigas in the Netherlands), we carried
out a reef structure experiment (the trans-Atlantic experiment)
in Florida US and the Netherlands (experiment 1 in Figure 2g). At
each site, we constructed the experiment as a randomized block
design with control (bare flat) and structure addition as the two
treatments. Specifically, we constructed five replicate blocks in
Florida in April 2017 and seven replicates in the Netherlands in April
2016. Following a 20- and 22-month period, we terminated the ex-
periments in Florida and the Netherlands in November 2018 and
February 2018 respectively.

stacked
Biodegradable Ecosystem Engineering Elements (BESE) sheets

Each engineered structure consisted of eight
resulting in a 16 cm high module (sheet: 91.5 x 45.5 x 2 cm
[L x W x HJ; Figure 2d; BESE Ecosystem Restoration Products,
Culemborg, The Netherlands). A BESE sheet is composed of bio-
degradable potato-waste-derived Solanyl C1104 M (Rodenburg
Biopolymers, Oosterhout, the Netherlands, BESE Ecosystem
Restoration Products). Through each module, we braided 70 m of fi-
brous coir rope (@: 0.5-1 cm), which we added to serve as a potential
settlement substrate. The rope mimicked byssus threads of byssus-
forming bivalves (van der Heide et al., 2014), such as blue mussels
in the Netherland and hooked mussels in Florida. These structures
were intended to (a) facilitate establishment by providing a hard sub-
strate in a soft-sediment ecosystem, as well as fibrous substrate that

may act as a settlement cue for mussels, and (b) reduce predation

pressure post-settlement because of its complex matrix, physically
obstructing larger predators (>3 cm). We placed the resulting estab-
lishment units in the intertidal. In Florida, we secured each unit using
four 1.5-m long L-shaped rebar anchors. In the Netherlands, we
fixed the units between four 1.4-m long wooden poles (@: 6-8 cm)
that were hammered 1 m into the ground and were cross-connected
over the units with 3-mm PVC-coated steel wire. We placed the
plots at least 3 m spaced apart at 86% and 75% inundation fre-
quency for Florida (1.2 + 0.0007 ft. North American Vertical Datum
of 1988; NAVD88) and the Netherlands (-0.35 + 0.002 m Normaal
Amsterdams Peil; NAP) respectively (Fivash, Stiiben, et al., 2021).

At the termination of the experiment, we took one subsample of
each plot using a custom-made soil sampler (diameter 15 cm, length:
48 cm). To clean-slice through structures, it had small teeth (height:
25 mm). Controls were checked visually but supported no mussel or
oysters’ individuals. We placed every sample in a plastic bag, after
which we separated bivalves from the structure in a laboratory. Next,
as a first general metric of reef formation, we determined oysters or
mussels (shell + soft tissue) dry mass. Oysters were dried at 70°C to
constant weight (after at least 74 hr). Mussel biomass was calculated
based on a mussel length to biomass calibration. Furthermore, to
examine whether distinct age cohorts recruited during the experi-
ment, we determined length frequencies (Beukema & Dekker, 2007).
Oyster lengths were measured from samples gathered in November
2018 (n = 100), while mussel lengths were measured from samples
obtained in February 2018 (n = 122).

2.2.2 | Settlement substrate experiment

To unravel if species-specific (oyster-mussel) settlement prefer-
ences are required for reef development (experiment 2 in Figure 2g),
we performed a second experiment (Settlement substrate experi-
ment) in which we manipulated the presence/absence of the fibrous
coir rope within the structures in both Florida and the Netherlands.
In Florida, this experiment was carried out by adding a structure
without rope to each of the five replicate blocks of the trans-Atlantic
experiment (see Section 2.2.1). In the Netherlands, we constructed
an entirely new experiment in a four-replicate randomized block de-
sign at the same site and elevation as the trans-Atlantic experiment,
which ran from April 2016 to October 2016. For this experiment,
we used halved establishment modules (i.e. 45.8 x 45.5 x 16 cm
[L x W x H]) with and without 35 m of coir rope. We fixed these
modules with cable ties to plastic-coated gabions to provide struc-
tural support (dimensions: 52.5 x 52.5 x 22.5 cm [L x W x H] with a
7.5 cm mesh size, including a lid on top). We secured the gabions to
1.4-m long wooden poles (@: 6-8 cm) with 3 mm thick coated steel
wire in the same fashion as the first experiment.

