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Abstract
We formulate and prove a very general relative version of the Dobrushin–
Lanford–Ruelle theorem which gives conditions on constraints of 
configuration spaces over a finite alphabet such that for every absolutely 
summable relative interaction, every translation-invariant relative Gibbs 
measure is a relative equilibrium measure and vice versa. Neither implication 
is true without some assumption on the space of configurations. We note that 
the usual finite type condition can be relaxed to a much more general class 
of constraints. By ‘relative’ we mean that both the interaction and the set of 
allowed configurations are determined by a random environment. The result 
includes many special cases that are well known. We give several applications 
including (1) Gibbsian properties of measures that maximize pressure among 
all those that project to a given measure via a topological factor map from 
one symbolic system to another; (2) Gibbsian properties of equilibrium 
measures for group shifts defined on arbitrary countable amenable groups; (3) 
A Gibbsian characterization of equilibrium measures in terms of equilibrium 
condition on lattice slices rather than on finite sets; (4) A relative extension 
of a theorem of Meyerovitch, who proved a version of the Lanford–Ruelle 
theorem which shows that every equilibrium measure on an arbitrary subshift 
satisfies a Gibbsian property on interchangeable patterns.
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1. Introduction

The starting point of Gibbs’s approach to equilibrium statistical physics is the postulate that 
the macroscopic state of a system at thermal equilibrium is appropriately described by a prob-
ability distribution that minimizes the free energy. An equivalent formulation is obtained by 
maximizing the pressure, that is, the difference between the entropy and a constant times 
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the expected energy. In a lattice model in which the microscopic states are configurations 
of symbols on an infinite lattice (e.g. the Ising model), there are two interpretations of this 
hypothesis:

 (i)  Local maximization: the conditional pressure for every finite region of the lattice is maxi-
mized, so that every finite region is in equilibrium with its surrounding. This leads to the 
concept of Gibbs measures.

 (ii)  Global maximization: the average pressure per site (i.e. Kolmogorov–Sinai entropy minus 
expected energy per site) is maximized. The maximizing measures in this interpretation 
are referred to as the equilibrium measures.

The celebrated theorem of Dobrushin [9], Lanford and Ruelle [24] says that under broad con-
ditions, equilibrium measures and shift-invariant Gibbs measures coincide (see [39]).

Theorem 1.1. Let Σ be a finite set of symbols. Let X ⊆ ΣZd
 be a d-dimensional subshift, Φ 

an absolutely summable interaction on X, and fΦ an associated energy observable.

 (a)  (Dobrushin theorem)

  Assume that X is D-mixing. Then, every shift-invariant Gibbs measure for Φ is an equilib-
rium measure for fΦ.

 (b)  (Lanford–Ruelle theorem)

  Assume that X is a subshift of finite type (SFT). Then, every equilibrium measure for fΦ is 
a Gibbs measure for Φ.

Here, X is the space of allowed configurations on the d-dimensional lattice. Neither direc-
tion is true in general and so some kind of restrictions, such as D-mixing in part (a) and SFT 
in part (b), on X, are required. Terminology used in the statement of theorem 1.1, as well as 
other terminology used in this section, will be given in section 2.

We generalize this theorem in several directions. First, we allow the lattice to be any count-
able amenable group. Second, we allow the presence of a random environment that imposes 
constraints on the allowed configurations and affects the energy, and prove the equivalence of 
local and global maximization relative to this environment. Third, we relax the ‘finite type’ 
hypothesis in the Lanford–Ruelle direction to the much weaker topological Markov prop-
erty, and discuss the relationship between this and related properties. We also give several 
applications.

To be specific, let G be a countable amenable group (e.g. G = Zd  with d = 1, 2, . . .), Σ a 
finite alphabet, and Θ a measurable space on which G acts via measurable maps. The group G 
also acts on ΣG by translations. For each θ ∈ Θ, let Xθ ⊆ ΣG be a non-empty closed set such 
that Ω � {(θ, x) : θ ∈ Θ and x ∈ Xθ} is measurable and Xgθ = {gx : x ∈ Xθ} for every θ ∈ Θ 
and g ∈ G. We think of x ∈ ΣG as a microscopic configuration of a physical system and 
θ ∈ Θ as the external environment. The fact that Xθ is not required to be the entire ΣG indi-
cates the possibility of ‘hard’ (or combinatorial) constraints that the environment can impose 
on the system. We refer to Ω as a relative system.

With suitably formulated relative versions of the hypotheses in theorem 1.1, our generali-
zation is as follows.

Theorem 1.2. Let the environment Θ and relative system Ω be as formulated above. Let ν  
be a G-invariant probability measure on Θ. Let Φ be an absolutely summable relative interac-
tion on Ω and fΦ an associated energy observable.

S Barbieri et alNonlinearity 33 (2020) 2409
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 (a)  (Relative Dobrushin theorem)

  Assume that Ω is D-mixing relative to ν . Then, every G-invariant relative Gibbs measure 
for Φ with marginal ν  is an equilibrium measure for fΦ relative to ν .

 (b)  (Relative Lanford–Ruelle theorem)

  Assume that Θ is a standard Borel space. Assume further that Ω has the topological 
Markov property relative to ν . Then, every equilibrium measure for fΦ relative to ν  is a 
relative Gibbs measure for Φ with marginal ν .

The concepts of relative Gibbs measure, relative equilibrium measure, relative interaction, 
absolute summability, relative D-mixing and relative topological Markov property are natural 
analogues of the corresponding non-relative concepts in the relative setting. The proof of theo-
rem 1.2 is given in section 3. In the non-relative setting, that is, when Θ � {θ} and ν � δθ, we 
recover a generalization of theorem 1.1.

Many aspects of the above generalization are not new.

 •  Seppäläinen [42, section 8] proved a relative version of the Dobrushin–Lanford–Ruelle 
theorem on the hyper-cubic lattice Zd . In his result, the alphabet is allowed to also be a 
complete separable metric space. On the other hand, the environment space in his setting 
is required to be a complete separable metric space, with Zd  acting by homeomorphisms, 
and the interaction is assumed to be continuous as a function of θ. Moreover, this setting 
does not allow hard constraints, i.e. Xθ = ΣZd

 for every θ (equivalently, Ω = Θ× ΣZd

). 
See also the paper by Zegarlinski [45].

 •  Moulin Ollagnier and Pinchon [34] (see Moulin Ollagnier [33, theorem 7.2.5]) and 
Tempelman [43, section 8]) have extended the (non-relative) Dobrushin–Lanford–Ruelle 
theorem to countable amenable groups, but again these results do not allow hard con-
straints. On the other hand, Templeman allows the alphabet to be an arbitrary σ-finite 
measure space.

 •  In the case where the acting group is Z, very strong results are known even in the rela-
tive setting. In fact, in this case, if the variations of the energy observable decay rapidly 
enough, there is a unique equilibrium measure which coincides with a unique Gibbs 
measure, and this measure can be described explicitly as the unique fixed point of a 
Ruelle–Perron–Frobenius operator; see the survey by Kifer and Liu [22] (theorem 4.1.1 
and the following paragraph) and Kifer [21]. In this setting, these systems are known as 
random dynamical systems.

 •  In the case where the acting group is Zd , the framework of a relative system, much as we 
have formulated it above, is given in Kifer [19]. In this work the assumptions on Ω are in 
some ways more general and in some ways less general than ours.

For a given continuous observable f , an equilibrium measure achieves the supremum, over 
all G-invariant measures µ, of the difference of the entropy of µ and the expected value of f  
with respect to µ. In the standard setting of a continuous Zd-action on a compact metric space, 
this supremum is characterized as an intrinsically defined notion of topological pressure for 
f . Similar variational principles have been established in the contexts of the above-mentioned 
results (see e.g. [20, 26, 35]). In our paper, we do not consider such variational principles (see 
however proposition 3.2 for a special case); rather we focus on conditions which guarantee 
that every Gibbs measure is an equilibrium measure and that every equilibrium measure is a 
Gibbs measure. Also, the papers [19, 42] include, and are motivated by, large deviations prin-
ciples, which is another topic that we do not consider.

S Barbieri et alNonlinearity 33 (2020) 2409
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Seppäläinen [42] gave several examples to which his result applied. This includes the Ising 
model with random external field and the Edwards–Anderson spin glass model in which the 
coupling parameters for neighboring spins are i.i.d. random. In these models, there are no 
hard constraints on the configurations. Below we give two examples in which there are hard 
constraints. In both of them we assume that G is finitely generated, and we consider a fixed 
finite symmetric generating set S with S �� 1G. We consider the Cayley graph of G generated 
by S as a simple undirected graph with vertex set G and edge set E � {{a, b} : a−1b ∈ S}.

Example 1.3 (Ising model on percolation clusters). Let Θ � {0, 1}G, and let ν  be a 
G-invariant measure on Θ, for instance the Bernoulli measure with parameter p ∈ (0, 1). Let 
Σ � {−1, 0,+1}, and for θ ∈ Θ, let Xθ be the set of configurations x ∈ ΣG for which xk = 0 
if and only if θk = 0. Let h ∈ R and consider the relative interaction Φ defined by

Φ{k}(θ, x) � −hxk

Φ{i,j}(θ, x) � −xixj if {i, j} ∈ E,

and ΦA(θ, x) � 0 whenever A is neither a singleton nor an edge in G. So, the effect of the 
environment is simply to constrain the configurations. Observe that Φ(θ, ·) is essentially the 
Ising interaction with external magnetic field h on the subgraph induced by {k ∈ G : θk = 1}.

This system has been studied as a model of a binary alloy consisting of a ferromagnetic and 
a non-magnetic metal [13, 15, 16, 25]. Each site is chosen at random to carry either a magnetic 
or a non-magnetic atom. The magnetic atoms interact with one another as in the Ising model, 
while the non-magnetic atoms do not interact.

In section 2.5 we will see that the relative system Ω corresponding to this model satisfies 
the assumptions of both parts of theorem 1.2 and thus the equilibrium measures for fΦ relative 
to ν  coincide with the G-invariant relative Gibbs measures for Φ with marginal ν .

Let us point out that this example can be rephrased so that there are no constraints on the 
configurations and thus fits in the setting of Seppäläinen’s result [42]. Let Θ � {0, 1}E be the 
set of bond configurations rather than site configurations. Let ν  be the measure induced on Θ 
by a Bernoulli measure on the sites by letting a bond be open if and only if both its endpoints 
are open. Then we allow an Ising spin (±1) at every site, except that the spins at closed sites 
will not interact with other spins, and therefore will be independent in both the relative equi-
librium measures and the relative Gibbs measures. In this setting, the environment constrains 
the interaction but not the set of allowed configurations. ©

Example 1.4 (Random colorings of random graphs). Let Θ � 2E denote the set 
of all subgraphs of (G,E) that have the same vertex set G. The group G acts on a subgraph 
θ ∈ Θ by translation, that is, gθ � {{ga, gb} : {a, b} ∈ θ}. Let Σ be a finite set of colors. For 
a subgraph θ ∈ Θ, denote by Xθ the set of valid Σ-colorings of θ, that is, the configurations 
x ∈ ΣG such that xa �= xb whenever {a, b} ∈ θ. Clearly Xθ is closed and we have Xgθ = gXθ 
for each θ. Moreover, the set Ω � {(θ, x) : x ∈ Xθ} is measurable.

A G-invariant measure ν  on Θ may be viewed as the distribution of a stationary random 
subgraph θθθ of (G,E). We assume that |Σ| > |S| and so Xθθθ is almost surely non-empty. A max-
entropic random coloring of θθθ is a random configuration xxx from ΣG defined in the same prob-
ability space as θθθ such that xxx ∈ Xθθθ almost surely and the joint distribution µ of (θθθ,xxx) has maxi-
mum possible relative entropy hµ(Ω |Θ). A uniform-Gibbs coloring is a random coloring of 
θθθ such that for every finite set A ⊆ G, the conditional distribution P(xxxA = · |θθθ,xxxAc) is almost 
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surely uniform among all patterns u ∈ ΣA for which u ∨ xxxAc is a valid coloring of θθθ. We shall 
see in section 2.5 that the assumptions of the relative Dobrushin–Lanford–Ruelle theorem 
hold and so a stationary random coloring is max-entropic if and only if it is uniform-Gibbs. 

Now we consider some applications. ©

1.1. Equilibrium measures relative to a topological factor

Following Ledrappier and Walters [26, 44], a related notion of an equilibrium measure relative 
to an invariant measure on a topological factor has been studied, primarily in the context of 
one-dimensional symbolic dynamics.

Let η : X → Y  be a topological factor map from a one-dimensional SFT X onto another 
subshift Y. Let ν  be a fixed shift-invariant measure on Y. Consider an invariant measure µ 
on X that projects to ν  and has maximal entropy within the fiber η−1(ν). In [1, theorem 3.3], 
Allahbakhshi and Quas proved that µ has the following Gibbsian property: for every finite set 
A � Z and µ-almost every x ∈ X , the conditional distribution of the pattern on A given η(x) 
and xAc is uniform among all patterns u on A that are consistent with xAc and η(x) (i.e. u and 
xAc form a configuration that is in X and that maps to η(x).)

As an immediate application of theorem 1.2(b), the result of Allahbakhshi and Quas can 
be generalized in three directions. First, the SFT condition on X can be replaced by the more 
general topological Markov property. Second, we can allow for actions of arbitrary countable 
amenable groups. Third, we may include an absolutely summable interaction on X, and obtain 
a similar Gibbsian property for measures that maximize pressure in the fiber. The precise 
statement and further details are given in section 4.

1.2. Equilibrium measures on group shifts

Let G be a countable group and H a finite group. The full shift HG is itself a group with respect 
to the pointwise operation (x · y)g � xg · yg (for x, y ∈ HG and g ∈ G). A group shift is a 
closed shift-invariant subset X ⊆ HG which is also a subgroup of HG. Kitchens and Schmidt 
[23] showed that every group shift over G � Z or G � Z2  is an SFT. More generally, any 
polycyclic-by-finite group has this property [41, theorems 3.8 and 4.2]. However, this does 
not hold in general. For instance, if G is a countable group that is not finitely generated and 
H � Z/2Z, then the subshift X � {0G, 1G} is a group shift but not an SFT. More generally, 
over any countable group G that contains a non-finitely generated subgroup, there are group 
shifts that are not SFTs [40].

Nevertheless, in section 5 we show that every group shift over a countable group has the 
topological Markov property. The extended version of the non-relative Lanford–Ruelle theo-
rem (theorem 1.2(b) with trivial environment) thus gives the following result.

Theorem 1.5 (Equilibrium on group shifts). Let G be a countable amenable group 
and H a finite group, and let X ⊆ HG be a group shift. Let Φ be an absolutely summable inter-
action on X  with an associated observable fΦ. Then every equilibrium measure on X  for fΦ 
is a Gibbs measure for Φ.

Note that the special case of the above theorem with G � Zd  follows from the classical 
Lanford–Ruelle theorem (theorem 1.1(b)) and the fact that every group shift on Zd  is an SFT. 
The general case requires not only the extension to countable amenable groups but also the 
relaxation of the SFT condition to the topological Markov property.

S Barbieri et alNonlinearity 33 (2020) 2409
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In section 5, we use theorem 1.5 to give a sufficient condition for the Haar measure to be 
the unique measure of maximal entropy on a group shift.

1.3. Relative equilibrium measures on lattice slices

Our original motivation to develop a relative Dobrushin–Lanford–Ruelle theorem was to char-
acterize equilibrium measures on two-dimensional subshifts in terms of equilibrium condi-
tions on finite-height horizontal strips.

More specifically, let Y ⊆ ΣZ2
 be a two-dimensional subshift. Given a positive integer N, 

we can view Y as a relative system ΩN  with respect to horizontal shift, by thinking of each 
y ∈ Y  as a configuration x � yZ×[0,N−1] on the horizontal strip Z× [0, N − 1] together with 
the configuration θ � yZ×[0,N−1]c on the complement of the strip as the environment. In anal-
ogy with the Lanford–Ruelle theorem, one may expect that every equilibrium measure on Y 
(with respect to Z2-shift) is a relative equilibrium measure on ΩN  (with respect to horizontal 
shift). Conversely, analogy with the Dobrushin theorem suggests that if a Z2-invariant meas-
ure µ is a relative equilibrium measure on ΩN  (with respect to horizontal shift) for each posi-
tive N, then µ must be an equilibrium measure on Y (with respect to Z2-shift).

We now state a version of this characterization. Let ΠN  denote the projection y �→ yZ×[0,N−1]c 
on the complement of the strip Z× [0, N − 1]. We assume that Y satisfies topological strong 
spatial mixing (TSSM), defined in section 2.5, which implies, in this setting, hypotheses of 
both parts of the relative Dobrushin–Lanford–Ruelle theorem. Examples of subshifts with 
TSSM include the hard-core subshift and the subshift of five-colorings on Z2 (see [3]).

Theorem 1.6 (Equilibrium versus relative equilibrium on strips). Let Y be a 
Z2-subshift that satisfies TSSM. Let Φ be an absolutely summable interaction on Y and µ a 
Z2-invariant measure on Y. Then µ is an equilibrium measure for Φ (with respect to Z2-shift) if 
and only if for each positive integer N, µ is an equilibrium measure for Φ relative to its projec-
tion ΠNµ (with respect to horizontal shift).

