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From metaphor to computation: Constructing the potential landscape 

for multivariate psychological formal models 

For psychological formal models, the stability of different phases is an important 

property for understanding individual differences and change processes. Many 

researchers use landscapes as a metaphor to illustrate the concept of stability, but 

so far there is no method to quantify the stability of a system’s phases. We here 

propose a method to construct the potential landscape for multivariate 

psychological models. This method is based on the generalized potential function 

defined by Wang et al. (2008) and Monte Carlo simulation. Based on potential 

landscapes we define three different types of stability for psychological phases: 

absolute stability, relative stability, and geometric stability. The panic disorder 

model by Robinaugh et al. (2019) is used as an example, to demonstrate how the 

method can be used to quantify the stability of states and phases, illustrate the 

influence of model parameters, and guide model modifications. An R package, 

simlandr, was developed to provide an implementation of the method. 

Keywords: complex dynamical systems, clinical psychology, formal theory, 

computational modeling, potential landscape 

The past decades have seen a rapid growth of models and theories in the field of 

psychology, and more specifically in the field of psychopathology. These models, 

however, are not without critiques. Many verbal theories acknowledge the complex and 

dynamic nature of mental disorders, but they are not always able to make precise and 

falsifiable predictions (Borsboom et al., 2021; Robinaugh et al., 2021). Statistical 

models can provide quantitative estimations, but traditional and even cutting-edge 

statistical methods are largely based on linear, static, and homogeneous assumptions, 

and usually fail to draw correct conclusions about the nature of the underlying process 

(Granic & Hollenstein, 2003; Haslbeck et al., 2019; Olthof, Hasselman, & Lichtwarck-

Aschoff, 2020). In recent years, formal models are gaining momentum in the field of 

psychology, aimed to address the abovementioned problems and provide a quantitative 
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foundation for theoretical inferences (e.g., Burger et al., 2020; Cramer et al., 2016; 

Robinaugh et al., 2019; Schiepek et al., 2014).1  

In those formal models, the elements of psychological systems and their 

interactions are described mathematically. Based on these specifications, one can 

simulate how the model evolves over time, observe the characteristics of the model, and 

investigate how the model output corresponds to real-life phenomena. In complex 

systems, higher-order, macroscopic psychological phases2 – distinct patterns of 

psychological systems – can emerge from the self-organization of these microscopic 

elements and their interactions (Goldstein, 1999; Olthof, Hasselman, Oude Maatman, et 

al., 2020). Different psychological phases can sometimes be assigned to differences in 

mental health: a system can for instance be in an anxious, panicky phase or in a calm 

and relaxed phase (Robinaugh et al., 2019).  

For formal models, the stability of different states and phases is an important 

quantity that relates to individual differences and change processes of the system. 

Previous research has often used the landscape metaphor to illustrate this idea: the state 

of the system is like a ball on the landscape. If the ball is in “a deep valley”, the system 

is stable; if the ball is on “a hill” or in “a shallow valley”, the system is unstable, and it 

 

1 In this paper, we use the term “system” for real-life or modelled systems that contains 

interactive elements; “theory” for a set of ideas that explain how the system work, and 

“model” for the tool that researchers use to give a simplified description of the system 

mechanism. 

2 The term “phase” is sometimes used interchangeably with “state”, as in the “mania 

state/phase” of bipolar disorder and “liquid state/phase” of matter. To avoid confusion, we 

use the term “state” in this paper for the more specific conditions of the system which are 

defined by the values of the system variables, and “phase” for the higher-level patterns of 

the system that consist of a group of states. 
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tends to “fall down” to a more stable place. The “valleys” or “attractors” correspond to 

possible phases of the system (Lamothe et al., 2019; Olthof, Hasselman, Oude 

Maatman, et al., 2020; Wichers et al., 2019; see Figure 1 for a diagram). If the valley of 

an unhealthy phase of some individuals is deeper, their mental systems are more likely 

to be trapped there, and they will be more vulnerable to mental disorders. Also, the 

process of treating mental disorders can be seen as changing the landscape of the system 

in a way that the stability of the unhealthy phase is decreased while at the same time 

strengthening the stability of healthy phases (Hayes et al., 2015). 

While the metaphorical use of the landscape is certainly a good way of 

illustration, the concept of stability does not yet have a formal, quantitative 

representation, which hinders further investigation. This calls for a new line of methods: 

quantitatively computing the potential landscape from formal dynamic models. 

Formal Models and Case Simulations 

As its name suggests, a psychological formal model of psychological phenomena 

mathematically defines how variables evolve over time and how they interact with each 

other. Often the evolution of such systems can be described by a set of (stochastic) 

differential equations. These equations specify the forms and strengths of these 

interactions among variables and the magnitude of noise in mathematical form. With 

this precise description, one can determine how the system evolves over time from a 

starting point and gain knowledge about the theory-implied behavior of the system 

(Robinaugh et al., 2021). 

A well-known psychological formal model is the panic disorder model by 

Robinaugh et al. (2019; also see Borsboom et al., 2021, and Haslbeck et al., 2019, for 

discussions on this model). This model is well constructed and contains many typical 

features that are common in psychological models (e.g., nonlinear relationships, 



 4 / 45 

 

feedback loops, the dependence of system behavior on its unique history, adaption to 

the environment, and a rather large number of variables). Therefore, we use this model 

as an example to explain our ideas. Here we briefly introduce the model specification 

and the main variables and parameters. The relationships of the most important 

variables that we use in the current paper are shown in Figure 2, and the full description 

of the model can be found in Robinaugh et al. (2019). The variables and parameters that 

will be investigated in the current paper are marked in bold font on their first 

occurrence. 