We sampled the plots in Florida following the methods described
above. In the Netherlands, each entire plot with its respective ga-
bion, was placed in a separate plastic bag. Next, we transported the
samples to the laboratory and stored at -20°C until further analyses.

For analysis, each plot was thawed, and carefully deconstructed,
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while all mussels were collected. All samples (shell and soft tissue)
were oven dried at 70°C to constant weight and weighed. We mea-
sured oyster lengths from samples gathered in Florida in April 2018
(n = 74), while we measured mussel lengths from samples obtained
in the Netherlands in October 2016 (n = 1,960). We counted oyster
individuals, while for mussels, we calculated the individuals based on
a mussel length to biomass calibration.

2.2.3 | Predation experiment

Finally, to examine the importance of post-settlement predation in
controlling reef development and whether structures can reduce this
stress (experiment 3 in Figure 2g), we performed a third experiment
(Predation experiment). In this experiment, we factorially manipu-
lated predation pressure and substrate type in the Netherlands. This
experiment ran from April 2016 to October 2016. In the study area,
we constructed a new experiment in a four-replicate randomized
block design at the same site and elevation as the trans-Atlantic ex-
periment using halved establishment modules (see Section 2.2.1).
The treatments consisted of (1) control cage with rope, (2) control
cage with structure with rope, (3) exclosure cage with rope and (4)
exclosure cage with structure with rope.

We constructed the structures in the same fashion as the settle-
ment preference experiment in the Netherlands (see Section 2.2.2).
For the rope treatment, we braided 35 m of coir rope over three

@) Florida (b)

layers inside a gabion. Both gabion with ropes and the structure
with rope were then covered with mesh. We fully covered exclo-
sure cages in mesh to exclude predators (width of mesh: 1,000 pm;
wire thickness: 515 pm, nylon, Kabel Zaandam, The Netherlands,
Figure 2e), while allowing bivalve larvae to enter (Widdows, 1991).
Control cages were partially covered in mesh, but open on one side
to allow predators to enter and to also influence hydrodynamics
and food delivery to mussels a similar extent as the exclosure cages
(Figure 3f). The seams of the mesh used to construct the open and
fully covered exclosures were glued with Bison poly max express. In
the field, we placed the open side of control cages most sheltered
from waves (northeastern direction). We secured the structures fol-
lowing the method described in Section 2.2.1 for the Netherlands.
During the experiment, we monitored the outside of all cages for
fouling every month from spring to autumn, but this turned out to be
minimal. We did not observe signs of predators breaching the cages.
We obtained the mussel biomass data using the same method as de-
scribed for the settlement substrate experiment for the Netherlands
(see Section 2.2.2).

2.3 | Statistical analyses
Due to non-normality, bivalve biomass data from the trans-Atlantic

experiment were non-parametrically analysed using Wilcoxon

tests for Florida and the Netherlands. Student's t tests were used

The Netherlands
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to analyse the magnitude and significance of differences in bivalve
biomass in the settlement preference experiment for each country.
These data were log-transformed. A linear mixed-effects model
(LMER) with Gaussian error distribution was used to assess main and
interactive effects of structure and predator exclusion treatment (i.e.
full cage or cage control) on mussel biomass in the third experiment
(data were log-transformed; Kuznetsova et al., 2019). Block number,
treated as random factor in the analyses of the third experiment,
proved not significant, and was thus removed from the analyses. All
analyses were performed in R studio (version 3.6) statistical and pro-
gramming environment (R Core Team, 2020). All results are shown

with their standard error of the arithmetic mean (+SEM).

3 | RESULTS
3.1 | Trans-Atlantic reef formation experiment

The formation of the reefs was stimulated by the structures on
intertidal flats of both Florida and the Netherlands, while no reef
formation took place in the controls without structures (Figure 3).
We found no mussels on the structures in Florida, and no native
or non-native oysters in the Netherlands. Specifically, formed
reefs consisted of 12.9 + 3 kg DW/m? oysters or 1.5 + 0.3 kg DW
mussels/m? on the structure in Florida and the Netherlands, re-
spectively, after 20 and 22 months of growth (Florida: Z = 2.79,
p = 0.005, the Netherlands: Z = 3.34, p = 0.0008). Oyster biomass
on these adult habitat mimics in Florida was almost an order of
magnitude higher compared to mussel biomass in the Netherlands.
Additionally, the length of both the oysters and the mussels var-
ied in time (Figure S2). Histograms of mussel biomass show growth
from April 2018 to November 2018 for oysters and from October
2016 to February 2018 for mussels.