This theorem can be seen as an in-between characterization, being local in one direction 
and global in the other. In section 6, we prove a more general statement for subshifts on count-
able amenable groups. In that setting, finite-width horizontal strips are replaced by finite-
width slices, which are unions of finitely many cosets of a fixed subgroup. Interestingly, when 
the subgroup is the trivial subgroup, we recover the Dobrushin–Lanford–Ruelle theorem. In 
principle, theorem 1.6 and its generalization may enable better understanding of an equilib-
rium measure for a G-action by a relative equilibrium measure for an action of a subgroup.

1.4. Relative version of Meyerovitch’s theorem

The Dobrushin–Lanford–Ruelle theorem is not valid on arbitrary subshifts, and the condi-
tions of D-mixing and topological Markov property seem to be the appropriate hypotheses. 
Meyerovitch [31] has generalized the Lanford–Ruelle theorem by removing the assumption 
on the subshift while weakening the conclusion. To state his theorem, we need to introduce 
some terminology. Two finite patterns u, v ∈ ΣA are said to be interchangeable in a subshift 
X ⊆ ΣG if for every w ∈ ΣG\A, we have u ∨ w ∈ X  if and only if v ∨ w ∈ X . For example, in 
the golden mean shift, the words 010 and 000 are interchangeable, and in the even shift, the 
words 001 and 100 are interchangeable. Given B ⊆ Zd, we denote by ξB the σ-algebra on X 
consisting of the events that depend only on the pattern seen on B. Meyerovitch’s result can 
be restated as follows.

S Barbieri et alNonlinearity 33 (2020) 2409
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Theorem 1.7 (Meyerovitch’s theorem). Let X ⊆ ΣZd
 be an arbitrary d-dimensional 

subshift. Let Φ be an absolutely summable interaction on X and µ an equilibrium measure for 
an associated observable fΦ. Then, every two finite patterns u, v ∈ ΣA that are interchange-
able in X satisfy

µ
(
[u]

∣∣ ξAc)
(x)

e−EA|Ac (u∨xAc )
=

µ
(
[v]

∣∣ ξAc)
(x)

e−EA|Ac (v∨xAc )
 (1)

for µ-almost every x ∈ [u] ∪ [v].

The conclusion of Meyerovitch’s theorem becomes equivalent to the Gibbs property when 
the subshift has the topological Markov property: roughly speaking, the topological Markov 
property means that every two patterns that share the same sufficiently thick margin are inter-
changeable. It turns out that (the countable amenable group version of) Meyerovitch’s result 
follows from the relative Lanford–Ruelle theorem by means of an appropriate encoding. In 
fact, we prove a relative version of Meyerovitch’s result using this approach. The notion 
of interchangeability extends naturally to relative systems: we say that two finite patterns 
u, v ∈ ΣA are interchangeable in Xθ if for every w ∈ ΣG\A, we have u ∨ w ∈ Xθ if and only 
if v ∨ w ∈ Xθ. The interchangeability set of two finite patterns u, v ∈ ΣA is the set Θu,v of all 
environments θ ∈ Θ for which u and v are interchangeable. Extending our earlier notation, we 
write ξB for the σ-algebra on Ω generated by the projection (θ, x) �→ xB. The σ-algebra on Ω 
generated by the environment will be denoted by FΘ. We prove the following theorem for an 
arbitrary relative system Ω on a countable amenable group G.

Theorem 1.8 (Relative version of Meyerovitch’s theorem). Assume that Θ is a 
standard Borel space. Let ν  be a G-invariant probability measure on Θ and Φ a relative abso-
lutely summable interaction on Ω. Let µ be an equilibrium measure for fΦ relative to ν . Then, 
every two finite patterns u, v ∈ ΣA satisfy

µ
(
[u]

∣∣ ξAc ∨ FΘ

)
(θ, x)

e−EA|Ac (θ,u∨xAc )
=

µ
(
[v]

∣∣ ξAc ∨ FΘ

)
(θ, x)

e−EA|Ac (θ,v∨xAc )
 (2)

for µ-almost every (θ, x) ∈ [u] ∪ [v] such that θ ∈ Θu,v.

We prove theorem 1.8 in section 7. As in the non-relative case, the conclusion of theorem 
1.8 becomes equivalent to the relative Gibbs property when the system has the topological 
Markov property relative to ν , and we recover the relative Lanford–Ruelle theorem. This 
means that, up to relatively simple reductions, theorem 1.2(b) and theorem 1.8 are equivalent!

2. Preliminaries

2.1. Setting

Throughout this article, we work in a general setting in which the underlying lattice is a count-
able amenable group. A countable group (G, ·) is amenable if there is a sequence of non-empty 
finite subsets Fn ⊆ G that are approximately (right) G-invariant, in the sense that for every 
g ∈ G, |Fn�Fng| = o(|Fn|) as n → ∞. Such a sequence is called a (right) Følner sequence. 
For instance, the hyper-cubic lattice (Zd,+) (with d = 1, 2, . . .) is amenable with the boxes 
Fn � [−n, n]d ∩ Zd  forming a Følner sequence. For many results in ergodic theory includ-
ing the pointwise ergodic theorem [29], the Shannon–McMillan–Breiman theorem [29, 37],  
and the Ornstein isomorphism theorem [38], the setting of amenable groups seems to be the 
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right level of generality. A reader who is not concerned with this level of generality is welcome 
to take G � Zd .

Let G be a countable amenable group and Σ a finite alphabet. We will use the notation 
A � G to indicate that A is a finite subset of G. We think of x ∈ ΣG as a microscopic configu-
ration of a physical system, with xg representing the local state of the system at spatial position 
g ∈ G. The group G acts on ΣG by translations: the action of an element g ∈ G on a con-
figuration x ∈ ΣG is the shifted configuration gx where (gx)k � xg−1k for every k ∈ G. Given 
A, B ⊆ G, u ∈ ΣA and v ∈ ΣB such that uA∩B = vA∩B, define u ∨ v ∈ ΣA∪B by (u ∨ v)g = ug 
for g ∈ A and (u ∨ v)g = vg for g ∈ B.

The system interacts with an external environment. The space of all possible states of the 
environment is a measurable space Θ on which G acts via measurable maps. For each θ ∈ Θ, 
let Xθ ⊆ ΣG be a non-empty closed set, representing the configurations that are consistent 
with environment θ. We impose two assumptions on the family (Xθ : θ ∈ Θ):

 (i)  (measurability) Ω � {(θ, x) : θ ∈ Θ and x ∈ Xθ} is measurable in the product σ-algebra,
 (ii)  (translation symmetry) Xgθ = gXθ for each θ ∈ Θ and g ∈ G.

We call Ω a relative system. As an alternative interpretation, if ν  is a probability measure on 
Θ, then θ �→ Xθ is a random set in the probability space (Θ, ν).

Recall that the σ-algebra on Ω generated by projection on Θ is denoted by FΘ. We denote 
by ξ the finite partition of Ω generated by the projection (θ, x) �→ x1G. A cylinder set is a 
set of the form [q] � {(θ, x) ∈ Ω : xA = q} where q ∈ ΣA is a pattern with (finite) support 
A � G. The set A is called the base of [q]. Given a subset B ⊆ G, we write ξB �

∨
k∈B ξ

k  
(with ξk � kξ) for the σ-algebra on Ω generated by cylinder sets whose bases are included 
in B.

We call a measurable function f : Ω → R an observable. An observable is said to be rel-
atively local if it is (FΘ ∨ ξA)-measurable for some A � G. An observable f  is relatively 
continuous if the family ( f (θ, ·) : θ ∈ Θ) is equicontinuous, that is, for every ε > 0, there 
exists a set A � G such that for every θ ∈ Θ and x, y ∈ Xθ satisfying xA = yA, we have 
|f (θ, x)− f (θ, y)| < ε. Every relatively local observable is clearly relatively continuous. The 
set of bounded relatively continuous observables, denoted by CΘ(Ω), is a Banach space with 
the uniform norm. The bounded relatively local observables form a dense linear subspace of 
CΘ(Ω).

For a closed subset Y ⊆ ΣG  and a finite set A � G, we write LA(Y) for the set of all patterns 

q ∈ ΣA such that y A  =  q for some y ∈ Y . We define L(Y) �
⋃

A�G
LA(Y).

2.2. Relative interactions and Hamiltonians

A (relative) interaction on Ω is a collection Φ = (ΦA : A � G) of bounded measurable maps 
ΦA : Ω → R such that

 (i)  (relative locality) ΦA is (FΘ ∨ ξA)-measurable,
 (ii)  (translation symmetry) ΦgA(θ, x) = ΦA(g−1θ, g−1x).

A relative interaction is absolutely summable if

‖Φ‖ �
∑
A�G
A�1G

‖ΦA‖ < ∞,
 (3)

where ‖ΦA‖ denotes the uniform norm of ΦA.
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Given an interaction Φ, the energy content of a configuration x ∈ X  in a finite set A relative 
to an environment θ ∈ Θ is

EA(θ, x) �
∑
C⊆A

ΦC(θ, x). (4)

The collection E = (EA : A � G) is called the (relative) Hamiltonian defined by Φ. The con-
ditional energy content of x inside A � G in the context of B � G and environment θ ∈ Θ is

EA|B(θ, x) � EA∪B(θ, x)− EB(θ, x)

=
∑

C⊆A∪B
C∩(A\B) �=∅

ΦC(θ, x). (5)

Observe that EA is relatively continuous with ‖EA‖ � |A| ‖Φ‖, and similarly, ∥∥EA|B
∥∥ � |A \ B| ‖Φ‖. The absolute summability of Φ ensures that the limit

EA|Ac(θ, x) � lim
B↗G

EA|(B\A)(θ, x)

=
∑
C�G

C∩A�=∅

ΦC(θ, x) (6)

exists along the finite subsets of G directed by inclusion. Moreover, the convergence is uniform 
in (θ, x), hence EA|Ac(θ, x) is bounded (namely, 

∥∥EA|Ac

∥∥ � |A| ‖Φ‖) and relatively continuous.
It is easy to see that

∥∥EA|Ac − EA
∥∥ �

∑
C�G

C∩A�=∅
C∩Ac �=∅

‖ΦC‖ .
 (7)

Suppose that (Fn)n∈N is a Følner sequence in G. It follows from the absolute summability of Φ 
that if we choose A � Fn, the right-hand side of (7) becomes of order o(|Fn|) as n → ∞, hence

∥∥EFn|Fc
n
− EFn

∥∥ = o(|Fn|) (8)

as n → ∞ (see appendix A.2.1). Another useful inequality is
∥∥EB|Bc − EA|Ac

∥∥ � |B \ A| ‖Φ‖ , (9)

which holds whenever A and B are finite and A ⊆ B (see appendix A.2.2).
The value ΦA(θ, x) is interpreted as the energy resulting from the interaction between the 

symbols at sites in A and the environment. In models from physics, the interaction values are 
often physically meaningful values, either being prescribed by the microscopic physics behind 
the model, or representing rough microscopic tendencies for alignment or misalignment of the 
physical quantities at different locations. The contribution of a single site to the energy can be 
measured, for instance, by the following bounded relatively continuous observable

fΦ(θ, x) �
∑
A�G
A�1G

1
|A|

ΦA(θ, x).
 (10)

There are many other choices to distribute the energy contributions between sites; see [39, 
section 3.2] for some other choices. The key relationship between Φ and fΦ is that for every 
Følner sequence (Fn)n∈N,
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∣∣∣EFn(θ, x)−
∑
g∈Fn

fΦ(g−1θ, g−1x)
∣∣∣ = o(|Fn|) (11)

as n → ∞, uniformly in (θ, x) ∈ Ω (see appendix A.2.3). As a consequence,

µ( fΦ) = lim
n→∞

µ
(
EFn

)
|Fn|

 (12)

for every G-invariant measure µ on Ω. From (8) it follows that the above equality remains 
valid if we replace EFn with EFn|Fc

n
.

2.3. Relative pressure

Let E be the relative Hamiltonian associated to a relative absolutely summable interaction Φ 
and µ a G-invariant probability measure on Ω. For every A � G, we define

Ψµ(A) � Hµ(ξ
A |FΘ)− µ(EA), (13)

where Hµ(ξ
A |FΘ) denotes the conditional entropy of ξA given FΘ under µ. This is the rela-

tive pressure on A under µ.
The relative pressure per site under µ is given by

ψ(µ) � lim
n→∞

1
|Fn|

Ψµ(Fn) (14)

where (Fn)n∈N is an arbitrary Følner sequence in G. It can be verified using [18, section 4.7] 
and (12) that the limit exists, is independent of the choice of the Følner sequence, and coin-
cides with hµ(Ω |Θ)− µ( fΦ), where hµ(Ω |Θ) denotes the conditional entropy per site (i.e. 
the conditional Kolmogorov–Sinai entropy for the G-action) of µ given the G-invariant 
σ-algebra FΘ, and fΦ is the energy observable associated to the interaction Φ.

The conditional relative pressure on A � G given B � G under µ is

Ψµ(A |B) � Ψµ(A ∪ B)−Ψµ(B)

= Hµ(ξ
A | ξB ∨ FΘ)− µ(EA|B).

 (15)

The advantage of this definition is that it has formal properties similar to those of conditional 
entropy Hµ(ξ

A | ξB) and conditional energy EA|B. Most importantly, the conditional relative 
pressure satisfies the chain rule

Ψµ(A ∪ B |C) = Ψµ(B |C) + Ψµ(A |B ∪ C). (16)

Observe that Ψµ(A |B) depends only on the restriction of µ to FΘ ∨ ξA∪B. Moreover,

Ψµ(A |B) � (log |Σ|+ ‖Φ‖) |A \ B| . (17)

The martingale convergence theorem, the monotonicity of conditional entropy on the condi-
tion, the absolute summability of the interaction (in particular, the existence of the limit in (6)) 
and the bounded convergence theorem imply the existence of the limit

Ψµ(A |Ac) � lim
B↗G

Ψ
(
A
∣∣ (B \ A)

)

= Hµ(ξ
A | ξAc

∨ FΘ)− µ(EA|Ac).
 (18)

Let us remark that for a fixed A � G and a measure ν  on Θ, the conditional entropy 
Hµ(ξ

A |FΘ) and as a result the relative pressure Ψµ(A) are concave as functions of µ when 

S Barbieri et alNonlinearity 33 (2020) 2409



2420

µ runs over measures with marginal ν . In turn, the conditional entropy per site hµ(Ω |Θ) and 
the relative pressure per site ψ(µ) are affine when restricted to measures µ with marginal ν .

2.4. Relative Gibbs measures and relative equilibrium measures

According to a fundamental hypothesis of equilibrium statistical mechanics, the macroscopic 
states of a system at thermal equilibrium are suitably described by probability distributions 
maximizing the pressure. Identifying the equilibrium measures thus amounts to solving an 
optimization problem, where the pressure is interpreted as the gain.

On a finite space, the optimization problem is solved by the Boltzmann distribution. The 
uniqueness of the solution is a consequence of the strict concavity of the entropy.

Proposition 2.1 (Finitary variational principle). Let M be a finite set and U : M → R  
a real-valued function. Given a probability distribution p : M → [0, 1], define

Ψ( p) � H( p)− p(U). (19)

Then, Ψ( p) takes its maximum if and only if p(a) = e−U(a)/Z  for each a ∈ M, where 

Z �
∑

a∈M e−U(a) is the normalizing constant. The maximum value is log Z .

This is well known and easily follows from Jensen’s inequality.
A relative Gibbs measure for an absolutely summable relative interaction Φ is a probability 

measure on Ω that is locally optimal, in the sense that it maximizes the pressure on every finite 
region of the lattice G conditioned on the configuration outside the region and the environ-
ment. In other words, a probability measure µ on Ω is a relative Gibbs measure for Φ if for 
every A � G, the conditional probability according to µ of seeing a pattern u on A given a 
configuration xAc outside A and an environment θ is the Boltzmann distribution associated to 
the energy function U(u) � EA|Ac(θ, xAc ∨ u), where E is the Hamiltonian associated to Φ.

More specifically, for every A � G, the prescribed distribution of the pattern on A given a 
boundary condition θ, xAc  is the Boltzmann distribution

πθ,xAc (u) �

{
1

ZA|Ac (θ,x)e−EA|Ac (θ,xAc∨u) if xAc ∨ u ∈ Xθ,

0 otherwise,
 (20)

where ZA|Ac(θ, x) is the normalizing constant known as the partition function. Given (θ, x) ∈ Ω, 
the distribution πθ,xAc (u) extends to a probability measure KA

(
(θ, x), ·

)
 on Ω by setting

KA
(
(θ, x), [u] ∩ W

)
� W(θ, x)πθ,xAc (u) (21)

for each u ∈ ΣA and W ∈ FΘ ∨ ξG\A. It can be verified that given a set W ∈ FΩ, the function 
KA(·, W) is measurable. A probability measure µ on Ω is a relative Gibbs measure for Φ if for 
every A � G and each measurable set W ∈ FΩ,

µ
(
W

∣∣FΘ ∨ ξG\A)(·) = KA(·, W) (22)

µ-almost surely. Notice that in order for µ to be a relative Gibbs measure, it is sufficient that 
the above equality holds for every W ∈ ξA.