In this model, a panic disorder is considered to emerge from mutually interacting 

system variables. The core variables of this system are physical arousal (A, the level of 

arousal-related sensations, e.g., heart rate) and perceived threat (PT, the cognitive 

perception that the situation is threatening). The changing rate of physical arousal (A), 

d𝐴/d𝑡, is influenced by its own value, perceived threat (PT), and homeostatic feedback 

(H, the strength of the homeostatic processes that counteract the unsustainably elevated 

physical arousal), 

d𝐴

d𝑡
= 𝑟𝐴(𝑠𝑃𝑇,𝐴𝑃𝑇 − 𝐴 − 𝑠𝐻,𝐴𝐻), (1) 

which represents that physical arousal (A) tends to decrease when itself and homeostatic 

feedback (H) is high and tends to increase when perceived threat (PT) is high. The 

parameters 𝑟𝐴, 𝑠𝑃𝑇,𝐴, and 𝑠𝐻,𝐴 represent the strength of these influences. The changing 

rate of homeostatic feedback (H), d𝐻/d𝑡, is influenced by its own value and physical 

arousal (A), 

d𝐻

d𝑡
= 𝑟𝐻 (

𝐴𝑝𝐴,𝐻

𝐴𝑝𝐴,𝐻 + ℎ𝐴,𝐻

𝑝𝐴,𝐻
− 𝐻) , (2) 

which represents that homeostatic feedback (H) tends to decrease when itself is high 

and tends to increase when physical arousal (A) is high. The parameters 𝑟𝐻, 𝑝𝐴,𝐻, and 
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𝒉𝑨,𝑯 represent the strength of these influences. The changing rate of perceived threat 

(PT), d𝑃𝑇/d𝑡, is influenced by its own value, physical arousal (A), and escape behavior 

(E), 

d𝑃𝑇

d𝑡
= 𝑟𝑃𝑇 (

𝐴𝑝𝐴,𝑃𝑇

𝐴𝑝𝐴,𝑃𝑇+ℎ𝐴,𝑃𝑇

𝑝𝐴,𝑃𝑇 − 𝑃𝑇 − 𝑠𝐸,𝑃𝑇𝐸) , (3)

which represents that perceived threat (PT) tends to decrease when itself and escape 

behavior (E) is high and tends to increase when physical arousal (A) is high. 𝑟𝑃𝑇, 𝑝𝐴,𝑃𝑇, 

ℎ𝐴,𝑃𝑇, 𝑠𝐸,𝑃𝑇 are parameters representing the strength of these influences. Here, the 

influence of A on the changing rate of PT is not linear, but in the form of an S-shaped 

sigmoid function. Robinaugh et al. (2021) showed that this sigmoid function is 

necessary for the formal model in order to generate theory-implied behavior as observed 

in real life. The changing rate of escape behavior (E), d𝐸/d𝑡, is influenced by its own 

value and perceived threat, 

d𝐸

d𝑡
= 𝑟𝐸 (

𝑃𝑇𝑝𝑃𝑇,𝐸

𝑃𝑇𝑝𝑃𝑇,𝐸 + ℎ𝑃𝑇,𝐸

𝑝𝑃𝑇,𝐸
− 𝐸) , (4) 

which represents that escape behavior (E) tends to decrease when it is high itself and 

tends to increase when perceived threat (PT) is high. 

People with a panic disorder over-interpret their physical arousal as an 

indication of danger. When this over-interpretation, termed as arousal schema (AS) in 

the model, is high, an increase in physical arousal can result in a larger increase in 

perceived threat. This effect of AS is represented as its influence on the parameter ℎ𝐴,𝑃𝑇, 

ℎ𝐴,𝑃𝑇 = 1 −
𝐴𝑆

𝐴𝑆 + ℎ𝐴𝑆,𝐴𝑃𝑇
− 𝑠𝑠𝑖𝑡,𝐴𝑃𝑇𝑐. (5) 

When AS is higher, ℎ𝐴,𝑃𝑇 is lower, which makes the influence of A more dominant in 

Equation 3. Therefore, it is easier for a relatively high level of physical arousal (A) to 

lead to a large increase in perceived threat (PT). The increase of perceived threat (PT) 
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can, in turn, amplify physical arousal (A). This generates a vicious circle between the 

two and finally lead to a panic attack. A collective variable fear is defined as the 

geometric mean of A and PT, 

𝑓𝑒𝑎𝑟 = √𝐴 × 𝑃𝑇, (6) 

and is used to represent the general symptom severity. Panic attacks, therefore, manifest 

as a sudden increase in the level of fear. If panic attacks happen relatively often, the 

person can be said to have a panic disorder. Arousal schema (AS) is also influenced by a 

learning mechanism. Its changing rate, d𝐴𝑆/d𝑡, depends on its own value and the 

previous history of perceived threat (PT), fear, and escape behavior (E), 

d𝐴𝑆

d𝑡

= {

0, if max(𝑓𝑒𝑎𝑟𝑡−Ω, … , 𝑓𝑒𝑎𝑟𝑡) < 𝑐𝑟𝑓𝑒𝑎𝑟,𝐴𝑆

𝑟𝐴𝑆,𝑎(max(𝑃𝑇𝑡−Ω, … , 𝑃𝑇𝑡) − 𝐴𝑆), if max(𝑓𝑒𝑎𝑟𝑡−Ω, … , 𝑓𝑒𝑎𝑟𝑡) ≥ 𝑐𝑟𝑓𝑒𝑎𝑟,𝐴𝑆 and max(𝐸𝑡−Ω, … , 𝐸𝑡) > 𝑐𝑟𝐸,𝐴𝑆