3.2 | Settlement substrate experiment

The addition of a natural substrate that mimics mussel byssal threads
(fibrous rope) increased mussel biomass and the number of individu-
als relative to the structure alone in the Netherlands, while oyster bi-
omass and number of individuals were similar in the two treatments
in Florida (Figure 4). In the Netherlands, we found no non-native and
native oysters, and in Florida no mussels. Specifically in Florida, oys-
ter biomass in the structure without rope was 12.4 + 2.7 kg DW
oyster/m?, which was higher but not significantly different from
structures with rope (6.6 + 1.1 kg DW oysters/m?, t = 1.9, p = 0.09).
By contrast, mussel biomass was 12 times higher (0.9 + 0.3 kg
DW mussels/m?) in the structures with rope relative to structures
without rope in the Netherlands (0.08 + 0.007 kg DW mussels/m?,
t =-8.18, p = 0.0002). The number of oyster individuals also did not
differ between treatments (2,900 + 840 and 1,470 + 364 m™ for
structure and structure with rope, respectively, t = 1.8, p = 0.07),

while the number of mussel individuals was 12 times higher in the

structure with rope compared to the structure alone (4,600 + 1,500
and 380 + 40 m™, t = -8.18, p = 0.0002).

3.3 | Predation experiment

Excluding predators stimulated mussel settlement and growth,
while establishment in open control cages benefited most from
the combination of the structure with rope (Figure 5). The exclu-
sion of predators did not stimulate native or non-native oyster es-
tablishment. In closed cages, mussel biomass did not differ between
rope (10.4 + 2.7 kg DW/m?) and structure with rope treatments
(7.8 + 1.8 kg DW/m?). In contrast, in control cages accessible to
predators, the structure with rope that provides some predator pro-
tection yielded seven times more mussel biomass (0.7 + 0.3 kg DW/
m?) than the rope only in the control cage treatment (0.1 + 0.03 kg
DW/m?; Figure 5).

4 | DISCUSSION

Current restoration approaches typically focus on overcoming a
single bottleneck obstructing ecosystem recovery (Bayraktarov
et al, 2016; Renzi et al., 2019, see Appendix S1 in Supprting
Information). Our results provide proof of concept that through
life cycle informed restoration, large restoration gains and reduced
reliance on donor populations can be achieved in areas that are
substrate limited, and where recruitment limitation is not an issue.
Specifically, our field experiments demonstrate that this technique
can initiate mussel and oyster reef formation, in the Netherlands
and Florida respectively. We engineered species-specific settlement
substrates, and subsequently facilitated post-settlement survival,
using materials that are biodegrade. Therefore, we argue that a life
cycle informed restoration approach using materials that temporar-
ily mimic emergent traits of adult populations, and that most likely
do not leave behind a legacy of waste, may offer a viable and sustain-
able approach for large-scale restoration of bivalve reefs globally.
Moreover, this approach may also be suitable to increase restora-
tion success of other important ecosystems dominated by habitat
modifiers that face multiple life stage-dependent bottleneck when

establishing.

4.1 | Engineering settlement substrate and post-
settlement survival for reef formation

Our experiments clearly show that the establishment structures,
engineered to mimic emergent traits, facilitate reef formation. Plots
with the structure matured into reefs, while bare flats remained
bare throughout the experimental period in both Florida and the
Netherlands (Figure 3; Appendix S2). The addition of coir rope to
the structures stimulated blue mussel establishment, because this

species prefers to settle in fibrous and complex, rather than smooth,
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substrates (Carl et al., 2012; Dobretsov & Wahl, 2001). The combi-
nation of hard and fibrous substrate most closely resembles estab-
lished mussel reefs formed by hard mussel shells intertwined with
fibrous byssal threads. In addition to blue mussels, this settlement
preference is likely to be important for other species of mussels
that are known to settle on fibrous substrates, such as the Northern
horse mussel, Mediterranean mussel and the Asian green mussel
(Karayticel et al., 2002; Sanderson et al., 2008; Ramirez & Martinez,
1999). Importantly, in these conditions, post-settlement mussel re-
cruits remain mobile, and can migrate into interstitial spaces to avoid
predation and migrate out of them at larger sizes (Carl et al., 2012).
Although the non-native C. gigas and native O. edulis could have es-
tablished on the structures in the Netherlands, we found no non-
native and native oysters. Furthermore, oysters did not benefit from
fibrous rope addition in Florida and the Netherlands, most likely
because oyster spat require hard and stable substrate for attach-
ment to cement unto (Pogoda et al., 2019). Post-settlement, oysters
are sessile for the rest of their lives. Therefore, a stable surface that
prevents self-burial or burial by moving sediment/substrate, such
as that provided by the structures, is vital to their success. These
findings suggest that by incorporating different substrates for