We refer to the function KA(·, ·) as the Gibbs kernel for set A. Every Gibbs kernel KA natu-
rally defines a linear operator ν �→ νKA on probability measures on Ω by
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(νKA)(W) � ν
(
KA(·, W)

)
=

∫
KA(·, W) dν, (23)

and its adjoint operator f �→ KAf  on bounded measurable observables on Ω by

(KAf )(ω) � KA(ω, f ) =
∫

f (ω′)KA(ω, dω′). (24)

If (θθθ,xxx) is a random point chosen according to ν , the measure νKA can be interpreted as the 
distribution of (θθθ,xxx) after resampling the pattern on A according to πθθθ,xxxAc.

With the above definition, one can see that a measure µ is relative Gibbs for Φ if and only 
if µKA = µ for every A � G. The collection K = (KA : A � G) of the Gibbs kernels for all 
A � G is referred to as the relative Gibbs specification associated to Φ.

The local optimality of relative Gibbs measures is an immediate consequence of proposi-
tion 2.1. For future reference, let us spell this out as a corollary in the following specific way.

Corollary 2.2 (Local optimality of relative Gibbs measures). Let Φ be an abso-
lutely summable relative interaction on Ω. Let Ψ denote the pressure associated to Φ, and KA 
the Gibbs kernel associated to Φ for a set A � G. Then, for every probability measure µ on Ω 
and µ-almost every (θ, x) ∈ Ω, we have

Hµ(·|FΘ∨ξG\A)(θ,x)(ξ
A)− µ

(
EA|Ac |FΘ ∨ ξG\A)(θ, x)

� HKA((θ,x),·)(ξ
A)− KA

(
(θ, x), EA|Ac

)
(= log ZA|Ac(θ, x))

 (25)

with equality if and only if µ(· |FΘ ∨ ξG\A)(θ, x) = KA((θ, x), ·). In particular,

Ψµ(A |Ac) � ΨµKA(A |Ac), (26)

with equality if and only if µKA = µ.

Proof. To obtain the first inequality, apply the finitary variational principle (proposition 2.1)  
with M � {u ∈ ΣA : xAc ∨ u ∈ Xθ}, U(u) � EA|Ac(θ, xAc ∨ u), and p(u) � µ([u] |FΘ ∨ ξG\A)(θ, x).  
The second inequality follows from the first inequality by integrating both sides with respect 
to µ. □ 

An alternative way to think about the above corollary is that applying a Gibbs kernel KA on 
a measure locally optimizes that measure on the set A.

A relative equilibrium measure on Ω is a G-invariant measure that is globally optimal 
among all G-invariant measures with the same marginal on Θ. More generally, let ν  be a 
G-invariant measure on Θ and f ∈ CΘ(Ω) an arbitrary bounded relatively continuous observ-
able (i.e. not necessarily one associated to an absolutely summable interaction). An equilib-
rium measure for f relative to ν  is a G-invariant measure on Ω with marginal ν  on Θ which 
maximizes the relative pressure hµ(Ω |Θ)− µ( f ) among all G-invariant measures with the 
same marginal ν  on Θ. A measure that is an equilibrium measure relative to its marginal on Θ 
is simply said to be a relative equilibrium measure.

2.5. Types of constraints on configurations

In this section, we define various classes of constraints on configuration spaces that are suf-
ficient for the relative Dobrushin–Lanford–Ruelle theorem.
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A subshift on G (or a G-subshift) is a closed G-invariant subset of ΣG. A subshift X ⊆ ΣG 
is of finite type (SFT) if there exists a finite set F � G and a subset F ⊆ ΣF  such that x ∈ X  
if and only if (g−1x)F /∈ F  for all g ∈ G. The elements of F  are called the forbidden patterns 
defining X.

2.5.1. Conditions for the Lanford–Ruelle direction. The classical constraint on the set of con-
figurations X which enables the Lanford–Ruelle direction in theorem 1.1 is that X is an SFT. 
However, this is used only in the form of a Markovian property: the possible configurations 
that may appear in a finite support A � G given a fixed configuration in G \ A do not depend 
upon the whole complement but only on a finite subset B ⊇ A.

We say that a closed set X ⊆ ΣG satisfies the topological Markov property (TMP) if for all 
A � G there exists a finite set B ⊇ A such that whenever x, x′ ∈ X  satisfy xB\A = x′B\A, then 
xB ∨ x′G\A ∈ X . We call such a set B a memory set for A in X. Equivalently, one may think of 
this property as follows: if xB\A = x′B\A, then xB and x′B are interchangeable in the sense that 
every appearance of xB may be replaced by x′B and vice-versa.

In the relative setting, similar notions of relative SFT and relative TMP can be formulated 
as follows. Let Ω ⊆ Θ× ΣG be a relative system. We say that Ω is a relative SFT (or is an SFT 
relative to Θ) if there is a finite set F � G and a family of subsets Fθ ⊆ ΣF (for θ ∈ Θ) such 
that for each θ ∈ Θ, we have x ∈ Xθ if and only if (g−1x)F /∈ Fg−1θ for all g ∈ G. Similarly, 
we say that Ω satisfies the topological Markov property relative to Θ (relative TMP) if all the 
sets Xθ (for θ ∈ Θ) satisfy the TMP with common choices of the memory sets. In other words, 
Ω has relative TMP if for every A � G, there is a finite set B ⊇ A such that whenever θ ∈ Θ 
and x, x′ ∈ Xθ satisfy xB\A = x′B\A, then xB ∨ x′G\A ∈ Xθ.

Given a G-invariant measure ν  on the environment space Θ, we can also consider the 
more relaxed conditions of SFT relative to ν  and TMP relative to ν  under which the corre-
sponding conditions are satisfied for ν -almost every θ ∈ Θ rather than for all θ ∈ Θ. However, 
by removing a null set from Θ, we can always turn the system into one that satisfies the condi-
tion surely.

Observe that for a subshift X that satisfies TMP, if B is a memory set for A in X, then for all 
g ∈ G, gB is a memory set for gA in X. Similarly, for a relative system that satisfies TMP, it 
follows that if B is a memory set for A, then gB is a memory set for gA.

A closed set X ⊆ ΣG satisfies the strong topological Markov property (strong TMP) if 
there is a finite set F � G with 1G ∈ F  such that for every finite set A � G, the set AF is a 
memory set for A in X. The notion of relative strong TMP is defined analogously. We remark 
that for subshifts, TMP and strong TMP are topological conjugacy invariants and that strong 
TMP is the conjugacy invariant class generated by the class of topological Markov fields as 
defined in [6, 7].

Clearly, every SFT satisfies the strong TMP, and the strong TMP implies the TMP. Moreover, 
these collections are all distinct. The class of subshifts with strong TMP, is much larger than 
the class of SFTs in the sense that the latter is countable while the former are uncountable: if 
X is any Z-subshift over Σ, then the set of all configurations on Z2 whose rows are elements 
of X and whose columns are constant satisfies strong TMP but is not necessarily an SFT. See 
also [6] (bottom of page 233) for a simple example of a Z-subshift which satisfies the strong 
TMP but is not an SFT. In section 2.5.4 below, we provide an example of a Z2-subshift that 
satisfies TMP but not strong TMP.
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2.5.2. Conditions for the Dobrushin direction. The notion of D-mixing used in theorem 1.1(a) 
was introduced by Ruelle [39, section 4.1] for SFTs on Zd  but remains meaningful in a more 
general setting.

Let Y be a closed subset of ΣG. Given A � G, we say that a finite set B ⊇ A is a mixing 
set for A in Y if for every y, y′ ∈ Y , there exists z ∈ Y  satisfying zA = yA and zG\B = y′G\B. In 
other words, we can paste a pattern on A from a configuration y ∈ Y  into any other configura-
tion y′ ∈ Y  provided that we modify the annulus B \ A. We say that Y is Dobrushin-mixing (or 
D-mixing) with respect to a Følner sequence (Fn)n∈N if for each n, there is a mixing set Fn for 
Fn in Y such that 

∣∣Fn \ Fn
∣∣ = o(|Fn|) as n → ∞. We say that Y satisfies D-mixing if it satisfies 

D-mixing with respect to some Følner sequence (Fn)n∈N.
A relative version of the D-mixing property suitable for our purposes is the following. Let 

Ω be a relative system and ν  a G-invariant measure on its environment space Θ. We say that 
Ω satisfies D-mixing relative to ν  with respect to a Følner sequence (Fn)n∈N if for ν -almost 
every θ ∈ Θ and each n ∈ N, there is a mixing set Fθ

n for Fn in Xθ such that 
∣∣Fθ

n \ Fn
∣∣ is meas-

urable and 
∫ ∣∣Fθ

n \ Fn
∣∣dν(θ) = o(|Fn|) as n → ∞. We say that Ω satisfies D-mixing relative to 

ν  if it satisfies D-mixing relative to ν  with respect to some Følner sequence (Fn)n∈N.
There are two stronger notions which imply D-mixing and are better known in the sym-

bolic dynamics community. We say that Y satisfies the uniform filling property (UFP) with 
respect to a FØlner sequence (Fn)n∈N if there exists a finite set F � G such that FnF is a 
mixing set for Fn. We say that Y satisfies the UFP if Y satisfies the UFP with respect to some 
FØlner sequence. We say that Y is strongly irreducible (SI) if there exists F � G such that 
for every two finite sets A, B � G satisfying AF ∩ BF = ∅ and every two configurations 
y, y′ ∈ Y  there is a configuration z ∈ Y  such that zA = yA and zB = y′B.

The UFP can be regarded as a uniform version of D-mixing: the fact that (Fn)n∈N is FØlner 
ensures that |FnF \ Fn| = o(|Fn|). In turn, a compactness argument shows that SI implies the 
UFP. An example of a subshift satisfying UFP but not SI is given in [17]. We do not know of 
any example of a D-mixing subshift which does not satisfy the UFP.

The relative versions of SI and the UFP are defined analogously.

2.5.3. Conditions implying both directions of the theorem. A natural condition that implies 
both directions of the theorem in the non-relative setting is that X is the full G-shift ΣG. In the 
terminology of TMP, a G-subshift is a full G-shift if and only if every set A � G is a memory 
set for itself. In other words, the symbol at each site can be changed independently of the rest 
of the configuration. The only G-subshift with alphabet Σ satisfying that property is ΣG. How-
ever, the relative version of this notion turns out to be more interesting.

We say that a relative system Ω has the relative independence property (or independence 
property relative to Θ) if every finite set is a memory set for itself, that is, if for every θ ∈ Θ, 
every finite set A � G and every pair x, x′ ∈ Xθ, we have xA ∨ x′G\A ∈ Xθ. Equivalently, Ω has 
the relative independence property if for each θ ∈ Θ and A � G, any two elements of LA(Xθ) 
are interchangeable in Xθ. Independence property relative to a measure ν  on Θ is defined 
accordingly. Note that, as in the case of a relative SFT, there is no need for all the sets Xθ to 
be the same.

Every relatively independent system satisfies the TMP, and moreover, is relatively D-mixing 
(with Fθ

n � Fn). Therefore, in a relatively independent system, both hypotheses of the rela-
tive Dobrushin–Lanford–Ruelle theorem hold. In section 7, we shall show that under simple 
reductions, the Lanford–Ruelle theorem for relatively independent systems implies theorem 
1.2(b) for relative systems with relative TMP.
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There is a notion introduced by Briceño [3] that is less restrictive than independence but still 
implies both conditions of the Dobrushin–Lanford–Ruelle theorem. A closed subset Y ⊆ ΣG  
is topologically strong spatial mixing (TSSM) if there exists a set F � G such that for any finite 
disjoint sets A, B, S � G such that AF ∩ BF = ∅, and for every u ∈ LA(Y), v ∈ LB(Y) and 
w ∈ LS(Y) such that u ∨ w ∈ LA∪S(Y) and v ∨ w ∈ LB∪S(Y), we have u ∨ v ∨ w ∈ LA∪B∪S(Y). 
In fact, TSSM implies both SI and SFT (see [3]).

Proposition 2.3 (TSSM =⇒ SI SFT). Let X be a TSSM G-subshift. Then X is a strongly 
irreducible SFT.

Proof. The set S in the definition of TSSM can be chosen to be empty, hence X is SI. In or-
der to show that X is an SFT, let F be the set appearing in the definition of TSSM, and without 
loss of generality, assume that F � 1G. Let F ⊆ ΣFF−1

 be the set of all patterns on FF−1 that 
do not occur on the elements of X, that is, F � {q ∈ ΣFF−1

: xFF−1 �= q for all x ∈ X}. Let X′ 
be the SFT defined by F  as the set of forbidden patterns. We show that X = X′.

Clearly, X ⊆ X′. Suppose that there exists a configuration y ∈ X′ \ X. Let D ⊆ G be a 
minimal set containing FF−1 such that xD �= yD for all x ∈ X . By compactness, D is finite 
and thus yD /∈ LD(X). By the definition of X′, we have yFF−1 ∈ LFF−1(X), hence there exists 
an element g ∈ D \ FF−1. Now, set A � {1G}, B � {g} and S � D \ {1G, g}. Observe that 
AF ∩ BF = F ∩ gF = ∅. By the choice of D, we have yA∪S ∈ LA∪S(X) and yB∪S ∈ LB∪S(X) 
but yD /∈ LD(X). But this contradicts the TSSM property of X. □ 

The relative version of TSSM demands the existence of a set F for which the above condi-
tion holds on Xθ for all (or ν -almost every) θ ∈ Θ. It can be verified that relative TSSM implies 

Figure 1. Sufficient conditions for both directions of the (relative) Dobrushin–Lanford–
Ruelle theorem.

Figure 2. Two configurations x and y  which coincide in Bn \ An but cannot be put 
together.
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both relative SI and relative SFT. In figure 1, we summarize the relationships between all of the 
conditions introduced in this section. The same relations hold for their relative counterparts.

2.5.4. Examples. This last subsection is dedicated to examples that illustrate the conditions 
introduced in the previous subsections. We begin by examining the two examples given in the 
Introduction.

In example 1.3 the environment θ completely determines the allowed symbols at each site, 
independently from site to site. Thus, the Ising model on percolation clusters satisfies the 
relative independence property and so the relative Dobrushin–Lanford–Ruelle theorem holds. 
Note that in this case, all the sets Xθ are disjoint.

In example 1.4 the coloring condition is a nearest neighbor condition, and so the relative 
system is a relative SFT and therefore the relative Lanford–Ruelle theorem holds. Moreover, 
we claim that the assumption |Σ| > |S| is sufficient to ensure that the system is relative SI, and 
thus the relative Dobrushin theorem holds. Indeed, let F � S be the set of generators. Given a 
subgraph θ and two valid colorings x, x′ ∈ Xθ, if AF ∩ BF = ∅ then no vertex in A is adjacent 
to a vertex in B. The partial configuration w � xA ∨ x′B can be inductively extended to a valid 
coloring of (G,E) by filling each position in G \ A ∪ B with a color not already taken by any 
of its |S| neighbors along the generators. In fact, the same argument shows that the system is 
indeed relatively TSSM (see [3]).

Example 2.4 (A Z2-subshift with TMP but not strong TMP). Consider the set Y of all 
configurations  such that every eight-connected component of sites with symbol 

 is a finite square, that is, every eight-connected component of  is a set of the form 
�u + [0, n − 1]2 ∩ Z2 for some �u ∈ Z2 and n � 1. Let  be the closure of Y. We 
claim that X has TMP but not strong TMP.

In order to see that X does not have strong TMP, let An � [−2n, 2n]2  and consider x to be 
equal to  in the support (3n,0)  +  [−n,n]2 and  everywhere else. Similarly, consider y  equal 
to  in (3n  +  1,0)  +  [−n,n]2 and  in the complement. Let Bn � [−4n, 4n]2 . For any fixed 
F � Z2 we have that AnF ⊆ Bn for all large enough n. However, we have that xBn\An = yBn\An 
but z � xBn ∨ yAc

n
 is not an element of X as  is not a 

square. This is illustrated in figure 2.

To see that X has TMP, without loss of generality let A  =  [−n,n]2. We claim that 
B � [−10n, 10n]2  is a memory set for A for every n � 1. Indeed, let x, y ∈ X be such that 
xB\A = yB\A. We must show that z � xA ∨ yAc ∈ X .

First, we claim that we can reduce to the case where x, y ∈ Y , that is, where every square 
is finite. Indeed, assume that x, y ∈ X \ Y . By definition, there are sequences (x(m))m∈N and 

(y(m))m∈N in Y converging to x and y  respectively. For m large enough, we have x(m)
B\A = y(m)

B\A. 

The sequence of configurations z(m) � x(m)
B ∨ y(m)

Ac  converges to z. Thus if we know that each 
z(m) is in Y, then we can conclude that z ∈ X . Now, observe that for m large enough, x(m)

B = xB  

and y(m)
B = yB , and in particular x(m)

B\A = y(m)
B\A.

So, let x, y ∈ Y  and suppose that z /∈ Y . Then there exists an 8-connected region 
 which is either an infinite set, or a finite set that is not a square. The first case 

cannot occur, as every connected component of  is bounded and z differs from y  only 
on the finite set A. Therefore, Rz is finite but is not a square.