                                            −𝑟𝐴𝑆,𝑒𝐴𝑆, if max(𝑓𝑒𝑎𝑟𝑡−Ω, … , 𝑓𝑒𝑎𝑟𝑡) ≥ 𝑐𝑟𝑓𝑒𝑎𝑟,𝐴𝑆 and max(𝐸𝑡−Ω, … , 𝐸𝑡) > 𝑐𝑟𝐸,𝐴𝑆

 , (7) 

which represents three different learning conditions. When the maximum value of fear 

in the previous Ω time points is lower than a critical threshold  𝑐𝑟𝑓𝑒𝑎𝑟,𝐴𝑆, no learning 

processes happened; when the maximum value of fear in the previous Ω time points is 

higher than the critical threshold  𝑐𝑟𝑓𝑒𝑎𝑟,𝐴𝑆, the direction of the learning process depends 

on whether the individual’s escape behavior (E) in the previous Ω time points is higher 

than another threshold  𝑐𝑟𝐸,𝐴𝑆. If the previous escape behavior (E) is high, the individual 

does not know how threatening the actual situation is, so he or she will learn to update 

the arousal schema (AS) according to the highest perceived threat (PT) during this time 

period with an acquiring rate parameter 𝑟𝐴𝑆,𝑎; if the previous escape behavior (E) is low, 

the individual will find that the actual situation is not so threatening, so his or her 

arousal schema (AS) will decrease with an extinguishing rate parameter 𝑟𝐴𝑆,𝑒. 

The model is intended to produce two qualitatively different phases of the 

(patient) system: a healthy phase and a panic phase. The simulation results of this model 
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(with the parameter values in Robinaugh et al., 2019; Figure 3) indeed show clear 

sudden increases in fear, which represent panic attacks. In these panic attacks, the 

system moves from the healthy phase to the panic phase, and quickly transitions back to 

the healthy phase. When the arousal schema (AS) becomes higher, the panic attacks 

become more frequent, which qualitatively shows the stability of the panic phase 

increasing, and the stability of the healthy phase diminishing. These simulation results 

align well with the theoretical foundation of the model. 

In this approach, the performance of the model is evaluated by case simulation 

result: the output of directly simulating the dynamic model. Case simulation is an 

important way of model evaluation and deduction because it shows how the system 

evolves if the model correctly represents the system. A mismatch of the simulation 

result and real-life observations indicates something must be wrong in the model. Case 

simulation, however, cannot directly provide information about the stability of states: 

what it shows is how the state changes over time (i.e., state as a function of time), not 

the stability of different states (i.e., stability as a function of states). Therefore, we need 

to find a way to define and calculate the stability of the states in a psychological system. 

Potential Landscape for a Dynamical System 

Defining or representing stability is not a totally new subject. In physics, the quantity 

that is used to represent the stability of a state is the potential function. Take the 

gravitational potential energy as an example: for a given object, if it is at a higher 

position, its gravitational potential energy is higher. This means that the object is more 

unstable, and it is more likely to “fall down” to more stable states in lower places. 

Mathematically, if a potential function can be (strictly) defined for a system, its velocity 

(i.e., how the system state changes over time) should be proportional to the gradient of 

the potential function. Intuitively, this means that the system always tends to move to 
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the place with lower potential energy, just like a ball on a hill tends to fall along the 

most convenient way into the valley. 

For a unidimensional deterministic system, the potential function can be easily 

obtained from taking the integral of the dynamic function. This method has already 

been used for representing the stability of states in unidimensional psychological 

systems (e.g., Dablander et al., 2020; Robinaugh et al., 2019). However, most 

psychological models contain many variables, thus are multidimensional. Analyzing the 

stability for multidimensional systems is more challenging because the multivariate 

dynamic functions are often not integrable. One way to understand this issue is by 

looking at the Penrose impossible stairs (Rodríguez-Sánchez et al., 2020; see Figure 4): 

it is possible that a system keeps whirling around, but then it cannot be represented as 

always going downstairs in a real 3D space. Therefore, the potential landscape cannot 

be directly obtained. Mathematicians have developed several generalized methods to 

construct generalized potential functions (P. Zhou & Li, 2016). These methods relax the 

requirements of integrability, but the resulting functions can also be used to represent 

the stability of system states. Among different ways of generalization, we found the 

potential function by Wang et al. (2008; also see Li & Wang, 2013, and Li & Ye, 2019, 

for examples of usage in complex biochemical systems) the most suitable for 

psychological formal models because it can be estimated with the Monte Carlo method, 

thus does not have a strict requirement concerning the properties of the dynamic 

functions. Other generalizations often require the dynamic functions to be continuous, 