species-specific settlement that are inspired by traits of the adult

organism, it is possible to stimulate different bivalve species with
contrasting settlement strategies. This might be a useful tool for se-
lecting substrates suitable for native bivalves, but not for invasive
and non-native ones (Colsoul et al., 2020; Troost, 2010). We further
anticipate that incorporating species-specific chemical cues into
restoration designs could both benefit bivalves and other habitat
modifiers like stony corals and tubeworms, as previous work dem-
onstrated that larvae of these species positively respond to specific
chemicals as cues for settlement (Callaway, 2003; Rodriguez-Perez
et al,, 2019; Tebben et al., 2015).

Results from the predation experiment clearly indicate that by
excluding predators, recruitment of mussels to ropes was an order of
magnitude higher compared to control cages with ropes accessible
to predators, while it did not facilitate native and non-native oyster
establishment. However, in control cages, the presence of the struc-
ture did reduce predation, as evidenced by recruitment success on
structures with rope being seven times higher than treatments with
only rope. Hence, our results support earlier work demonstrating
that successful mussel recruitment requires a combination of suit-
able attachment substrate and low predation pressure—conditions
typically created within established mussel beds (van der Heide

etal., 2014). Predation is also a common pressure limiting restoration
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FIGURE 5 Predation effects on mussel reef development. The
effect of rope alone (grey bars) and engineered establishment
structures (EES) woven with rope (blue bars) in control cages

that were accessible to predators—cage covered with fine mesh
that was open on one side—or cages that excluded predators—
completely covered with fine mesh (kg DW/m? +SEs, n = 4,

dry biomass is shell + tissue weight) after one season in the
Netherlands (2016). The main (P, predation,;(2 = 142.4; S, substrate
type,;(2 = 6.1) and interactive (P x S,;{2 = 11.8) effects are shown
with p values in the inset. Note: y-axis is shown a log scale

success of oyster reefs (Kimbro et al., 2017; Newell et al., 2007).
Oysters are often most susceptible to predation by crabs, flatworms
and predatory gastropods in the first few month's post-settlement
(Kimbro et al., 2017; Newell et al., 2007). In our experiment, the oys-
ters were present in high densities on both on the inside as well as on
the outside of the engineered establishment substrates (Figure 3a).
Combined with the observations that we found no boring sponges
that are detrimental to their survival and a very low density of pred-
atory sea snails; this suggests that predation was of limited impor-
tance at our study site during the timeframe of our experiments.
Although our results clearly highlight that natural bivalve re-
cruitment can be greatly enhanced by structures, it is important
to note that our experiments were performed in two ecosystems
with ample supply of larvae. Larval densities in the water column
are, at least periodically, very high. Obviously, this may not always
be the case in other systems. Therefore, placement of structures
that mimic emergent traits to ameliorate bottlenecks must either
be where settlement of juveniles is possible or otherwise, additional
interventions should be carried out to overcome this very first bot-
tleneck. For instance, the structures could be ‘primed’ with spat
from native species in hatchery facilities (Theuerkauf et al., 2015),
after which an inoculated module can be transferred to the resto-
ration site. Beyond bivalves, using seed/propagules in restoration
reduces the need for adult transplants that are often used in res-
toration (Silliman et al., 2015; van Katwijk et al., 2016). Structures
can be designed to first trap and protect plant seeds, as lack of seed
retention is often limiting establishment on bare intertidal flats or
in the riparian zone of fast flowing rivers (Fivash, Temmink, et al.,
2021; Wang et al., 2019). Once seeds are trapped, the structures
should help to overcome subsequent bottlenecks, by mimicking
emergent traits found in patches of adult plants that facilitate ju-