As y ∈ Y , we have that Rz ∩ A �= ∅. Let Rx, Ry � Z2 be the finite squares in  
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and  which contain Rz ∩ A and Rz ∩ Ac respectively. Denote the 8-boundary of 
A by ∂A, that is, ∂A � [−n − 1, n + 1]2 \ [−n, n]2 . Let N � [−n − 1, n + 1]× {n + 1}, 
S � [−n − 1, n + 1]× {−n − 1}, W � {−n − 1} × [−n − 1, n + 1] and E � {n + 1} × [−n − 1, n + 1] 
be respectively the north, south, west and east 8-boundaries of A, so that ∂A = N ∪ E ∪ S ∪ W . 
There are three possibilities on how Rx can intersect ∂A.

 •  If Rx ∩ ∂A = ∅, then necessarily Rx ⊆ A, and since xB\A = yB\A, we conclude that 
Rz = Rx, which is a square. This contradicts the assumption.

 •  If Rx intersects only one of the sets N, S, W and E, then the size of Rx can be 
at most (2n + 1)× (2n + 1), the size of A. As Rx intersects A, we deduce that 
Rx ∪ ∂Rx ⊆ [−10n, 10n] = B. Again, this implies that Rz = Rx, contradicting the 
assumption.

 •  If Rx intersects two (or more) of the boundaries N, S, W and E, such boundaries must 
themselves intersect, otherwise Rx is not a square. Observe that if  appears on two 
diagonally adjacent sites in any configuration from Y, that is, either the pattern  or 

the pattern  appears, then the said pattern is necessarily  (i.e. ). Thus, in the 
current case, the information on x∂A uniquely determines A ∩ (Rz ∪ ∂Rz). As ∂A ⊆ B 
and xB\A = yB\A we conclude that  and . 
Thus A ∩ Rz = A ∩ Rx = A ∩ Ry and hence Rz = Ry which is a square. This contradicts 
the assumption.

As this example satisfies TMP, the conclusion of the Lanford–Ruelle direction holds even 
though X is not an SFT nor satisfies strong TMP. ©

In section 5, we will see another example of a subshift that satisfies TMP but not strong 
TMP.

2.6. A topology on measures and the Feller property of Gibbs kernels

An important consequence of the relative TMP is the following continuity property of the 
Gibbs kernels.

Proposition 2.5 (Relative Feller property of Gibbs kernels). Let Ω be a relative 
system and KA be the Gibbs kernel for A � G associated to a relative absolutely summable 
interaction. The following are equivalent.

 (a)  Ω has the topological Markov property relative to Θ.
 (b)  For every A � G and p ∈ ΣA, the function KA(·, [ p]) is in CΘ(Ω).
 (c)  For every A � G we have KAf ∈ CΘ(Ω) whenever f ∈ CΘ(Ω).

Proof. 

 (a) =⇒ (c)  By definition of the Gibbs kernel, we have

(KAf )(θ, x) =
1

ZA|Ac(θ, x)

∑
u∈ΣA

e−EA|Ac (θ,xAc∨u)
Xθ
(xAc ∨ u) f (θ, xAc ∨ u). (27)

  The map EA|Ac is relatively continuous and x �→ xAc ∨ u is uniformly continuous. Let 
B ⊇ A be a memory set for A witnessing the relative TMP. Then, for every θ ∈ Θ, we have 

Xθ
(xAc ∨ u) = L(Xθ)(xB\A ∨ u), from which we can see that the maps x �→ Xθ

(xAc ∨ u) 
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are equicontinuous for θ ∈ Θ. The partition function ZA|Ac(θ, x) has the same form as 
the sum in (27) with f  replaced with constant 1. Therefore, if f ∈ CΘ(Ω), the functions 
x �→ (KAf )(θ, x) are equicontinuous for θ ∈ Θ, which means KAf ∈ CΘ(Ω).

 (c) =⇒ (b)  The function f � [ p] is in CΘ(Ω), therefore KA(·, [ p]) is in CΘ(Ω).
 (b) =⇒ (a)  Let ε � 1

2 inf(θ,x)∈Ω KA((θ, x), [xA]). Since EA|Ac is bounded, we deduce that 
ε > 0. By (b) we know that for every p ∈ ΣA we have KA(·, [ p]) ∈ CΘ(Ω). 
Since KA((θ, x), [ p]) depends only on θ, xAc and p , we can find B ⊇ A such 
that for all θ ∈ Θ, p ∈ ΣA and x, y ∈ Xθ, if xB\A = yB\A, we have

∣∣KA((θ, x), [ p])− KA((θ, y), [ p])
∣∣ < ε. (28)

  In particular, we obtain that if x, y ∈ Xθ and xB\A = yB\A, then

∣∣KA((θ, x), [xA])− KA((θ, y), [xA])
∣∣ < ε �

1
2

KA((θ, x), [xA]) (29)

  and so KA((θ, y), [xA]) � ε > 0. This shows that xA ∨ yAc ∈ Xθ. As the choice of B does 
not depend upon θ or x, y ∈ Xθ we deduce that Ω satisfies relative TMP. □ 

Let Pν(Ω) denote the space of probability measures on Ω with marginal ν  on Θ. The above 
proposition suggests topologizing Pν(Ω) by declaring the integration µ �→ µ( f ) continuous 
for each f ∈ CΘ(Ω). The operator µ �→ µKA would then become continuous whenever Ω has 
the TMP relative to Θ.

Recall that CΘ(Ω) is a Banach space with the uniform norm. When the environment space 
Θ is a standard Borel space, one can identify Pν(Ω) with a closed subset of the dual space 
C∗
Θ(Ω) (proposition A.1). Alaoglu’s theorem then implies that the space Pν(Ω) is compact. 

We will use the compactness of Pν(Ω) only at one point in the proof of theorem 1.2(b) to argue 

that if ν  is G-invariant and µ ∈ Pν(Ω), then the sequence of averages |Fn|−1 ∑
g∈Fn

g−1µ, 
with (Fn)n∈N a Følner sequence, has a (G-invariant) cluster point.

At the more fundamental level, the compactness of Pν(Ω) together with the relative Feller 
property of the Gibbs kernels can be used to give a direct proof of the existence of (invariant) 
relative Gibbs measures.

Proposition 2.6 (Existence of invariant relative Gibbs measures). Assume that 
Θ is a standard Borel space and Ω satisfies TMP relative to Θ. Let ν  be a G-invariant prob-
ability measure on Θ. Then there exists a G-invariant relative Gibbs measure with marginal ν .

Proof. Since Θ is a standard Borel space, Pν(Ω) is compact. Since Ω satisfies relative TMP, 
the Gibbs kernels have the relative Feller property. Let A1 ⊆ A2 ⊆ . . . , be a nested sequence 
of finite subsets that exhaust G. Let µ0 ∈ Pν(Ω). For n � 1, set µn � µ0KAn. Then for all 
B ⊆ An, µnKB = µ0KAn KB = µ0KAn = µn. So, using the topology on Pν(Ω) and the relative 
Feller property of the Gibbs kernels, any accumulation point µ of the sequence µn is a relative 
Gibbs measure. It follows that for any g ∈ G, g−1µ is also a relative Gibbs measure. Thus, 

each (1/ |A|)
∑

g∈A g−1µ is a relative Gibbs measure. For any Følner sequence Fn, any ac-
cumulation point of

(1/ |Fn|)
∑
g∈Fn

g−1µ (30)
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is a G-invariant relative Gibbs measure with marginal ν . The existence of such accumulation 
points is guaranteed by the compactness of Pν(Ω). □ 

An example of a subshift on which Gibbs measures (invariant or not) do not exist is the 
sunny-side up shift X ⊆ {0, 1}Z, which is defined as the set of all configurations with at most 
one occurrence of symbol 1.

The following crude notion of closeness between measures will be sufficient for our 
purposes.

Proposition 2.7 (Closeness of measures). Let ν  be a probability measure on Θ and 
let f ∈ CΘ(Ω). For every ε > 0, there exists B � G such that |µ′( f )− µ( f )| < ε whenever 
µ,µ′ ∈ Pν(Ω) satisfy µ′|FΘ∨ξB = µ|FΘ∨ξB (i.e. µ and µ′ have the same marginal on (θ, xB)).

Proof. Since f ∈ CΘ(Ω), the family ( f (θ, ·) : θ ∈ Θ) is equicontinuous. Let B � G be 
such that |f (θ, x′)− f (θ, x)| < ε whenever x′B = xB . We have

|µ′( f )− µ( f )| =
∣∣∣∣
∫

µ′( f
∣∣FΘ ∨ ξB)dµ′ −

∫
µ
(

f
∣∣FΘ ∨ ξB)dµ

∣∣∣∣

=

∣∣∣∣
∫ [

µ′( f
∣∣FΘ ∨ ξB)− µ

(
f
∣∣FΘ ∨ ξB)]dµ

∣∣∣∣
< ε.

 (31)

□ 

3. Proof of the main theorem

3.1. Relative Gibbs measures are relative equilibrium

Proof of theorem 1.2(a). Let µ be a G-invariant measure on Ω that projects to ν  and is 
relative Gibbs for Φ. Let µ′ be another G-invariant measure that projects to ν . We show that 
ψ(µ′) � ψ(µ).

Let K = (KA : A � G) be the relative Gibbs specification associated to Φ. Let (Fn)n∈N be 
a Følner sequence in G with respect to which Ω is D-mixing relative to ν , and denote by Fθ

n 
the mixing set corresponding to Fn and θ that witnesses the D-mixing condition. Fix n ∈ N. 
For ν -almost every θ ∈ Θ and every x ∈ Xθ, let µ′′

θ,x be a measure on Ω which has the same 
distribution as µ′(·|FΘ)(θ, x) on ξFn and is supported on {(θ, y) ∈ Ω : y(Fθ

n )
c = x(Fθ

n )
c}. We 

choose µ′′
θ,x in such a way that for every cylinder [u], the value µ′′

θ,x([u]) is measurable as a 
function of (θ, x).

Observe that

Hµ′(·|FΘ)(θ,x)
(
ξFn

)
− µ′(EFn |FΘ)(θ, x) = Hµ′′

θ,x
(ξFn)− µ′′

θ,x(EFn), (32)

and hence

Ψµ′ (Fn)︷ ︸︸ ︷
Hµ′

(
ξFn

∣∣FΘ

)
− µ′(EFn) =

∫ [
◦©︷ ︸︸ ︷

Hµ′′
θ,x
(ξFn)− µ′′

θ,x(EFn)
]
dµ(θ, x), (33)

where we have used the fact that µ and µ′ have the same marginals on Θ and that ◦○ does 
not depend on x. On the other hand, by the finitary variational principle (proposition 2.1, or 
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corollary 2.2), we have

Hµ′′
θ,x
(ξFθ

n )− µ′′
θ,x(EFθ

n |(Fθ
n )

c)
︸ ︷︷ ︸

•©

� HKFθn
((θ,x),·)

(
ξFθ

n
)
− KFθ

n

(
(θ, x), EFθ

n |(Fθ
n )

c

)
︸ ︷︷ ︸

�©

.

 (34)

Here, we are applying this variational principle to the set M � {u ∈ ΣFθ
n : x(Fθ

n )
c ∨ u ∈ Xθ}, 

the energy function U(u) � EFθ
n |(Fθ

n )
c(θ, x(Fθ

n )
c ∨ u), and the distribution p(u) � µ′′

θ,x([u]).

Combining (8) and (9), we have
∥∥EFθ

n |(Fθ
n )

c − EFn

∥∥ �
∣∣Fθ

n \ Fn
∣∣ ‖Φ‖+ o(|Fn|) (35)

as n → ∞, with the o(|Fn|) term not depending on (θ, x). Therefore,

| •© − ◦©| �
∣∣Fθ

n \ Fn
∣∣ (log |Σ|+ ‖Φ‖) + o(|Fn|). (36)

Integrating with respect to µ and using the relative D-mixing condition, we get
∣∣∣∣
∫

•© dµ−
∫

◦© dµ
∣∣∣∣ � (log |Σ|+ ‖Φ‖)

∫ ∣∣Fθ
n \ Fn

∣∣ dµ(θ, x) + o(|Fn|)

= o(|Fn|)
 (37)

as n → ∞.

For �○, on the other hand, we have
∫

�© dµ =

∫
µ( �©|FΘ)(θ, x) dµ(θ, x) (38)

=

∫ [
Hµ(·|FΘ)(θ,x)

(
ξFθ

n
∣∣ ξ(Fθ

n )
c)

− µ
(
EFθ

n |(Fθ
n )

c

∣∣FΘ

)
(θ, x)

]
dµ(θ, x) (39)

�
∫ [

Hµ(·|FΘ)

(
ξFn

∣∣ ξFc
n
)
− µ

(
EFn

∣∣FΘ

)]
dµ

+ (log |Σ|+ ‖Φ‖)
∫ ∣∣Fθ

n \ Fn
∣∣ dµ(θ, x) + o(|Fn|)

= Hµ

(
ξFn

∣∣ ξFc
n ∨ FΘ

)
− µ(EFn) + o(|Fn|)

 (40)

� Hµ

(
ξFn

∣∣FΘ

)
− µ(EFn)︸ ︷︷ ︸

Ψµ(Fn)

+ o(|Fn|)
 (41)

as n → ∞, where we have again used (35). The equality between µ( �○ |FΘ)(θ, x) and the 
integrand on the right-hand side of (39) can be seen by partitioning Ω into countably many 
FΘ-measurable subsets over each of which Fθ

n is constant.

Putting together (33), (34), (37) and (41), we obtain

Ψµ′(Fn) � Ψµ(Fn) + o(|Fn|) (42)

as n → ∞. Dividing by |Fn| and letting n → ∞ yields ψ(µ′) � ψ(µ) as desired. □ 
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Remark 3.1 (Relative inner entropy for Gibbs measures). A closer look at the proof 
of theorem 1.2(a), namely (40), shows that in fact

Ψµ′(Fn) � Hµ

(
ξFn

∣∣ ξFc
n ∨ FΘ

)
− µ(EFn) + o(|Fn|) (43)

as n → ∞. Choosing µ′ = µ, we obtain

ψ(µ) = lim
n→∞

Hµ

(
ξFn

∣∣ ξFc
n ∨ FΘ

)
|Fn|

− µ( fΦ). (44)

In particular, every G-invariant Gibbs measure relative to ν  satisfies

hµ(Ω |Θ) = lim
n→∞

Hµ

(
ξFn

∣∣ ξFc
n ∨ FΘ

)
|Fn|

, (45)

as long as Ω is D-mixing relative to ν . The corresponding equality in the non-relative setting 
is observed by Föllmer and Snell [12] and Tempelman [43, section 5.3]. ♦

When both relative D-mixing and relative TMP are satisfied, we can obtain an explicit expres-
sion for the maximum pressure in terms of partition functions, generalizing the similar 
expression in the non-relative setting (see e.g. [39, theorem 3.12]). Recall the definition of 
the partition function ZA|Ac(θ, x) for environment θ and boundary condition x in (20). Given 
A � G and θ ∈ Θ, we may also define the partition function with free boundary condition as

ZA(θ) �
∑

u∈LA(Xθ)

e−EA(θ,u),
 (46)

where EA(θ, u) is understood as EA(θ, x) for any x ∈ [u] ∩ Xθ.

Proposition 3.2 (Variational principle). Let Ω be a relative system and ν  a G-invariant 
probability measure on its environment space Θ. Let Φ be an absolutely summable relative 
interaction on Ω and fΦ its associated energy observable. Assume that Θ is a standard Borel 
space. Assume further that Ω satisfies TMP and D-mixing relative to ν . Then,

sup
µ∈Pν(Ω)

[
hµ(Ω |Θ)− µ( fΦ)

]
= lim

n→∞

∫
log ZFn(θ)

|Fn|
dν(θ), (47)

where (Fn)n∈N is a Følner sequence with respect to which the D-mixing condition holds. 
Moreover, every relative G-invariant Gibbs measure for Φ with marginal ν  achieves the su-
premum in the left hand side of (47).

Proof. Let µ be a G-invariant relative Gibbs measure for Φ with marginal ν . The exist-
ence of relative Gibbs measures is guaranteed by proposition 2.6. By the relative Dobrushin 
theorem, µ achieves the supremum on the left-hand side of (47). It remains to show that the 
pressure of µ coincides with the right-hand side of (47).

The observation made in remark 3.1 together with (8) gives the expression

ψ(µ) = lim
n→∞

Ψµ(Fn |Fc
n)

|Fn|
 (48)
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for the relative pressure of µ. Let K = (KA : A � G) be the relative Gibbs specification associ-
ated to Φ. Since µ is a relative Gibbs measure, we have

Ψµ(Fn |Fc
n) =

∫ [
HKFn ((θ,x),·)(ξ

Fn)− KFn

(
(θ, x), EFn|Fc

n

)]
dµ(θ, x)

=

∫
log ZFn|Fc

n
(θ, x) dµ(θ, x).

 (49)

Thus, we only need to show that
∣∣∣∣
∫

log ZFn|Fc
n
(θ, x) dµ(θ, x)−

∫
log ZFn(θ) dµ(θ, x)

∣∣∣∣ = o(|Fn|) (50)

as n → ∞.