derivable, and independent of the history, properties that psychological models often do 

not meet (e.g., Equation 7 of the panic disorder model is dependent on the model history 

and thus not derivable). Wang’s definition of potential function is based on the steady-

state distribution of the system (denoted as PSS), which refers to the distribution of 
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states that holds constant over time. If we have a single system evolving over time 

according to a set of (stochastic) differential equations, its state is likely to change every 

now and then. However, if we have an infinite bunch of systems with the steady-state 

distribution and let them all evolve together, although each system’s state still changes, 

their distribution can be invariant.3 Following a generalization of Boltzmann 

distribution, the potential (U) of a state X is then given by 

𝑈(𝑿) = −ln 𝑃SS(𝑿) (8) 

which means that the potential is equal to the logarithm of the steady-state distribution. 

If the probability density for the steady-state distribution is lower, then its potential is 

higher. 

This potential function is also related to some other properties expected from 

strictly defined potential functions. Here we also explain the usefulness of generalized 

potential functions from the force decomposition perspective  (P. Zhou & Li, 2016). As 

mentioned above, the main issue in constructing potential landscapes for 

multidimensional systems is that they often show whirling behaviors that cannot be 

represented with a potential landscape. These whirling behaviors are not the whole 

picture because the total forces in the system also contain gradient parts that represent 

 

3 A concrete illustration: imagine an infinite number of copies of an athlete running on a 400-

meter track, and imagine they are independent (so they do not run into each other). Even if 

they are copies of the same athletes, due to random noises, they will gradually distance 

themselves from each other. After an infinitely long time, these people will be very evenly 

distributed in the track. Now even if each person is still running, the population distribution 

on the track will not change anymore. If each running person is a stochastic dynamic system, 

then this population distribution is the steady-state distribution for the system. 
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the general tendency for the system to move to some specific regions. The idea of force 

decomposition means to decompose those complex forces of a system into a curl part 

and a gradient part. The stability information of the system is mainly contained in the 

gradient part, and the gradient part is integrable. Therefore, the generalized potential 

landscape can be obtained by integrating the gradient part of the forces. The curl part 

does not contain direct information about the stability because if the system just has the 

tendency to oscillate between two states without a preference, it is not meaningful to say 

that one state is more stable than the other. Wang’s landscape is originally defined from 

the steady-state distribution, but it can also be proved that it is equivalent to a possible 

way of force decomposition (P. Zhou & Li, 2016). Therefore, the potential landscape 

constructed with Wang’s method can be seen as a representation of the gradient part of 

the system dynamics. 

From either perspective, the potential landscape of the system shows the 

tendency that the system resides or leaves a specific state. If a state has a lower density 

in the steady-state distribution, the system is less likely to be around this state in the 

long run; and if there are a bunch of systems starting with a uniform distribution in the 

state space, it is more likely that the systems starting around this state will move to other 

states. If a system is in a higher position on the gradient part of its dynamics, it means 

that the system tends to fall down to a lower position if not affected by the curl forces 

and random noises. Therefore, the potential landscape can efficiently represent the 

stability of psychological systems on the state level. 

Having the potential for specific states, we can now describe the stability of the 

phases. How to clearly define psychological phases is a complex issue on its own. One 

may propose that a collection of qualitatively similar states constitutes a phase (e.g., the 

mental states when a patient with depression has a high overall symptom severity), in 
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which case the phase may be seen as a point attractor. In contrast, it can also be the 

case that certain kind of trajectories constitutes a phase (e.g., the mental trajectories that 

a patient with cyclothymic disorder switches between states with high depressive 

symptoms and states with elevated moods), which may be seen as a limit cycle 

attractor. Sometimes those two definitions can also be interchangeable (e.g., if we use 

the mood variability over a period instead of the valence and intensity of mood as the 

key variable to describe the cyclothymic disorder, then the patient’s mood variability is 

always high, and may be described as a point attractor). Fully investigating this issue is 

beyond the scope of the current paper. For clarity and simplicity, we will only look into 

the phases consisting of similar states and bounded by barriers in the potential landscape 

(i.e., point attractor-like phases). The relationships among the potential function, 

parameters, variables, state, and phase we used in the current paper are shown in Figure 

5. 

From the potential landscape perspective, the stability of phases can be 

characterized in three ways. The first one is the local minimum of the potential function 

within a given phase. Although the phase contains a collection of many states, the local 

minimum is the most stable state in the phase, hence can provide a quantitative 

representation. We refer to the potential of the local minimum as the absolute stability 

of the phase. Second, the potential difference between the local minimum and the 

barrier of the phase is directly related to the difficulty for the system to move out of that 

phase. We refer to it as the relative stability4 of the phase. The difference between the 

two is that the former represents if given infinite time, how probable it is for the system 

to be in a given phase (e.g., the healthy phase in the panic disorder model); the latter 

 

4 This is related to the term “resilience” used in some papers (e.g., Dablander et al., 2020).  
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represents, if putting the system in a given phase, how difficult it is for the system to 

escape that phase. Finally, the shape of the potential landscape within and around a 

certain phase represents how probable the system vibrates within or leaves a phase in a 

certain direction. We refer to this as the geometric stability. Although the geometric 

stability, as the shape of the landscape, is described qualitatively in the current work, we 

should note that this qualitative information is based on the quantitative information of 

the stability of the states within and around a phase of the system. 