veniles. For instance, in dynamic ecosystems, such as salt marshes,

seagrass meadows or mangroves, the growth and survival of juvenile
plants are severely hampered by waves or currents. Seedlings may
thus benefit from wave and current amelioration by adult plants or
structures that mimic this facilitation (Chang et al., 2008; Huxham
et al., 2010; Maxwell et al., 2016). Furthermore, in both fresh and
saltwater wetlands, juvenile plants may suffer from unfavourable soil
conditions due to a lack of oxygen (Lamers et al., 2013). Oxygenation
of the root zone, typically performed by adults, may ameliorate such
stress. Finally, in drylands, shrubs may benefit from increased water
infiltration, shading or hydraulic lift created by conspecifics (Tirado
et al., 2015), mechanisms that could also be simulated by artificial

structures.

4.2 | Life cycle informed restoration

In this paper, we provide proof of concept of the idea that facilita-
tion of multiple life stages by mimicking key emergent traits, canin-
itiate reef formation using biodegradable structures (Appendix S3).
To illustrate the potential scalability of life cycle-based restoration
as a general approach, we calculated construction costs for four
scenarios for bivalve ecosystems in which we upscale our spe-
cific experimental technique as an example. The costs to restore
intertidal bivalve ecosystems based on our approach range from
86,000 to 318,000 US$/ha (Appendix S4). The creation of a low-
density oyster reef with a 10% initial cover (Folmer et al., 2014, see
Appendix S4 for details regarding initial cover %) is cheapest at
86,000 US$/ha. Costs are highest (318,000 US$/ha) when using a
high initial cover (30%, Liu et al., 2014) with structures that include
coir rope to enhance mussel settlement. Both estimates, how-
ever, are on the low end compared to the median (189,000 US$)
and mean (860,000 US$) reported costs to restore oyster reefs
(Bayraktarov et al., 2016).

While our experimental results show that the engineered es-
tablishment structures used here can enhance reef formation, the
current design is of course a relatively crude simulation of real reef
structures. This highlights a potential for optimization, including its
spatial complexity, size, specifically targeting native over non-native
species, and methods to secure the structures in the field. Beyond
bivalves, further development of materials and designs that mimic
emergent traits of other habitat modifiers shaping terrestrial, fresh
and saltwater ecosystems is likely required. In such cases, 3D print-
ing of biodegradable, but temporarily stable, structures may open
many design possibilities, allowing the development of tailor-made
structures to facilitate the specific needs of habitat modifiers in de-
grading ecosystems. Once a design is optimized, structures should
be industrially produced, making large-scale outplacement of the
structures feasible (Temmink et al., 2020). Before doing so, however,
it is vital to understand the long-term behaviour and ecological fate
of the biodegradable material as well as the effect of any large-scale
structures on abiotic conditions.

Apart from understanding the basic behaviour of temporary

structures in the environment, it is of course vital to understand
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the most-crucial life stage-dependent bottlenecks related to
self-facilitation to successfully implement life cycle informed
restoration in other ecosystems dominated by habitat modifiers
(Balke et al., 2011). Next, each bottleneck naturally mitigated by
emergent traits should be carefully eliminated using trait mimics
or other techniques, and most preferably should facilitate na-
tive over invasive species (Pogoda et al., 2019; Troost, 2010; Zu
Ermgassen et al.,, 2020). Our work highlights that ecosystems
can be initiated from early life stages (e.g. seed or propagules),
and thus do not require adult transplants (Silliman et al., 2015;
Temmink et al., 2020) or a natural window of opportunity (Balke
et al., 2011). This is only true when restoration designs account for
the multiple mechanisms of facilitation required to enable those
early life stages to establish and grow to maturity. In many harsh
ecosystems dominated by habitat modifiers, seeds and propagules
often require stable substrates and some relief from physical,
chemical and/or biotic stress. These systems include freshwater
bogs, submerged aquatic vegetation beds, reed marshes, as well
as coral reefs, seagrass beds, salt marshes and mangroves in ma-
rine systems. The use of renewable and biodegradable materials to
temporarily perform those functions may offer an environmental-
friendly, scalable and viable solution for future restoration relative
to conventional restoration techniques (Balestri et al., 2019). In a
broader perspective, the widespread degradation of ecosystems
critically requires the need to conduct large-scale restoration.
Approaches such as life cycle informed restoration, which deals
with overcoming multiple bottlenecks, may be vital to achieving

this grand societal challenge.
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