Let Fθ
n be the mixing set for Fn witnessing the D-mixing condition relative to ν . In order to 

prove (50), it is enough to show that

log ZFn|Fc
n
(θ, x) � log ZFn(θ) + o(|Fn|), (51)

log ZFn(θ) � log ZFθ
n |(Fθ

n )
c(θ, x) + ‖Φ‖

∣∣Fθ
n \ Fn

∣∣ , (52)

∫
log ZFθ

n |(Fθ
n )

c(θ, x) dµ(θ, x) �
∫

log ZFn|Fc
n
(θ, x) dµ(θ, x) + o(|Fn|) (53)

and use the fact that 
∫ ∣∣Fθ

n \ Fn
∣∣ dµ(θ, x) = o(|Fn|) by the D-mixing condition.

Inequalities (51) and (52) can be verified by a straightforward calculation using the fact 
that Fθ

n is a mixing set for Fn (see appendix A.2.4). Inequality (53) follows from the fact that 
the left hand side of (38) is lesser or equal to the right hand side of (40) once we recall that 
log ZFθ

n |(Fθ
n )

c(θ, x) is the same as �○, and that the integral of log ZFn|Fc
n
(θ, x) is nothing but 

Ψµ(Fn |Fc
n) = Hµ

(
ξFn

∣∣FΘ ∨ ξFc
n
)
− µ(EFn|Fc

n
), which differs from the the right-hand side of 

(40) by no more than o(|Fn|). □ 

3.2. Relative equilibrium measures are relative Gibbs

The idea of the proof of theorem 1.2(b) is as follows: if a measure µ on Ω is not relative Gibbs, 
then the conditional relative pressure Ψµ(A |Ac) has to be sub-optimal for some A � G (corol-
lary 2.2). Therefore, applying the Gibbs kernel KA on µ would locally increase the pressure. 
In order to increase the relative pressure per site ψ, we apply the Gibbs kernels on a positive-
density set of translations of A, one after another. The translations of A should be sufficiently 
far apart so that the applications of the different kernels do not significantly interfere with one 
another. The final step is to do the standard averaging procedure to make the new measure 
G-invariant.

This strategy for proving a result of this type is not entirely new. The fundamental idea of 
making a local improvement in a positive density set in order to achieve a global gain has been 
used many times in the literature. This idea is explicit in the works of Föllmer [11] and Burton 
and Steif [4] (see also [14, section 15.4] and the bibliographic notes therein). Similar ideas have 
appeared in other contexts, for instance in the proof of the Garden-of-Eden theorem [32, 36]  
(see [5, chapter 5]).
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To follow the above strategy, we need three lemmas. The first provides a sufficient condi-
tion for the uniform convergence of a certain type of martingale. The second lemma comple-
ments corollary 2.2 by stating that the improvement achieved by applying a Gibbs kernel is 
truly local. The last lemma ensures the existence of a non-overlapping packing of copies of 
a given finite set with strictly positive uniform lower density. Without loss of generality, by 
removing a ν -null set from Θ if necessary, we will assume that Ω has the TMP relative to the 
entire Θ.

Let f : ΣG → R be a bounded measurable function and µ a probability measure on ΣG. 
According to the martingale convergence theorem, the conditional expectations µ( f | ξB) conv-
erge µ-almost surely to f  as B grows to G along any co-final sequence of finite subsets of 
G. Marcus and Pavlov [30] observed that if f  has a continuous version modulo µ (i.e. f   =  g 
µ-almost surely for a continuous map g : Σ → R), then the convergence of µ( f | ξB) is uniform 
over a set of full measure and holds in the net sense, along the family of finite subsets of G 
directed by inclusion. The following lemma is a relative version of the Marcus–Pavlov lemma.

Lemma 3.3 (Relative uniform martingale convergence). Let f ∈ CΘ(Ω) and let ν  
be a probability measure on Θ. Then, for every probability measure µ ∈ Pν(Ω), there is a set 
of full measure on which µ( f | ξB ∨ FΘ) converges uniformly to f  as B ↗ G along the family 
of finite subsets of G directed by inclusion. Furthermore, the convergence is also uniform over 
the choice of µ.

Proof. Let ε > 0. Choose a finite set B0 � G large enough so that |f (θ, x)− f (θ, y)| < ε 
whenever xB0 = yB0. For every B � G we have

µ( f | ξB ∨ FΘ)(θ, x) =
1

µ([xB] |FΘ)(θ, x)

∫

[xB]

f dµ(· |FΘ)(θ, x) (54)

for µ-almost every (θ, x) ∈ Ω (see appendix A.2.5). It follows that when B ⊇ B0,∣∣µ( f | ξB ∨ FΘ)(θ, x)− f (θ, x)
∣∣ < ε (55)

for µ-almost every (θ, x) ∈ Ω. This shows the uniform convergence. Observe that B0 does not 
depend on µ. Hence the convergence is also uniform in µ. □ 

Along with corollary 2.2, the next lemma constitutes the main ingredient for proving theo-
rem 1.2(b). It allows to see the improvement predicted by corollary 2.2 at the level of finite 
sets.

Lemma 3.4 (Local enhancement). Suppose that Ψµ(A |Ac) < ΨµKA(A |Ac) for some 
A � G. Then, there exists an ε > 0 and a finite set B0 ⊇ A such that

Ψµ

(
A
∣∣ (B \ A)

)
� Ψµ′KA

(
A
∣∣ (B \ A)

)
− ε (56)

for every measure µ′ with µ′|FΘ∨ξB0 = µ|FΘ∨ξB0 and every finite set B ⊇ B0.

Proof. Let δ � ΨµKA(A |Ac)−Ψµ(A |Ac) and set ε � δ
7 . We make six separate approx-

imations, and choose B0 ⊇ A large enough so that the error in each approximation is less than 
δ
7 .
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Recall that the convergence EA|(B\A) → EA|Ac is uniform. Therefore, if we choose B0 large 
enough, we can make sure that

∣∣EA|(B\A)(θ, x)− EA|Ac(θ, x)
∣∣ < δ

7
 (57)

for every (θ, x) ∈ Ω, whenever B ⊇ B0. With such choice of B0, we have

∣∣µ(EA|(B\A))− µ(EA|Ac)
∣∣ < δ

7
, (58)

∣∣(µ′KA)(EA|(B\A))− (µ′KA)(EA|Ac)
∣∣ < δ

7
 (59)

whenever B ⊇ B0. Since Ω has the TMP and EA|Ac is in CΘ(Ω), proposition 2.5 implies that 
the function KAEA|Ac is in CΘ(Ω). Therefore, if we choose B0 large enough, then we have

∣∣(µ′KA)(EA|Ac)− (µKA)(EA|Ac)
∣∣ < δ

7
 (60)

whenever µ′ has the same marginal on (θ, xB0) as µ (proposition 2.7). Combining (59) and 
(60), for sufficiently large B0 ⊇ A we get

∣∣(µ′KA)(EA|(B\A))− (µKA)(EA|Ac)
∣∣ < (

2
7
)δ (61)

whenever B ⊇ B0 and µ′ has the same marginal on (θ, xB0) as µ.

Using the martingale convergence theorem and the monotonicity of conditional entropy 
with respect to the condition, we know that

Hµ(ξ
A | ξB\A ∨ FΘ) → Hµ(ξ

A | ξAc

∨ FΘ) (62)

as B ↗ G along the finite subsets of G directed by inclusion. Therefore, choosing B0 ⊇ A 
large enough, we get

∣∣∣Hµ(ξ
A | ξB\A ∨ FΘ)− Hµ(ξ

A | ξAc

∨ FΘ)
∣∣∣ < δ

7
 (63)

whenever B ⊇ B0. Note that

Hµ′KA(ξ
A | ξAc

∨ FΘ) = −
∫ γ(·)︷ ︸︸ ︷∑

p∈ΣA

[ p] · logKA(·, [ p]) d(µ′KA) = µ′KAγ.

 (64)

Since Ω has TMP relative to Θ, proposition 2.5 implies that the integrand γ  and as a result KAγ 
are in CΘ(Ω). Therefore, if we choose B0 large enough, we can make sure, using proposition 
2.7, that

∣∣∣Hµ′KA(ξ
A | ξAc

∨ FΘ)− HµKA(ξ
A | ξAc

∨ FΘ)
∣∣∣ < δ

7
 (65)

whenever µ′ has the same marginal on (θ, xB0) as µ. Lastly, by the martingale convergence 
theorem, we know that for (µ′KA)-almost every (θ, x) ∈ Ω and every p ∈ ΣA,
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(µ′KA)
(
[ p]

∣∣ ξB\A ∨ FΘ

)
(θ, x)︸ ︷︷ ︸

µ′
(

KA(·,[ p])
∣∣ ξB\A∨FΘ

)
(θ,x)

→ (µ′KA)
(
[ p]

∣∣ ξAc

∨ FΘ

)
(θ, x)︸ ︷︷ ︸

KA((θ,x),[ p])
 (66)

as B grows to G along any co-final sequence of finite subsets of G. Since the limit has a ver-
sion KA

(
(θ, x), [ p]

)
 which is in CΘ(Ω) (proposition 2.5), lemma 3.3 ensures that the conv-

ergence is uniform both in (θ, x) (on a set of full µ′-measure) and in µ′. Since EA|Ac is bound-
ed, for each p ∈ ΣA the function KA(·, [ p]) is bounded away from 0 on [p ]. It follows that the 
convergence of

Hµ′KA(ξ
A | ξB\A ∨ FΘ) = −

∫ ∑
p∈ΣA

[ p] · log
[
(µ′KA)

(
[ p]

∣∣ ξB\A ∨ FΘ

)]
d(µ′KA)

 (67)

to

Hµ′KA(ξ
A | ξAc

∨ FΘ) = −
∫ ∑

p∈ΣA

[ p] · logKA(·, [ p]) d(µ′KA) (68)

is uniform among all µ′ ∈ Pν(Ω). In particular, choosing B0 ⊇ A large enough, we can ensure 
that

∣∣∣Hµ′KA(ξ
A | ξB\A ∨ FΘ)− Hµ′KA(ξ

A | ξAc

∨ FΘ)
∣∣∣ < δ

7
 (69)

for every µ′ ∈ Pν(Ω), whenever B ⊇ B0. Combining (65) and (69), for sufficiently large 
B0 ⊇ A we get

∣∣∣Hµ′KA(ξ
A | ξB\A ∨ FΘ)− HµKA(ξ

A | ξAc

∨ FΘ)
∣∣∣ < (

2
7
)δ (70)

whenever B ⊇ B0 and µ′ has the same marginal on (θ, xB0) as µ.

Putting (58), (61), (63) and (70) together with the hypothesis 
δ = ΨµKA(A |Ac)−Ψµ(A |Ac) > 0 , the result follows. □ 

In the course of the proof, we will need to pack copies of a finite set P � G on G in a non-
overlapping fashion in such a way that the uniform density of the copies is strictly positive. 
On a hyper-cubic lattice G = Zd , a periodic packing does the job. On a general countable 
amenable group, a positive-density non-overlapping packing is achieved by a Delone set.

Lemma 3.5 (Existence of Delone sets). Let G be a group, and P, C ⊆ G subsets sat-
isfying C ⊇ PP−1. Then, there exists a set D ⊆ G satisfying the following two conditions:

 (i)  (Packing) dP ∩ d′P = ∅ for every two distinct elements d, d′ ∈ D,
 (ii)  (Covering) gC ∩ D �= ∅ for every g ∈ G.

Proof. Let D  denote the family of all subsets of G that satisfy the packing condition. This 
family is partially ordered by inclusion. Furthermore, every chain in D  has an upper bound in 
D , namely the union of its elements. By Zorn’s lemma, D  has a maximal element, which we 
call D. We claim that D also satisfies the covering condition. For if D does not satisfy the cov-
ering condition, there must exist an element g ∈ G such that gPP−1 ∩ D = ∅, or equivalently, 
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gP ∩ dP = ∅ for every d ∈ D. It follows that {g} ∪ D is in D , contradicting the maximality 
of D. □ 

We leave it to the reader to show that when G is countable and P and C are finite, the exist-
ence of Delone sets can be established without resorting to the axiom of choice. Let us remark 
that in the case that G is a countable amenable group and P and C are finite, the covering 
condition in the above lemma ensures that D has positive uniform lower density

d(D) � lim inf
n→∞

inf
g∈G

|gD ∩ Fn|
|Fn|

 (71)

with respect to every FØlner sequence (Fn)n∈N. Indeed, for every g ∈ G and h ∈ Fn there 
exists at least one c ∈ C such that hc ∈ gD. It follows that |gD ∩ FnC| |C| � |Fn|. On the 
other hand, |gD ∩ Fn| � |gD ∩ FnC| − |Fn�FnC|. Hence, d(D) � |C|−1. We are now ready to 
prove the relative Lanford–Ruelle theorem.

Proof of theorem 1.2(b). Let µ be a G-invariant measure on Ω with marginal ν  and 
suppose that µ is not a relative Gibbs measure for Φ. We show that µ is not an equilibrium 
measure for fΦ relative to ν  by constructing another G-invariant measure µ+ with marginal ν  
that has strictly larger relative pressure per site. Let K = (KA : A � G) be the relative Gibbs 
specification associated to Φ, and Ψµ the relative pressure under µ.

Since µ is not relative Gibbs, there exists a set A � G such that µKA �= µ. According to 
corollary 2.2, this implies that

Ψµ(A |Ac) < ΨµKA(A |Ac). (72)

Let ε > 0, and take B � B0 ⊇ A as guaranteed by lemma 3.4. Thus,

Ψµ

(
A | (B′ \ A)

)
� Ψµ′KA

(
A | (B′ \ A)

)
− ε (73)

whenever B′ ⊇ B and µ′ has the same marginal on (θ, xB) as µ.

Let D ⊆ G be a Delone set with packing shape B and covering shape BB−1 (lemma 3.5). 
Let k1, k2, . . . be an arbitrary enumeration of the elements of D. Let Ai � kiA and Bi � kiB for 
i = 1, 2, . . .. Define µ(0) � µ and µ(i) � µ(i−1)KAi for i � 1. From the facts that the sets Ai are 
disjoint and the kernels KAi are proper (i.e. KAi keeps the marginal on (θ, xAc

i
) intact) it follows 

that the limit µ+ � limi→∞ µ(i) exists. Note however that µ+ may depend on the enumeration 
of D, and more importantly, is not necessarily G-invariant.

Let (Fn)n∈N be a fixed FØlner sequence. We average over the G-orbit of µ+ to construct a 
G-invariant measure µ+. More specifically, let µ+ be an accumulation point of the sequence

µ
(m)
+ �

1
|Fm|

∑
g∈Fm

g−1µ+ (74)

as m → ∞. Any such accumulation point will be a G-invariant measure. The existence of ac-
cumulation points is guaranteed by the compactness of Pν(Ω), whose argument relies on Θ 
being a standard Borel space (see appendix A.1).

To show that µ+ has strictly larger pressure per site than µ, we compare the pressure of 
g−1µ+ and g−1µ on Fn for arbitrary g ∈ G and show that uniformly in g, there is a gap of at 
least ε d(D) |Fn|+ o(|Fn|) between them, that is,
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inf
g∈G

Ψg−1µ+
(Fn) = inf

g∈G
Ψµ+

(gFn) � Ψµ(Fn) + ε d(D) |Fn|+ o(|Fn|) (75)

as n → ∞. By the concavity of the relative pressure, for each m, we have

Ψ
µ
(m)
+

(Fn) � inf
g∈G

Ψg−1µ+
(Fn). (76)

Taking the limit as m → ∞ and using the continuity of the pressure gives

Ψµ+
(Fn) � inf

g∈G
Ψg−1µ+

(Fn) � Ψµ(Fn) + ε d(D) |Fn|+ o(|Fn|) (77)

as n → ∞. Dividing by |Fn| and letting n → ∞ will then yield the result.

For g ∈ G, let Dg
n � {k ∈ D : kB ⊆ gFn} and D̂g

n � {k ∈ D : kB ∩ gFn �= ∅}. Note 
that |Dg

n| � d(D) |Fn|+ o(|Fn|) and 
∣∣D̂g

n \ Dg
n

∣∣ = o(|Fn|) as n → ∞ uniformly in g. Let 
k�1 , k�2 , . . . , k�m be the elements of Dg

n ordered according to the previously fixed enumeration 

of D. Let Rg
n �

⋃
k∈(D̂g

n\Dg
n)
(kA ∩ gFn) be the union of A-neighborhoods of the elements of D 

that intersect gFn but are not entirely included in gFn. Using the chain rule, we decompose 
Ψµ(gFn) and Ψµ+(gFn) as follows:

Ψµ(gFn) = Ψµ

(
gFn \

[
Rg

n ∪
m⋃

i=1

A�i

])
+

m∑
i=1

Ψµ

(
A�i

∣∣∣ gFn \
[
Rg

n ∪
m⋃

j=i

A�j

])

+Ψµ

(
Rg

n

∣∣ gFn \ Rg
n

)
 

(78)

Ψµ+
(gFn) = Ψµ+

(
gFn \

[
Rg

n ∪
m⋃

i=1

A�i

])
+

m∑
i=1

Ψµ+

(
A�i

∣∣∣ gFn \
[
Rg

n ∪
m⋃

j=i

A�j

])

+Ψµ+

(
Rg

n

∣∣ gFn \ Rg
n

)
.