Besides quantifying the stability, potential landscapes can also be used for other 

purposes. One advantage of the potential landscape over the case simulation is that it 

can summarize the stability information concisely and be directly compared across 

different parameter settings, therefore enables systematic investigation of the influence 

of various parameters on the model. For example, Robinaugh et al. (2019) only 

provided one set of values for all 22 parameters in the model, and these parameter 

values were chosen based on their ability to produce reasonable output. The plausible 

range of each parameter, however, was not investigated. This is a common practice for 

performing case simulations for formal models but leaves the robustness of a specific 

parameter setting questionable. Those parameters also are related to trait-like 

psychological properties of the system, which are of theoretical interest. It is 

understandable that most modelers do not show the simulation results with all different 

parameter settings because it does not show the influence of parameters in an 

informative way. With the help of potential landscapes, these problems can be 

addressed more clearly. 

The potential landscape can also provide guidance on model modification. It is 

nearly impossible to have a model that successfully explains every real-life 

phenomenon. Modification is often needed to continuously improve the model. Case 
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simulations do not always provide enough guidance on how to modify the model. For 

example, there is a clinical phenomenon that the panic attack model could not explain: 

some people only have some (non-clinical) panic attacks but do not develop a panic 

disorder (Robinaugh et al., 2019). In the original model, however, if the panic attack 

happens once, the system would always develop into a panic disorder. The authors 

provided a way of mending as an example of model improvement, namely adding 

another parameter called “escape schema” (SE). When SE is higher, the parameter ℎ𝑃𝑇,𝐸 

in Equation 4 is higher. This parameter represents the extent to which the individual 

believes escaping could help to cope with the perceived threat. After adding this 

parameter, individuals with a low SE would have panic attacks but would not develop a 

panic disorder. The rationale behind this solution is mainly based on a known 

theoretical mechanism that is translated into a model parameter, but not based on the 

model output. In other words, the simulation results only provide information about 

whether there is a problem, but not how the problem arises. The potential landscape 

method in contrast can provide insight into the problem – at least problems can be 

systematically analyzed from the perspective of stability.  

Aim of the current research 

The current research aims to provide a method to compute the potential landscape for 

psychological formal models and examine its usefulness in understanding psychological 

systems. First, we develop a set of tools to compute the potential landscape and related 

stability indicators from psychological dynamic models. Then, we illustrate how the 

procedure works by using the panic disorder model by Robinaugh et al. (2019). We will 

show how to (1) analyze the stability of states and phases from the potential landscape 

perspective, (2) systematically investigate the influence of various parameters from the 

potential landscape, and (3) use the potential landscape to guide model modification. 
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Methods 

The method section is divided into three parts. In the first part, we show the adjustments 

we made to make the panic disorder model more suitable for landscape construction. In 

the second part, we explain the preparatory analyses we did that ensure the validity of 

the landscape results. In the third part, we introduce the method that we used in the 

main analysis. The simulations and analyses in this study were performed in R 4.1.2 (R 

Core Team, 2021). The replicable R scripts used for this study, as well as the animation 

or interactive version of the landscapes, can be found at the OSF repository of this 

project (https://osf.io/ke3xb/). An R package, simlandr5, was developed to organize the 

methods we used and to facilitate future applications. We try to involve minimal yet 

sufficient mathematics in the current article. For readers seeking more rigorous 

technical details of this method, we refer them to S3. Practical information on 

programming issues in the Supplementary Materials and Cui et al. (2021). 

Model Adjustments 

In order to construct the landscape for the system, some modifications are needed. First, 

we adjusted some ways of computational implementations to make the simulation more 

effective. The new implementation produces, in principle6, the same outputs as the 

implementation by Robinaugh et al. (2019). We refer to this model as the original 

model.  

 

5 The package and its vignettes are available at https://cran.r-project.org/package=simlandr. 

6 The simulation function is implemented using Rcpp (Eddelbuettel & François, 2011) instead 

of the implementation in R by Robinaugh et al. (2019), and random numbers are generated 

using RcppZiggurat (Eddelbuettel, 2020) in this implementation. Some differences in 

pseudo-random number generation may lead to very minor differences in the model 

output. These differences, however, do not influence the results meaningfully. 
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Then, as we use long-term simulations to estimate the steady-state distribution 

of the model, we need the model to have global ergodicity. In other words, the model 

should travel through its entire realistic phase space in a sufficiently long time. 

Complex systems often display local ergodicity breaking, which occurs when the 

system gets trapped in a local minimum, or, attractor state. To ensure global ergodicity, 

we want the model to have large enough noise terms so that the system can escape local 

minima. The original model does not meet this requirement because there is only one 

noise term on the changing rate of physical arousal (A). This term is not enough to 

ensure the ergodicity of the whole system. Therefore, we added several Gaussian noise 

terms on all model variables to replace the single noise term in the original model. We 

also calibrated the standard deviation of the noise term to make sure the panic phase still 

exists. Second, in the original model, there is a short-long term difference: some 

variables (e.g., arousal schema, AS) are updated every “day”, while other variables are 

updated per “minute”. However, in a Monte Carlo simulation, the purpose is to estimate 

the steady-state distribution, not to represent the actual time scale of real-life changes. 