 

(79)

Observe that the first terms on the right-hand sides of (78) and (79) are identical, because 
the two measures µ and µ+ have the same marginals on (θ, xG\

⋃
k∈D kA), and in particular on 

(θ, xgFn\[Rg
n∪

⋃m
i=1 A�i ]

). On the other hand, the last terms in (78) and (79) are each bounded by
(
log |Σ|+ ‖Φ‖

)
|Rg

n| �
(
log |Σ|+ ‖Φ‖

)
|A|

∣∣D̂g
n \ Dg

n

∣∣, (80)

which is o(|Fn|) as n → ∞ uniformly in g. To compare the middle terms, observe that on 

(θ, xA�i∪(gFn\[Rg
n∪

⋃m
j=i A�j ])

), the measure µ+ has the same marginal as µ(�i) = µ(�i−1)KA�i
. 

Therefore,

Ψµ+

(
A�i

∣∣∣ gFn \
[
Rg

n ∪
m⋃

j=i

A�j

])
= Ψµ(�i−1)KA�i

(
A�i

∣∣∣ gFn \
[
Rg

n ∪
m⋃

j=i

A�j

])
.

 (81)

Since µ(�i−1) and µ have the same marginals on B�i, from (73) we get

Ψµ+

(
A�i

∣∣∣ gFn \
[
Rg

n ∪
m⋃

j=i

A�j

])
� Ψµ

(
A�i

∣∣∣ gFn \
[
Rg

n ∪
m⋃

j=i

A�j

])
+ ε. (82)
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It follows that, uniformly in g,

Ψµ+(gFn) � Ψµ(gFn) + εm + o(|Fn|)
= Ψµ(Fn) + ε d(D) |Fn|+ o(|Fn|)

 (83)

as claimed. □ 

4. Equilibrium measures relative to a topological factor

In the setting of topological factor maps between subshifts, we have the following extension of 
the result of Allahbakhshi and Quas [1, theorem 3.3] as a corollary of theorem 1.2(b).

Theorem 4.1 (Gibbs property for equilibrium measures relative to a topological 
factor). Let X and Y be G-subshifts, η a topological factor map from X onto Y, ν  a G-invari-
ant measure on Y, and Φ an absolutely summable interaction on X. Assume that X satisfies the 
TMP. Then, every invariant measure µ projecting to ν  that maximizes the pressure for fΦ with-
in the fiber η−1(ν) satisfies the following Gibbs property: for every A � G and u ∈ LA(X), and 
µ-almost every x ∈ X , we have

µ
(
[u]

∣∣ ξAc

∨ η−1(FY)
)
(x)

=

{
1

Zη
A|Ac (x)e−EA|Ac (xAc∨u) if xAc ∨ u ∈ X and η(xAc ∨ u) = η(x),

0 otherwise,

 (84)

where FY  is the σ-algebra on Y and Zη
A|Ac(x) is the appropriate normalizing constant.

To see how topological factor maps fit in the setting of relative systems, let X be a G-subshift, 
Y a compact metric space with a continuous G-action and η : X → Y  a topological factor map, 
that is, a G-equivariant continuous surjection from X onto Y. Regarding Θ � Y  as an environ-
ment space and setting Xy � η−1(y), we obtain a relative system Ω � {(η(x), x) : x ∈ X}, 
which is nothing other than the graph of η.

Let ν  be a G-invariant measure on Y. Via the natural topological conjugacy X → Ω, 
x �→ (η(x), x), there is a one-to-one correspondence between G-invariant measures µ on Ω 
that project to ν  and G-invariant measures on X that project to ν . Let Φ be an absolutely 
summable interaction on X, and note that Φ can be considered, via the same conjugacy, as 
an absolutely summable relative interaction on Ω. (Note however that the class of absolutely 
summable relative interactions on Ω is larger than those obtained in this fashion.)

With the above correspondence, the invariant measures µ (on X) that maximize pressure for 
fΦ among all invariant measures projecting to ν  are identified with the equilibrium measures 
(on Ω) for fΦ relative to ν . Indeed, the pressure of µ can be written as

hµ(X)− µ( fΦ) = hν(Y) + hµ(Ω | Y)− µ( fΦ). (85)

Since hν(Y) is independent of µ, maximizing the pressure hµ(X)− µ( fΦ) is equivalent to 
maximizing the relative pressure hµ(Ω | Y)− µ( fΦ). Likewise, relative Gibbs measures on Ω 
for Φ with marginal ν  correspond precisely to measures on X that project to ν  and satisfy (84).

Proof of theorem 4.1. Following the above discussion, it is sufficient to show that the 
TMP on X implies the TMP on Ω relative to ν . The result then follows from theorem 1.2(b).

Every continuous shift-commuting map between subshifts can be expressed as a sliding 
factor map (see e.g. [27]). Hence, denoting the alphabet of Y by Γ, there exists a set F � G 
and a map M : LF(X) → Γ such that
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η(x)g = M
(
(g−1x)F

)
 (86)

for every x ∈ X  and g ∈ G.

Let A � G and let B ⊇ A be a memory set for A witnessing the TMP of X. Note that every 
B̃ � G with B̃ ⊇ B is also a memory set for A. We claim that if we choose B̃ large enough 
such that AF ∩ B̃cF = ∅ (in particular, if we set B̃ � B ∪ AFF−1), then B̃ is also a memory 
set for A witnessing the TMP of Ω relative to Y. Indeed, let y ∈ Y  and x, x′ ∈ X  be such that 

η(x) = η(x′) = y and xB̃\A = x′
B̃\A

. By the TMP of X, the configuration w � xB̃ ∨ x′Ac  is in X. 
On the other hand, it is easy to see that if the condition AF ∩ B̃cF = ∅ is satisfied, then we 
also have η(w) = y. □ 

5. Equilibrium measures on group shifts

As stated in the Introduction, not all group shifts are SFTs [40]. In fact, a group shift may not 
even satisfy the strong TMP. For instance, if G �

⊕
n∈N Z/2Z is the direct sum of countably 

many copies of Z/2Z and H � Z/2Z, then the group shift X � {0G, 1G} does not satisfy the 
strong TMP. Indeed, note that the subgroup 〈F〉 ⊆ G generated by each finite subset F � G 
is finite. Suppose that F is such that AF is a memory set for A. Choosing A � 〈F〉 yields that 
AF  =  A is a memory set for A, which is absurd.

However, all group shifts satisfy TMP as long as they are defined on a countable group G. 
The proof is a straightforward adaptation of lemma 2.2 in [23].

Proposition 5.1 (Group shifts have TMP). Let G be a countable group and H a finite 
group. Then every group shift X ⊆ HG satisfies the TMP.

Proof. For disjoint A, B � G and x ∈ X, let us define LA|B(x) as the set of all patterns 
p ∈ LA(X) such that p ∨ xB is in LA∪B(X). Denote by LA|B the set LA|B((1H)G).

Observe that LA|B is a subgroup of LA(X). Let us verify that for every x ∈ X, the set LA|B(x) 
is a left coset of LA|B. Clearly, xA · LA|B ⊆ LA|B(x). Conversely, let u ∈ LA|B(x). Let z ∈ X be 
such that zA∪B = u ∨ xB. Then (x−1 · z)B = 1B

H and hence (x−1 · z)A = x−1
A · u is in LA|B. It fol-

lows that u ∈ xA · LA|B. Therefore, LA|B(x) = xA · LA|B .

Now let g0, g1, g2, . . . be an enumeration of G and Bn � {g0, . . . , gn} \ A. Clearly,

LA(X) ⊇ LA|B0 ⊇ LA|B1 ⊇ LA|B2 ⊇ · · · . (87)

As LA(X) is finite, this chain eventually stabilizes, and thus there exists an N ∈ N such that 
LA|BN+m = LA|BN  for all m � 0. It follows that LA|BN+m(x) = LA|BN (x) for every x ∈ X and all 
m � 0. But this is equivalent to saying that C � A ∪ BN  is a memory set for A. We conclude 
that X  satisfies the TMP. □ 

Theorem 1.5 follows immediately from proposition 5.1 and the extended version of the 
non-relative Lanford–Ruelle theorem (theorem 1.2(b) on the system Ω � Θ× X in which 
Θ � {θ} is singleton and ν � δθ).

We now give an algebraic interpretation of theorem 1.5 in the case Φ ≡ 0 and as a corol-
lary, find a sufficient condition for the uniqueness of the measure of maximal entropy on group 
shifts.
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More generally, let X  be a compact metric group on which a countable group G acts by 
continuous automorphisms. A point z ∈ X is said to be homoclinic (or asymptotic) if for every 
open neighborhood U � 1X, there is a finite set F � G such that gz ∈ U for all g ∈ G \ F. The 
homoclinic points of X  form a subgroup of X  denoted by ∆(X). The homoclinic points in a 
group shift are precisely the finitary configurations, that is, the configurations in which all but 
at most finitely many of the sites have the identity symbol.

Let us call a probability measure µ on X  an almost Haar measure if it is invariant under the 
action of the homoclinic subgroup of X  by left-translations, that is, if µ(z−1U) = µ(U) for 
every measurable U ⊆ X and each z ∈ ∆(X). Clearly, the Haar measure is almost Haar, but 
in general, there can be many other almost Haar measures. For instance, when H � Z/2Z and 
G is an arbitrary countable group, every probability measure on the group shift X � {0G, 1G} 
is almost Haar, simply because X  has no homoclinic point other than its identity element 0G.

The almost Haar measures on a group shift are precisely the Gibbs measures for the trivial 
interaction Φ ≡ 0.

Proposition 5.2 (Almost Haar ≡ uniform Gibbs). Let G be a countable group and H 
a finite group, and let X ⊆ HG be a group shift. A probability measure µ on X  is almost Haar 
if and only if it is Gibbs for the interaction Φ ≡ 0.

Proof. First, suppose that µ is a Gibbs measure for Φ ≡ 0. Let z be a homoclinic point. Let 
A � G be the support of z, that is, A � z−1(H�{1H}), and set w � zA. Let u ∈ LA(X) and 
Q ∈ ξAc

. By the (uniform) Gibbs property of µ, we have

µ
(
[u] | ξAc)

= µ
(
[w−1u] | ξAc)

 (88)

µ-almost surely. Integrating over Q gives

µ([u] ∩ Q) = µ([w−1u] ∩ Q) = µ
(
z−1([u] ∩ Q)

)
 (89)

which implies that µ is invariant under left-translation by z. Since z was arbitrary, we find that 
µ is almost Haar.

Conversely, suppose that µ is almost Haar. Let A � G be a finite set and u, v ∈ LA(X). If 
there is no configuration x ∈ X for which both xAc ∨ u and xAc ∨ v are in X , there is nothing 
to show. So, suppose that there exists a configuration x̂ ∈ X such that x̂Ac ∨ u, x̂Ac ∨ v ∈ X. 
Since X  is a group shift, z � (x̂Ac ∨ u)(x̂Ac ∨ v)−1 is in X . Note that z is a homoclinic point 

Figure 3. Configurations from the subshifts in example 6.1 (left) and example 6.2 
(right).
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with support A and w � zA = uv−1. By the almost Haar property, for every Q ∈ ξAc

 we have

µ([u] ∩ Q) = µ
(
z−1([u] ∩ Q)

)
= µ([w−1u] ∩ Q) = µ([v] ∩ Q). (90)

This implies, by the definition of conditional probability, that µ([u] | ξAc

) = µ([v] | ξAc

) µ-al-
most surely. We conclude that µ is a Gibbs measure for Φ ≡ 0. □ 

As a corollary, we have the following restatement of the special case of theorem 1.5 with 
Φ ≡ 0.

Corollary 5.3 (Maximal entropy =⇒ almost Haar). Let G be a countable amenable 
group and H a finite group, and let X ⊆ HG be a group shift. Then every measure of maximal 
entropy on X  (with respect to the action of G) is almost Haar.

Observe that when ∆(X) is dense, the Haar measure is the unique almost Haar measure 
on X . Therefore, we find the following corollary. See [8, theorem 8.6] and [2, 28] for closely 
related results.

Corollary 5.4 (Uniqueness of measure of maximal entropy). Let G be a countable 
amenable group and H a finite group. Let X ⊆ HG be a group shift and suppose that its ho-
moclinic subgroup ∆(X) is dense in X . Then, the Haar measure on X  is the unique measure 
of maximal entropy on X  (with respect to the action of G).

6. Relative equilibrium measures on lattice slices

Recall from the Introduction that a two-dimensional subshift Y ⊆ ΣZ2
 can be viewed as a 

one-dimensional relative system ΩN  (for N an arbitrary positive integer) in which the environ-
ment space ΘN consists of the configurations on the complement of the horizontal strip 
Z× [0, N − 1] that are admissible in Y, and for each θ ∈ Θ, the set Xθ consists of all configu-
rations x of the strip Z× [0, N − 1] that are consistent with θ in that θ ∨ x ∈ Y . Note that Z 
acts on ΩN  by horizontal shifts.

In this section, we shall prove theorem 1.6, which states that under suitable conditions 
on Y, the equilibrium measures on Y are precisely the Z2-invariant measures that are relative 
equilibrium on ΩN  for each N. In fact, we prove this in a more general setting in which Z2 is 
replaced with an arbitrary countable amenable group G, the horizontal strip is replaced with 
a union of a finite number of cosets of a fixed subgroup H ⊆ G (called a slice of G), and the 
horizontal Z-action is replaced with the action of H.

Before introducing the general setting, let us give a few examples to show why the above-
mentioned equivalence cannot hold without some assumption on Y.

Example 6.1 (Equilibrium but not relative equilibrium I). Let Y be the Z2-subshift 
over the alphabet  consisting of all configurations in which the two symbols  
and  appear in at most one horizontal row (see figure 3), that is,

 (91)

The only non-wandering point in Y is the uniform configuration . Thus the atomic measure 
µ supported at  is the only Z2-invariant measure on Y. In particular, µ is the unique measure 
of maximal entropy on Y. However, given its marginal on Θ1, µ does not maximize relative en-
tropy on Ω1. Namely, consider the measure µ′ under which each site outside the strip Z× {0} 
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has almost surely the symbol , while the symbols inside the strip Z× {0} are chosen inde-
pendently uniformly at random from Σ. Note that µ′ is invariant under horizontal shift and has 
the same marginal as µ on Θ1. On the other hand, hµ(Ω1 |Θ1) = 0 while hµ′(Ω1 |Θ1) = log 3. 
Let us observe that Y does not satisfy TMP, but the relative system Ω1 is relatively D-mixing 
(even more, it has the relative independence property). ©

Example 6.2 (Equilibrium but not relative equilibrium II). Let us consider a variant 
of the subshift from the previous example in which there is an additional constraint that the 
symbol  cannot occur in the same row as the symbols  and  (see figure 3). Namely, let

 (92)

As in the previous example, the atomic measure µ supported at  is the unique measure of 
maximal entropy on Y, but given its marginal on Θ1, µ does not maximize relative entropy on 
Ω1. In this case, the maximum relative entropy is achieved by the measure under which the 
sites outside Z× {0} are almost surely given the symbol  and the sites in Z× {0} are given 
random symbols chosen independently and uniformly from . In contrast to the previ-
ous example, in this example, Y does have TMP (even strong TMP) but Ω1 is not relatively 
D-mixing. ©

Example 6.3 (Relative equilibrium but not equilibrium). Let Y � {0}Z2 ∪ {1, 2}Z2
. 

Consider the atomic measure µ supported at 0Z
2
. For every positive N, µ maximizes relative 

entropy given its marginal on ΘN. Nevertheless, µ is not a measure of maximal entropy for Y. 
Note that Y is an SFT, thus has TMP. It however does not satisfy D-mixing. ©

Let us now introduce the general setting. Let G be a countable amenable group and H a 
subgroup of G. A union of finitely many right cosets of H in G is called an H-slice of G. 
Symbolic configurations on an H-slice can be viewed in a natural way as configurations with 
a larger alphabet on H. Namely, given an H-slice S, we choose a collection F � {a1, . . . , ak} 
of representatives of distinct right cosets of H participating in S, so that S = HF . With some 
abuse of notation, we will identify the configurations x ∈ ΣS on the slice S with the configura-
tions x̂ ∈ (ΣF)H on H via the natural bijection between ΣHF  and (ΣF)H given by (x̂h)f = xhf  
for h ∈ H and f ∈ F. Likewise, for A � H we identify ΣAF with (ΣF)A. For d ∈ HF, we 
define p S(d) as the unique element h ∈ H such that d ∈ hF.

Let Y be a subshift on G. Each H-slice of G defines a relative system on which H acts. 
Namely, let S � HF  be an H-slice. For B ⊆ G, let ΠB denote the projection y �→ yB. We 
introduce a relative system ΩS by considering ΘS � ΠSc(Y) as the environment space and 
defining Xθ � {x ∈ (ΣF)H : θ ∨ x ∈ Y} as the set of configurations consistent with θ ∈ ΘS. 
Note that H acts on ΩS by translations, and that this action is topologically conjugate to the 
action of H on Y.

An interaction Φ on Y induces a relative interaction Φ̂ on ΩS. Namely, for every finite subset 
A ⊆ H and every u ∈ (ΣF)A and θ ∈ ΘS, let

Φ̂A(θ, u) �
∑
B�G

pS(B∩S)=A

ΦB(θB\S ∨ uB∩S).
 (93)

Note that Φ̂ is absolutely summable if Φ is (in fact, ‖Φ̂‖ � |F| ‖Φ‖).

Proposition 6.4 (Gibbs kernels versus relative Gibbs kernels). Let S � HF  be an 
H-slice of G. Let Φ be an absolutely summable interaction on Y and Φ̂ the corresponding rela-
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tive interaction on ΩS. Let K be the Gibbs specification on Y associated to Φ and K̂  the relative 
Gibbs specification on ΩS associated to Φ̂. Let y ∈ Y , and set θ � ySc and x � yS. Then, for 
every A � H and u ∈ (ΣF)A, we have

K̂A
(
(θ, x), [u]

)
= KAF(y, [u]). (94)

Proof. Let E denote the Hamiltonian on Y associated to Φ, and let Ê  denote the relative 
Hamiltonian on ΩS associated to Φ̂. Clearly, xH\A ∨ u ∈ Xθ if and only if yG\AF ∨ u ∈ Y . If 
either of the latter conditions is satisfied, we have

ÊA|Ac(θ, xH\A ∨ u) =
∑
C�H

C∩A�=∅

Φ̂C(θ, xH\A ∨ u)

=
∑
C�H

C∩A�=∅

∑
B�G

pS(B∩S)=C

ΦB(θB\S ∨ (xH\A ∨ u)B∩S)

= E(AF)|(G\AF)(yG\AF ∨ u).

 (95)

The result then follows from the definitions of the Gibbs kernels. □ 

Before stating the main result, let us verify that TMP on a subshift implies relative TMP 
with respect to slices.

Proposition 6.5 (TMP =⇒ relative TMP). Let S � HF  be an H-slice of G. If Y satisfies 
TMP, then ΩS satisfies relative TMP.

Proof. Let A � H and let B ⊇ AF be a memory set for AF witnessing the TMP of Y. Since 
any finite superset of a memory set is also a memory set, we may assume that B ∩ S = CF for 
some C � H. We claim that C is a memory set for A in the relative system ΩS.

Let θ ∈ ΘS and x, x′ ∈ Xθ be such that xC\A = x′C\A. Let y, y′ ∈ Y  be such that 
yG\S = y′G\S = θ , y S  =  x and y′S = x′. Since B is a memory set for AF in Y, there is a con-
figuration ỹ ∈ Y  that agrees with y  on B, and thus on CF = B ∩ S and with y′ on G \ AF. In 
other words, ỹG\S = θ and ỹ agrees with y  on CF and with y′ on S \ AF. In particular, if we 
set w � ỹS, then w ∈ Xθ and w agrees with x on C and with x′ on H \ A. This means that C is 
a memory set for A in ΩS. □ 

Now we can state the main general result of this section.

Theorem 6.6. Let Y be a subshift on a countable amenable group G. Let Φ an absolutely 
summable interaction on Y and µ a G-invariant probability measure on Y. Let H be a subgroup 
of G.

 (a)  (Lanford–Ruelle theorem for slices)

  Assume that Y satisfies TMP. Assume further that µ is an equilibrium measure on Y for 
Φ. Let S � HF  be an H-slice of G, and denote by Φ̂ the relative interaction on ΩS corre-
sponding to Φ. Then, µ is an equilibrium measure on ΩS for Φ̂ relative to ΠScµ, provided 
that ΩS is D-mixing relative to ΠScµ.

 (b)  (Dobrushin theorem for slices)

  Assume that for every H-slice S � HF  of G, ΩS satisfies relative TMP. Assume further 
that for every H-slice S, µ is an equilibrium measure on ΩS for Φ̂ relative to ΠScµ, where 
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Φ̂ denotes the relative interaction on ΩS corresponding to Φ. Then, µ is an equilibrium 
measure on Y for Φ, provided that Y is D-mixing.

Proof. Let K denote the Gibbs specification on Y for Φ.

 (a)  Let K̂  denote the relative Gibbs specification on ΩS for Φ̂. Since Y satisfies the TMP, µ is a 
Gibbs measure for Φ by the (non-relative) Lanford–Ruelle theorem (theorem 1.2(b) with 
trivial environment). By proposition 6.4, for every A � H and u ∈ (ΣF)A, and µ-almost 
every (θ, x) ∈ ΩS ,

µ
(
[u]

∣∣FΘ ∨ (ξF)H\A)(θ, x) = µ
(
[u]

∣∣ ξG\AF)(θ ∨ x)

= KAF(θ ∨ x, [u])

= K̂A((θ, x), [u])

 (96)

  and so µ is a relative Gibbs measure on ΩS. Now, assuming that ΩS is D-mixing relative 
to ΠScµ, by the relative Dobrushin theorem (theorem 1.2(a)), µ is a relative equilibrium 
measure on ΩS for Φ̂ relative to ΠScµ.

 (b)  Let S � HF  be an arbitrary H-slice in G. Let K̂  denote the relative Gibbs specification 
on ΩS for Φ̂. Since µ is a relative equilibrium measure for Φ̂, we can apply the relative 
Lanford–Ruelle theorem (theorem 1.2(b)) to get that µ is relative Gibbs for Φ̂. Using 
proposition 6.4, it follows that for every A � H and u ∈ ΣAF  and µ-almost every y ∈ Y , 
we have

µ
(
[u]

∣∣ ξG\AF)(y) = µ
(
[u]

∣∣FΘ ∨ (ξF)H\A)(ySc , yS)

= K̂A((ySc , yS), [u])
= KAF(y, [u]).

 (97)

  Thus, µ satisfies the Gibbs condition for sets of the form AF, with A ⊆ H. Since the 
collection of sets of the form AF, for all such A and F, forms a cofinal subset of the col-
lection of finite subsets of G, µ is a Gibbs measure for Φ (see remark 1.24 in [14]). Since 
µ is G-invariant and Gibbs, it is an equilibrium measure by the (non-relative) Dobrushin 
theorem (theorem 1.2(a) with trivial environment). □ 

Note that in part (b) of the above theorem, we can use proposition 6.5 to replace the condi-
tion of relative TMP for every slice with the condition that Y satisfies TMP.

Remark 6.7 (Recovering Dobrushin–Lanford–Ruelle theorem). When H is the 
trivial subgroup, the statement of theorem 6.6 recovers the statement of the Dobrushin–Lan-
ford–Ruelle theorem (theorem 1.2 with trivial environment). Indeed, in this case, H-slices of 
G are precisely the finite subsets of G and thus the conditions of relative TMP and relative D-
mixing become trivial. Note that according to corollary 2.2, µ is a Gibbs measure if and only 
if it is a relative equilibrium measure for every H-slice of G. ©

Remark 6.8 (The missing counter-example). Examples 6.1 and 6.2 show that neither 
of the two conditions in theorem 6.6(a), namely TMP and relative D-mixing, can be dropped. 
On the other hand, example 6.3 shows that theorem 6.6(b) would not hold if we dropped the 
D-mixing condition. This begs the question of whether the remaining condition of TMP can 
be dropped in theorem 6.6(b).
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However, a counter-example in which theorem 6.6(b) fails in absence of TMP would be 
more complicated to construct. In fact, as the following argument suggests, such an example 
may require Y to satisfy D-mixing but not the UFP (see section 2.5.2), at least when G � Z2  
and H � Z. We do not know if such a subshift exists.

Consider the basic case of horizontal strips on two-dimensional subshifts, thus G � Z2  and 

H � Z. Suppose that Y ⊆ ΣZ2
 has the UFP with respect to the sequence of boxes Fn � [−n, n]2. 

Let us sketch an argument showing that if a Z2-invariant measure µ on Y has maximal relative 
entropy (with respect to horizontal shift) on every horizontal strip, it also maximizes entropy 
on Y (with respect to two-dimensional shift).

Indeed, let µ′ be any other Z2-invariant measure on Y and suppose that the Z2-entropy of µ′ is 
larger than the Z2-entropy of µ. Then there exists ε > 0 such that Hµ′(ξFn) � Hµ(ξ

Fn) + ε |Fn| 
for all sufficiently large n. By the UFP, there exists a non-negative integer r such that for 
every y, y′ ∈ Y  and n ∈ N, there exists a configuration ỹ ∈ Y  that agrees with y  on Fn and 
with y′ outside Fn+r. Now, consider the strip S � Z× [−n − r, n + r] and the sequence 
. . . , B−1, B0, B1, . . . of translates of Fn contained in Z× [−n, n] in such a way that each Bk 
is at distance r  +  1 from Bk−1 and Bk+1. Let us draw a random configuration yyy from ΣZ2

 by 
choosing yyyBk  (for k ∈ Z) according to µ′, and yyyZ2\S according to µ, all independently of one 
another. By the UFP, the remaining symbols can be chosen in such a way that yyy is (almost 
surely) in Y. Let µ̃0 be the distribution of yyy. This is not necessarily horizontally invariant, so 
let µ̃ be a horizontally invariant measure obtained from µ̃0 by the standard averaging proce-
dure. One can now verify that when n is large enough, the relative entropy of µ̃ on S given its 
complement is larger than that of µ, contradicting the assumption. ©

In concrete examples, the conditions of theorem 6.6 (TMP, D-mixing and relative D-mixing) 
can be cumbersome to verify. Clearly, these conditions are satisfied if Y is a full shift. A more 
relaxed condition covering important examples such as the hard-core model is the notion of 
TSSM introduced in section 2.5. The following corollary (which contains theorem 1.6 as a 
special case) is a handy version of theorem 6.6 in which generality is traded for simplicity.

Corollary 6.9 (Dobrushin–Lanford–Ruelle theorem for slices: handy ver-
sion). Let Y be a subshift on a countable amenable group G, and assume that Y satisfies 
TSSM. Let Φ be an absolutely summable interaction on Y. Let H be a subgroup of G. Let µ be 
a G-invariant probability measure on Y. Then µ is an equilibrium measure for Φ if and only if 
for every H-slice S of G, µ is an equilibrium measure on ΩS for Φ̂ relative to ΠScµ, where Φ̂ 
denotes the relative interaction corresponding to Φ on ΩS.

Proof. By theorem 6.6, it suffices to show that Y satisfies TMP and is D-mixing, and that for 
every H-slice S � HF , the relative system ΩS is relatively D-mixing. From proposition 2.3, 
we know that Y is an SI SFT, in particular, it satisfies TMP and is D-mixing. Thus, it remains 
to show that ΩS is relatively D-mixing. We shall in fact show that ΩS is relatively SI.

Indeed, let R � G be a finite set that certifies the TSSM property of Y. Fix θ ∈ Θ and let 
x, y ∈ Xθ. Let A, B � H be such that (AF)R ∩ (BF)R = ∅. Let g0, g1, . . . be an enumera-
tion of the elements of G \ S  and set Mn � {g0, g1, . . . , gn} for n ∈ N. Note that θMn ∨ xA 
and θMn ∨ yB are in L(Y). Therefore, by TSSM, there is a configuration z(n) ∈ Y  such that 

z(n)
Mn

= θMn, z(n)
AF = xA and z(n)

BF = yB. Let z be an accumulation point of z(n) as n → ∞. Since 
Y is closed, z ∈ Y . On the other hand, zG\S = θ, zAF = xA and zBF = yB. Note that if we de-
fine D � (FR)(FR)−1 ∩H then whenever A(FR) ∩ B(FR) �= ∅ we have that AD ∩ BD �= ∅. 

S Barbieri et alNonlinearity 33 (2020) 2409



2445

This shows that Xθ is strongly irreducible with the finite set D as a witness. Since D does not 
depend upon θ, we find that ΩS is relatively SI. □ 

7. Relative version of Meyerovitch’s theorem

Before proving theorem 1.8 we need to introduce two technical tools. One is the concept of 
non-overlapping patterns and the second one is a subshift which separates shapes. Let A ⊆ G 
be a finite set. We say that two patterns u, v ∈ ΣA are non-overlapping in Ω if

g1([u] ∪ [v]) ∩ g2([u] ∪ [v]) = ∅ (98)

whenever g1, g2 ∈ G are two distinct elements with g1A ∩ g2A �= ∅. The hard-core shift with 
shape A is defined as

Y �
{

y ∈ {0, 1}G : yk = y� = 1implies either k = � or kA ∩ �A = ∅
}

. (99)

If we think of symbol 1 as a particle with shape A, then Y consists of all configurations of 
particles whose volumes do not overlap.

We will proceed through the proof in two steps. First, we treat the simpler case in which u 
and v are non-overlapping in Ω. We encode the relative system Ω into another relative system 
Ω̂ in which the symbolic part contains only the information about the occurrences of u and v 
wherever they are interchangeable. This new system will have the relative TMP, even more, 
it will have the relatively independence property, and thus the relative Lanford–Ruelle theo-
rem will yield the result. In the second step, we treat the general case where u and v might 
overlap. This time we use an auxiliary subshift Y (namely, the hard-core shift with shape A) 
and construct a new relative system Ω̃ � Ω× Y  in which the symbolic part has an extra layer 
y ∈ Y  chosen independently of x and θ. The auxiliary subshift Y consists of configurations of 
particles on G that are sufficiently far apart. Associated to u and v, there are two non-over-
lapping patterns ũ and ṽ, which are simply u and v with a particle on top. Since ũ and ṽ are 
non-overlapping, the result of the first step will hold. The general result for u and v will then 
follow from the independence of the auxiliary layer.

Proof of theorem 1.8. Let u, v ∈ ΣA be non-overlapping in Ω. Without loss of generality, 
we shall assume that A � 1G; if not, we reduce to this case by shifting x, θ, u and v appropri-
ately. Let  and consider the map

 (100)

where φ(θ, x) � ((θ, x̂), ẑ) is defined by leaving θ unchanged and setting

 (101)

In other words, x̂  is obtained from x by erasing the appearances of u and v wherever they 
are interchangeable (i.e. at positions k such that u and v are interchangeable for k−1θ). Each 
erased pattern is replaced by the symbols � and , where  indicates the reference point of the 
occurrence. The information regarding the erased occurrences of u and v is then recorded in ẑ .
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The map φ is clearly G-equivariant, bijective and measurable. Furthermore, given 
((θ, x̂), ẑ) = φ(θ, x), one can recover x from x̂  and ẑ  alone, by means of a block map. More 
precisely, each symbol xk can be recovered by looking at the restrictions of x̂  and ẑ  to kA−1 
using the local rule

 (102)

given by

 (103)

The local rule Ξ is well-defined because u and v are non-overlapping.

Consider the system Ω̂ � φ(Ω) where the environment Θ̂ is the set of all (θ, x̂) that appear 
in the projection of Ω̂ on the first coordinate and X̂(θ,̂x) is the set of all ẑ ∈ Z  that are consist-
ent with (θ, x̂) in Ω̂. The new system Ω̂ has the relative TMP—even more, it has the relative 
independence property. Let µ̂ � φµ, and define ν̂  as the projection of µ̂  onto Θ̂. Define a rela-
tive interaction Φ̂ on Ω̂ by

Φ̂B((θ, x̂), ẑ) �
∑

C:C·A−1=B

ΦC
(
φ−1((θ, x̂), ẑ)

)

=
∑

C:C·A−1=B

ΦC

(
θ,
{
Ξ
(
(c−1x̂)A−1 , (c−1ẑ)A−1

)}
c∈C

)
,

 (104)

and let Ê  denote the corresponding relative Hamiltonian. It is easy to verify that Φ̂ is abso-
lutely summable, and that, for every G-invariant probability measure µ,

µ( fΦ) = µ̂( fΦ̂) (105)

(see appendix A.2.6).

We claim that µ̂  is an equilibrium measure for Φ̂ relative to ν̂ . Indeed, let µ̂  be any other 
G-invariant measure that projects to ν̂ , and let µ  be the induced measure on Ω. Since µ is as-
sumed to be an equilibrium measure for Φ relative to ν  and µ  projects to ν , we have

hµ(Ω | Θ)− µ( fΦ) � hµ(Ω | Θ)− µ( fΦ). (106)

By the chain rule, hµ(Ω | Θ) = hµ̂(Θ̂ | Θ) + hµ̂(Ω̂ | Θ̂) and hµ(Ω | Θ) = hµ̂(Θ̂ | Θ) + hµ̂(Ω̂ | Θ̂).  

As both µ̂  and µ̂  project to ν̂ , we have hµ̂(Θ̂ | Θ) = hµ̂(Θ̂ | Θ). Putting this together with 

equation (105) yields

hµ̂(Ω̂ | Θ̂)− µ̂( fΦ̂) � hµ̂(Ω̂ | Θ̂)− µ̂( fΦ̂), (107)

which establishes the claim.

Denote by  and  the cylinder set consisting of all points ((θ, x̂), ẑ) ∈ Ω̂ in which re-
spectively  and  appear at position 1G of ẑ . Recall that ξ denotes the partition of Ω induced 
by by the projection (θ, x) �→ x1G. Similarly, we denote by ξ̂  the partition of Ω̂ induced by the 
projection ((θ, x̂), ẑ) �→ ẑ1G, and write FΘ̂ for the σ-algebra on Ω̂ generated by Θ̂. Applying 
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theorem 1.2(b), we know that µ̂  is a relative Gibbs measure for Φ̂, thus for µ̂-almost every 
,

 (108)

 (109)

Putting equations (108) and (109) together, we obtain

 (110)

for µ̂-almost every .