Keeping the short-long term difference in the model for Monte Carlo simulation is not 

meaningful and will reduce the effective sample size for those slowly updated variables. 

Therefore, we deleted the short-long term difference by updating all the variables in the 

same frequency. We refer to this model as the simplified model. 

In the original model, AS is an important variable that influences the stability of 

the system, and it changes much more slowly compared to other variables. In the 

simplified model, we added noise to it and made it change faster. These modifications 

make it difficult to see how the value of AS changes the stability of the system. 

Therefore, we also made a model that is based on the simplified model but holding AS 
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constant. In this model, AS is a parameter instead of a variable, and it is useful for 

investigating the influence of AS. We refer to it as the constant AS model. 

Finally, we also extracted the deterministic part of the constant AS model (i.e., 

all noise terms were deleted). This is because a model of deterministic ordinary 

differential equations (ODEs) enables mathematical analyses of the stable points of the 

model. We refer to this model as the deterministic model. 

Preparatory Analyses 

The number and stability of equilibrium points 

Using the deterministic model, it is possible to analytically tell how many equilibrium 

states there are in the system. If the system is in its equilibrium points, all the time 

derivatives of the models should be zero. Moreover, if the eigenvalues of the Jacobian 

matrix of the system all have negative real parts, the equilibrium point is stable; if some 

of the eigenvalues have positive real parts, the equilibrium point is unstable (see 

Sayama, 2015, for explanations of this method). Therefore, the stabilities of the 

equilibrium points are determined by the dominant eigenvalue (λd), which means the 

eigenvalue with the largest real part. To know how many equilibrium points there are in 

the system, we hold every time derivative zero except for dPT/dt, and then calculate 

how it changes over PT. The result is shown in Figure S1 of the Supplementary 

Materials. Based on these results, we can find that when AS is low, there is only one 

zero point at PT = 0. However, as AS increases, two new equilibrium points appear. 

The real part of these λds is shown in Table S1. In the one-equilibrium-point 

cases, that point is stable; in the three-equilibrium-point cases, the first and the third 

points are stable, but the second one is unstable. The first and the third point here 

correspond to the healthy and the panic phase, respectively. The third equilibrium point 
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only emerges when AS is sufficiently large. The second (unstable) equilibrium point 

corresponds to the saddle point of the system. Ideally, the system can be in equilibrium 

there, but with a small disturbance, the system will move to either of those two stable 

phases. Based on the results of stability analysis, we can confirm the heuristic that the 

landscape we construct should have one or two phases, depending on parameter values. 

Checking convergence and determining the simulation length 

Monte Carlo estimation of the steady-state distribution is only valid if the simulation 

converges, which means that there are enough data points sampled that the joint 

distribution of the variables will not change even when the simulation length is 

extended. We checked this by comparing the distribution of key variables in the initial, 

middle, and final stages of the simulation. With a simulation length of 107 timesteps, the 

distributions in different stages are sufficiently stable (Figure S2). Therefore, we use 107 

as the simulation length for constructing landscapes. 

Main analysis 

The stability of states and phases 

For constructing the potential landscape function for each possible state, we first 

estimate the steady-state distribution (PSS) of the model with Monte Carlo simulation. 

The raw potential landscape function is defined in a high dimensional space, where the 

dimension equals the number of variables in the model. To make this function 

understandable, we need to perform a dimensionality reduction. This was done with a 

simple but widely used approach, which is obtaining the marginal distributions (e.g., Li 

& Wang, 2013; Zhang et al., 2019). This method is capable of visualizing up to three 

selected variables for the model. Kernel smooth methods were used to calculate smooth 
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distribution density with a reduced set of variables each time, and Equation 8 was used 

to calculate the potential landscape. 

For the stability of phases, we first calculated the absolute stability by finding 

the local minima of the potential function within each phase. Then, we looked for the 

minimum energy path (MEP) and the saddle point between the two phases. The minimal 

energy path is the path that the system would be most likely to travel from one local 

minimum to another if the system was purely gradient. The point with the highest 

potential in the MEP is the saddle point. It can be proved that this path should first go 

along the steepest ascending path from the starting point and then go along the steepest 

descending path to the end point (E & Vanden-Eijnden, 2010). Its geometric form, from 

which a Dijkstra algorithm (Dijkstra, 1959) can be derived, was used to find the MEP 

(Heymann & Vanden-Eijnden, 2008). After that, the relative stability defined by the 

barrier height was calculated as the potential difference between the saddle point and 

the local minima. The geometric stability of the phases is described qualitatively. 

The effect of parameters 

To investigate the influence of parameters on the stability of the phases, multiple 

simulations with different parameter values were performed. For a single parameter, its 

value was sampled evenly within a parameter space. The range of this parameter space 

is roughly centered around the original parameter values used by Robinaugh et al. 

(2019) with a plausible width that is large enough to clearly show the influence of the 

parameter on the potential landscape. The potential landscape was constructed 

separately for each parameter value, and the barrier height was computed respectively. 

Later, the barrier heights were compared across parameter values to show the influence 

of parameters on the difficulty for the system to escape a certain phase and transition 

into another phase. For the joint influence of two parameters, a sample grid was made 
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for the combination of parameter values, and the potential landscape was calculated for 

each condition. 