On one hand, letting (θ, x) = φ−1((θ, x̂), ẑ), we have

 

(111)

and by a similar argument

 (112)

On the other hand,

 (113)

 (114)

Putting together equations (110)–(114), we get that for µ-almost every (θ, x) ∈ [u] ∪ [v] sat-
isfying θ ∈ Θu,v,

µ([u] | ξAc ∨ FΘ)(θ, x)
e−EA|Ac (θ,xAc∨u) =

µ([v] | ξAc ∨ FΘ)(θ, x)
e−EA|Ac (θ,xAc∨v) . (115)

This concludes the proof in the case where u and v are non-overlapping.
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We now consider the general case. If u = v, the result is immediate. Otherwise, let Y be the 
hard-core shift with shape A. We claim that there must exist a measure of maximal entropy 
π on Y such that π([1]) > 0. This can be seen in various ways, for instance by verifying that 
Y has positive topological entropy, or by invoking the Lanford–Ruelle theorem. For a more 
direct argument, note that if π0  is a G-invariant measure such that π0([1]) = 0, then clearly 
hπ0(Y) = 0. Hence, it is enough to show that there exists a G-invariant measure giving posi-
tive measure to [1]. By lemma 3.5, there exists a set D ⊆ G which is A-separated and has posi-
tive uniform lower density with respect to a Følner sequence (Fn)n∈N. Let w ∈ {0, 1}G be the 

configuration with wk � 1 if and only if k ∈ D, and define πn � |Fn|−1 ∑
g∈Fn

g−1δw. Any 
accumulation point of (πn)n∈N is a G-invariant measure π that satisfies π([1]) > 0.

Now consider the system Ω̃ � Ω× Y  as a relative system with environment Θ and 
X̃θ � {(x, y) : x ∈ Xθ and y ∈ Y}. Endow Ω̃ with the measure µ̃ � µ× π  and the interaction 
Φ̃C(θ, (x, y)) � ΦC(θ, x). By construction, µ̃ is an equilibrium measure for Φ̃ relative to ν . 
Consider now the patterns ũ, ṽ ∈ (Σ× {0, 1})A defined by

ũa =

{
(ua, 1) if a = 1G,
(ua, 0) otherwise, ṽa =

{
(va, 1) if a = 1G,
(va, 0) otherwise.

 (116)

By the definition of Y and the fact that u �= v, the patterns ũ, ṽ are non-overlapping in Ω̃. 
We can thus apply the result for non-overlapping patterns to obtain that for µ̃-almost every 
(θ, (x, y)) ∈ [ũ] ∪ [ṽ] such that θ ∈ Θũ,ṽ,

µ̃
(
[ũ]

∣∣ ξ̃Ac ∨ FΘ

)
(θ, (x, y))

e−ẼA|Ac (θ,ũ∨(x,y)Ac )
=

µ̃
(
[ṽ]

∣∣ ξ̃Ac ∨ FΘ

)
(θ, (x, y))

e−ẼA|Ac (θ,ṽ∨(x,y)Ac )
, (117)

where ξ̃  denotes the partition of Ω̃ induced by (θ, (x, y)) �→ (x1G , y1G) and Ẽ  is the relative 
Hamiltonian associated to Φ̃. With some abuse of notation, we write FΘ for the σ-algebras 
generated by Θ both in Ω and in Ω̃.

By the definition of Φ̃, we have that

ẼA|Ac(θ, (x, y)) = EA|Ac(θ, x). (118)

Furthermore, as µ̃ = µ× π , we have

µ̃
(
[ũ]

∣∣ ξ̃Ac

∨ FΘ

)
(θ, (x, y)) = µ

(
[u]

∣∣ ξAc

∨ FΘ

)
(θ, x) · π

(
[1]

∣∣ ζAc)
(y), (119)

µ̃
(
[ṽ]

∣∣ ξ̃Ac

∨ FΘ

)
(θ, (x, y)) = µ

(
[v]

∣∣ ξAc

∨ FΘ

)
(θ, x) · π

(
[1]

∣∣ ζAc)
(y), (120)

where ζ stands for the partition of Y generated by the symbol at the origin.

Substituting (118)–(120) in equation (117), we get that for µ-almost every (θ, x) ∈ [u] ∪ [v] 
satisfying θ ∈ Θu,v and π-almost every y ∈ [1],

µ
(
[u]

∣∣ ξAc ∨ FΘ

)
(θ, x) · π

(
[1]

∣∣ ζAc)
(y)

e−EA|Ac (θ,xAc∨u)

=
µ
(
[v]

∣∣ ξAc ∨ FΘ

)
(θ, x) · π

(
[1]

∣∣ ζAc)
(y)

e−EA|Ac (θ,xAc∨v) .

 

(121)

Note that we may replace the condition ‘y ∈ [1]’ by ‘yG\{1G} ∨ 1 ∈ Y ’ and the equality will 

still hold. Also, if we integrate the factor π
(
[1]

∣∣ ζAc)
(y) with respect to π, we obtain
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π([1]) =

∫

y:y{1G}c∨1∈Y
π
(
[1]

∣∣ ζAc)
(y) dπ(y) +

∫

y:y{1G}c∨1/∈Y
π
(
[1]

∣∣ ζAc)
(y) dπ(y),

 (122)

where the second term is 0. Thus, integrating (121) with respect to π, we obtain

µ
(
[u]

∣∣ ξAc ∨ FΘ

)
(θ, x) · π

(
[1]

)

e−EA|Ac (θ,xAc∨u) =
µ
(
[v]

∣∣ ξAc ∨ FΘ

)
(θ, x) · π

(
[1]

)

e−EA|Ac (θ,xAc∨v) . (123)

As π([1]) > 0, it follows that

µ
(
[u]

∣∣ ξAc ∨ FΘ

)
(θ, x)

e−EA|Ac (θ,xAc∨u) =
µ
(
[v]

∣∣ ξAc ∨ FΘ

)
(θ, x)

e−EA|Ac (θ,xAc∨v)
 (124)

for µ-almost every (θ, x) ∈ [u] ∪ [v] such that θ ∈ Θu,v. This concludes the proof of the theo-
rem. □ 

We have used the relative Lanford–Ruelle theorem to prove theorem 1.8. We now show the 
converse implication, so that the two theorems are really equivalent under fairly simple reduc-
tions. More specifically, we show that when Ω has the relative TMP, the conclusion of theorem 
1.8 becomes equivalent to saying that µ is a relative Gibbs measure for Φ with marginal ν .

Proof of theorem 1.2(b) using theorem 1.8. Let A � G and let B ⊇ A be a memory 
set for A witnessing the TMP of Ω relative to ν . Let u, v ∈ ΣA be arbitrary patterns. Then, for 
every w ∈ ΣB\A and ν -almost every θ ∈ Θ, the patterns w ∨ u and w ∨ v are interchangeable 
for θ provided they are both in LB(Xθ). From theorem 1.8, it follows that for every w ∈ ΣB\A,

µ
(
[w ∨ u]

∣∣ ξBc ∨ FΘ

)
(θ, x)

e−EB|Bc (θ,w∨u∨xBc )
=

µ
(
[w ∨ v]

∣∣ ξBc ∨ FΘ

)
(θ, x)

e−EB|Bc (θ,w∨v∨xBc )
 (125)

for µ-almost every (θ, x) ∈ [w] such that w ∨ u, w ∨ v ∈ LB(Xθ). If we apply the chain rule to 
the numerators above and decompose the exponents in the denominators, and then cancel the 
common factor

µ
(
[w]

∣∣ ξBc ∨ FΘ

)
(θ, x)

e−E(B\A)|Bc (θ,w∨xBc∪A)
, (126)

then the resulting expression simplifies to

µ
(
[u]

∣∣ ξAc ∨ FΘ

)
(θ, x)

e−EA|Ac (θ,u∨xAc )
=

µ
(
[v]

∣∣ ξAc ∨ FΘ

)
(θ, x)

e−EA|Ac (θ,v∨xAc )
 (127)

for µ-almost every (θ, x) ∈ [w] such that xAc ∨ u, xAc ∨ v ∈ Xθ. This is true for every w ∈ ΣB\A. 
The latter equality is equivalent to µ being a relative Gibbs measure. □ 

Considering the fact that in the proof of theorem 1.8 we only applied the relative Lanford–
Ruelle theorem on a relatively independent system, and that the relative Lanford–Ruelle theo-
rem can be deduced from theorem 1.8 as shown above, we obtain that the following three 
statements are essentially equivalent in the relative setting:

 •  The relative Lanford–Ruelle theorem for systems which satisfy relative independence.
 •  The relative Lanford–Ruelle theorem for systems satisfying the relative TMP.
 •  The relative version of Meyerovitch’s theorem.
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If we restrict exclusively to the non-relative setting, the Lanford–Ruelle theorem for subshifts 
with TMP (or even for SFTs) does not follow from the Lanford–Ruelle theorem for full shifts. 
Similarly, Meyerovitch’s theorem cannot be deduced from Lanford–Ruelle through a simple 
recoding. The addition of an environment in the relative setting can be used as a tool to fix a 
measure on a restricted portion of a dynamical system and give information about measures 
which project to that portion and are optimal outside of it. Hence, the three statements become 
equally powerful in this setting. We see this as an indication that the relative setting is the 
appropriate level of generalization for these results.
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Appendix

A.1. Topology of Pν(Ω)

Let ν  be a probability measure on Θ. Every measure µ ∈ Pν(Ω) defines a positive linear 
functional J on the Banach space CΘ(Ω). Every such functional is ν -normalized meaning 
that J( A×ΣG) = ν(A) for every measurable A ⊆ Θ. When Θ is a standard Borel space (i.e. 
isomorphic, as a measurable space, to a Borel subset of a complete separable metric space), 
the converse is also true.

Proposition A.1 (Relative Riesz theorem). Assume that Θ is a standard Borel space. 
Then, for every ν -normalized positive linear functional J on CΘ(Ω) there corresponds a 
unique measure µ ∈ Pν(Ω) such that µ( f ) = J( f ) for all f ∈ CΘ(Ω).

Proof. Without loss of generality (by passing through an isomorphism), we can assume that 
Θ is a compact metric space equipped with its Borel σ-algebra (see e.g. [10, theorem 13.1.1]). 
Then the set C(Ω) of all continuous functions on Ω is a Banach subspace of CΘ(Ω). By the 
Riesz representation theorem, the restriction of J to C(Ω) identifies a unique probability meas-
ure µ on Ω such that µ( f ) = J( f ) for all f ∈ C(Ω).

Let g : Θ → R be a bounded measurable function and [u] a cylinder set. Consider 
f (θ, x) � g(θ) [u](θ, x). Then f  is relatively local. Furthermore, every relatively local func-
tion on Ω is a linear combination of functions of this form. Since the relatively local functions 
are dense in CΘ(Ω) and both J and µ are continuous on CΘ(Ω), it is enough to verify that 
µ( f ) = J( f ).

Let ε > 0. By Lusin’s theorem, there exists a function gε ∈ C(Θ) and a closed set E ⊆ Θ 
such that g = gε on E and ν(Θ \ E) < ε and µ

(
(Θ \ E)× ΣG) < ε. Furthermore, we can 

choose gε such that ‖gε‖ � ‖g‖. Define fε(θ, x) � gε(θ) [u](θ, x). Since fε ∈ C(Ω), we have 
µ( fε) = J( fε). Note that
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|µ( fε)− µ( f )| � µ(|f − fε|) � (‖f‖+ ‖fε‖)µ
(
(Θ \ E)× ΣG) < 2 ‖f‖ ε.

 (A.1)

Similarly, since J is positive linear, we have

|J( fε)− J( f )| � J(|f − fε|) � (‖f‖+ ‖fε‖)ν(Θ \ E) < 2 ‖f‖ ε. (A.2)

Therefore, |µ( f )− J( f )| < 4 ‖f‖ ε. Since ε is arbitrary, the claim follows. □ 

A consequence of the above proposition is that when Θ is a standard Borel space, the space 
Pν(Ω) is compact. Indeed, as a set of linear functionals, Pν(Ω) is a closed subset of the unit ball 
in the dual space C∗

Θ(Ω), thus the compactness follows from Alaoglu’s theorem. We do not know 
whether the assumption that Θ is standard Borel is necessary for the compactness of Pν(Ω).

A.2. Omitted arguments

A.2.1. Verification of (8). Let B � G be a finite set and define ∂−
B Fn � {g ∈ Fn :  

gB ∩ Fc
n �= ∅} = Fn \

⋂
b∈B Fnb−1. We have

∑
C�G

C∩Fn �=∅
C∩Fcn �=∅

‖ΦC‖ =
∑
C�G

C∩∂
−
B Fn �=∅

C∩Fcn �=∅

‖ΦC‖+
∑
C�G

C∩Fn �=∅,C∩Fcn �=∅

C∩∂
−
B Fn=∅

‖ΦC‖

�
∣∣∂−

B Fn
∣∣ ‖Φ‖+ ∣∣Fn \ ∂−

B Fn
∣∣

︸ ︷︷ ︸
�|Fn|

∑
C�G

C�1G ,C �⊆B

‖ΦC‖ .
 

(A.3)

The first term is o(|Fn|), whereas the second term is of the form cB |Fn| where cB → 0 as 
B ↗ G along the finite subsets of G directed by inclusion. □ 

A.2.2. Verification of (9). We have

∥∥EB|Bc − EA|Ac

∥∥ =

∥∥∥∥∥
∑
C�G

C∩B�=∅

ΦC −
∑
C�G

C∩A�=∅

ΦC

∥∥∥∥∥

�
∑
C�G

C∩B�=∅
C∩A=∅

‖ΦC‖

�
∑
C�G

C∩(B\A) �=∅

‖ΦC‖

�
∑

c∈(B\A)

∑
C�c

‖ΦC‖

= |B \ A| ‖Φ‖ .

 (A.4)

 □ 

A.2.3. Verification of (11). Using the definition of fΦ, for every finite set A � G, we have
∣∣∣EA(θ, x)−

∑
g∈A

fΦ(g−1θ, g−1x)
∣∣∣ �

∑
C�G

C∩A�=∅
C∩Ac �=∅

|A ∩ C|
|C|

‖ΦC‖ .
 (A.5)

For A � Fn, the estimate (11) follows as in (8) (see appendix A.2.1). □ 
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A.2.4. Verification of (51) and (52). Inequality (51) follows by writing

ZFn|Fc
n
(θ, x) =

∑
u∈ΣFn

u∨xFcn
∈Xθ

e−EFn|Fcn
(θ,u∨xFcn

) �
∑

u∈LFn (Xθ)

e−EFn (θ,u)+o(|Fn|) = ZFn(θ) eo(|Fn|).
 (A.6)

In order to verify (52), let us use the shorthand ∂Fθ
n � Fθ

n \ Fn. We can write

ZFθ
n |(Fθ

n )
c(θ, x) =

∑
u∈ΣFn

∑

∂u∈Σ∂Fθn

u∨∂u∨x
(Fθn )c

∈Xθ

e−EFn (θ,u)−E
∂Fθn |(∂Fθn )c

(θ,u∨∂u∨x
(Fθn )c

)

=
∑

u∈LFn (Xθ)

e−EFn (θ,u)
∑

∂u∈Σ
∂Fθn

u∨∂u∨x
(Fθn )c

∈Xθ

e−E
∂Fθn |(∂Fθn )c

(θ,u∨∂u∨x
(Fθn )c

).

 (A.7)
Now observe that, since Fθ

n is a mixing set for F, the second sum in the latter inequality is 
non-empty. It follows that

ZFθ
n |(Fθ

n )
c(θ, x) �

∑
u∈LFn (Xθ)

e−EFn (θ,u)e−|∂Fθ
n |‖Φ‖ = ZFn(θ) e−|∂Fθ

n |‖Φ‖.
 (A.8)

 □ 

A.2.5. Verification of (54). The right-hand side is (ξB ∨ FΘ)-measurable and for every 
[u] ∈ ξB and W ∈ FΘ we have

∫

[u]∩W

µ( [xB]f |FΘ)(θ, x)
µ([xB] |FΘ)(θ, x)

dµ(θ, x) = µ

(
[u] W

µ( [u]f |FΘ)

µ([u] |FΘ)

)

= µ

(
[u]
µ( [u] Wf |FΘ)

µ([u] |FΘ)

)

= µ

(
µ

(
[u]
µ( [u] Wf |FΘ)

µ([u] |FΘ)

∣∣∣∣FΘ

))

= µ

(
µ( [u] Wf |FΘ)

�����
µ([u] |FΘ) ������

µ( [u] |FΘ)

)

=

∫

[u]∩W
f dµ.

 

(A.9)

If two bounded measurable functions have equal integrals over each element of a generating 
semi-algebra, they are almost surely equal. □ 

A.2.6. Verification of (105). For every (θ, x) ∈ Ω, we have

fΦ̂(φ(θ, x)) =
∑
B�1G

1
|B|

Φ̂(φ(θ, x))

=
∑
B�1G

1
|B|

∑
C:C·A−1=B

ΦC(θ, x)

=
∑

C:C·A−1�1G

1
|C · A−1|

ΦC(θ, x).
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Integrating with respect to a measure µ, we get

µ̂( fΦ̂) =
∑

C:C·A−1�1G

1
|C · A−1|

µ(ΦC). (A.10)

Compare this with the expression

µ( fΦ) =
∑

C�1G

1
|C|

µ(ΦC),

 (A.11)
and observe that when µ is G-invariant, the right-hand sides of (A.10) and (A.11) coincide.
 □ 
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