Model modification 

Based on the information provided by the potential landscape, we propose the following 

general strategy for model modification. In the first step, the problem of the model is 

identified. It is usually some differences in stability between model outcome and real-

life phenomena. In the second step, the reason for this inconsistency is analyzed from 

the potential landscape perspective. It can be that the stabilities of different phases are 

not suitable, the barrier height between phases is too high or too low, or the landscape 

has more or fewer phases than it should have. After that, the model is adjusted 

accordingly. For example, adding or removing time derivative terms can tilt the 

landscape and stabilize the states in a certain direction. Finally, both case simulation 

outputs and the potential landscape of the modified model are checked to test if the 

problem has been solved. Using this strategy, we analyzed a problem of the panic 

disorder model, provided a way of modification, and evaluated the modified model. 

Results 

Stability of States and Phases 

Among all the model variables, physical arousal (A), perceived threat (PT), and fear are 

the core variables representing the symptoms of panic disorder. A higher value of these 

variables represents higher symptom severity. Besides that, arousal schema (AS) 

represents the key control variable for the disorder. Therefore, we first constructed 

potential landscapes for these variables with the simplified model. In the potential 

landscape of A and PT (Figure 7a), we can find two local minima. The position of the 

first one is at A = 0.01, PT = 0.00 (U = -4.47), and the second one is at A = 0.63, PT = 
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0.73 (U = 3.01). The saddle point is at A = 0.38, PT = 0.41 (U = 3.99). The barrier 

heights are ΔU = 8.46 and ΔU = 0.98 for the two phases, respectively. The first phase 

has a lower symptom severity, hence corresponds to the healthy phase of the system. 

The symptom severity of the second one is higher, hence corresponds to the panic phase 

of the system. The potential of the local minimum within the healthy phase is lower 

than that of the panic phase, and the barrier height of the healthy phase is higher than 

that of the panic phase, indicating that the healthy phase has a higher absolute and 

relative stability. Both phases show a regular circle-like shape, which means that the 

system state tends to vibrate around the local minimum symmetrically in both A and PT 

directions. There is a single pathway connecting them, which is the path that the system 

is likely to take when transitioning from one to the other. For example, if the system is 

going from the healthy phase to the panic phase, A and PT will increase together until 

the system reaches the region of the panic phase. 

The landscape of AS and fear is shown in Figure 7b. Similarly, the phase with a 

lower fear level is the healthy phase, and the phase with a higher fear level is the panic 

phase. According to the landscape, the panic phase only appears when AS is high 

enough. The local minimum with lower fear is at AS = 0.77, fear = 0.01 (U = -3.08), 

and the local minimum with higher fear is at AS = 0.78, fear = 0.68 (U = 2.83). The 

saddle point is at AS = 0.78, fear = 0.41 (U = 3.54). The barrier heights are ΔU = 6.62 

and ΔU = 0.71 for the two phases, respectively. Again, both absolute and relative 

stability indices support that the healthy phase is more stable than the panic phase. 

While the panic phase shows a circle-like shape, the healthy phase shows a slender 

shape, indicating that the potential landscape is rather flat along the AS direction. This 

shows that when AS is lower than the local minimum point (0.78), the higher and lower 

AS ranges do not differ much in stability, which means there is little resistance for AS to 
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increase or decrease within the healthy phase. However, when AS is higher than the 

local minimum point (0.78), there is a strong tendency for AS to decrease. This indicates 

that there are some mechanisms in the system preventing AS from rising too much. 

Besides the most central variables, the panic disorder model also has many other 

elements. Here, we calculated the landscape of escape (E) and fear to show the stability-

related properties of E, which is an important behavioral mechanism in panic disorder. 

This potential landscape is shown in Figure 7c. As the previous potential landscapes, 

this potential landscape also shows two phases, with the healthy one being more stable 

than the panic phase (local minimum in the healthy phase: E = 0.00, fear = 0.00, U = -

4.97; local minimum in the panic phase: E = 0.95, fear = 0.66, U = 3.10; saddle point: E 

= 0.34, fear = 0.55, U = 5.65; barrier heights: ΔU = 10.63 and ΔU = 2.55). E is in a 

lower range when the system is in the healthy phase and in a higher range when the 

system is in the panic phase, which indicates that the panic phase is related to a higher 

tendency of escaping. 

While the potential landscape (Figure 7c) around two local minima shows a 

regular shape, the landscape between them shows a unique phenomenon: between the 

healthy phase and the panic phase, there are two pathways instead of one. Between 

these two paths, there is also a small “hill” inside the “valley”. This indicates that there 

are two possible paths of transitioning from one phase to the other. The path taken by 

the system from the healthy phase to the panic phase is different from the path taken by 

the system from the panic phase back to the healthy phase. For systems where two 

variables have asymmetric relationships (e.g., the Lotka–Volterra predator-prey model), 

this type of behavior is not uncommon. It indicates that maybe the process of a panic 

attack is a one-way street: if a panic attack has started, it may not be possible to stop it 

before the fear level reaches its peak. Further, because the path taken by the system 
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from the healthy phase to the panic phase is different to the path from the panic phase to 

the healthy phase, maybe it is possible to tell the transition direction from the state of 

the system.7 

Influence of Parameters 

As mentioned earlier, AS is an important variable in the model that controls the stability 

of the phases. In the constant AS model, AS is a parameter instead of a variable. 

Therefore, we can first investigate AS again using the method for parameters. We 

constructed a series of landscapes from the constant AS model (Figure 8a). Comparing 

those landscapes, we can find that when AS is 0.3 or lower, there is only one phase in 

the system, namely the healthy phase. The panic phase only appears when AS is 0.7 or 

higher. For the critical condition that AS = 0.5, the system can go to the region of panic 

phase, but there is not a local minimum in that region (i.e., the potential landscape 

increases monotonically in the direction towards higher A and E). We call it a quasi-

stable phase. Because there is no local minimum for a quasi-stable phase, its potential 

value and barrier height cannot be calculated. 

The barrier heights for the two phases are also shown in Figure 8a. As AS 

becomes larger, the healthy phase gradually becomes more unstable, while the panic 

phase becomes more stable. Nevertheless, the healthy phase is always more stable than 

the panic phase. These results again confirm the findings above. 

 

7 The landscape for AS, E, and fear also confirms the results above. In this landscape plot, three 

variables are represented with x-, y-, and z-axis, and the potential value is represented by 

color. See the OSF repository (https://osf.io/ke3xb/) for the visualization of this landscape. 
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While AS is related to the relationship between A and PT, which is at the core of 

the system, there are also some other variables whose effects are less obvious. Here we 

investigate another parameter, ℎ𝐴,𝐻, as an example. This parameter represents the 

relationship between physical arousal (A) and homeostatic feedback of arousal (H): the 

physical arousal at a later point in time tends to reduce more if it is higher in the 

previous time point. A has a positive influence on H and H has a negative influence on 

A. Therefore, the state of A is “stored” in H and will be influenced by H later. When 

ℎ𝐴,𝐻 is higher, the influence of A on H is weaker. 

The landscapes and barrier heights are shown in Figure 8b. Comparing the 

landscapes with different ℎ𝐴,𝐻 values (Figure 8b) and those with different AS values 

(Figure 8a), we can find that both parameters have a similar role in controlling the 

landscape of A and PT. When arousal has weaker homeostatic feedback of arousal (i.e., 

when the delayed negative feedback gets weaker), the panic phase gradually appears 

and stabilizes. If changing both parameters together, their roles are similar and 

independent: increasing either will stabilize the healthy phase of the system (see Figure 

8c). This suggests that the same phenomenon of the system (e.g., panic disorder) can 

stem from different underlying mechanisms. 

Guidance for model modification 

Potential landscapes can also guide model modification, as we show here with the panic 

disorder model as an example. As mentioned by Robinaugh et al. (2019), the problem of 

the original model is that the system should have non-clinal panic attacks, but the model 

failed to generate them. From the landscape with AS and fear (Figure 7b), we can see 

that the panic phase only appears when AS is high enough. However, the landscape in 

the AS direction is rather flat, which means that AS does not have a strong tendency to 

increase or decrease within its plausible range. This is related to the problem mentioned 
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above because whenever AS happens to be in the high range, it does not go back. Hence, 

an increase in AS can easily lead to a panic disorder. 

To solve this problem, what we should do is tilt the landscape to make the low-

AS region more stable. The way to tilt the landscape is straightforward. As the gradient 

of the landscape corresponds to the changing rate of the variables, we can simply add a 

negative term to the dynamic function to tilt it towards zero. Here we added a small 

negative term to the time derivative of AS: 

d𝐴𝑆

d𝑡
= 𝑔(𝑋) + {

−𝑟extinction(𝐴𝑆 − 𝐴𝑆baseline), 𝐴𝑆 > 𝐴𝑆baseline

0, 𝐴𝑆 ≤ 𝐴𝑆baseline
 (9) 

Where g(X) represents the terms in the original functions, and the term to the right of 

the brace is the added term: when AS is larger than a given baseline value (ASbaseline), it 

declines exponentially. This setting can add a small tendency towards lower AS around 

its critical range while not letting it decline to zero. To distinguish this way of 

modification and the way in the original paper by Robinaugh et al. (2019, which used a 

higher SE to increase the parameter hPT,E as a constant; see Equation 4), we refer to the 

modification in Equation 9 as the AS extinction modification and the modification by 

Robinaugh et al. (2019) as the escape schema modification. 

Both modifications show a good effect on solving the problem in the original model. As 

shown in Figure 9, for both modifications, the system can have a limited number of 

panic attacks without later going into a full-blown panic disorder. After the first panic 

attack, the AS value of the original model increases and stays in a higher value until the 

next panic attack, which further increases AS (Figure 3), whereas the AS value decreases 

after the first panic attack for both modified models. The difference in the direction of 

change for AS shows the effects of both modification mechanisms. The potential 

landscapes of both modifications are shown in Figure 10. Comparing them with the 

landscape of the original model (Figure 7b), the landscapes of those modified models 
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show the expected tendency that the lower-AS region of the healthy phase is more 

stable. 

However, there are several important differences between the two modifications. 

For the escape schema modification, the fear value reaches a higher peak level and the 

AS value directly decreases after the panic attack; in the AS extinction model, the peak 

fear value is similar to the case in the original model, and the AS value first increases 

before it declines back to a lower value (Figure 9). Why is this the case? The landscapes 

of the models can provide further information. The general shape of the landscape of the 

AS extinction modification (Figure 10a) is similar to the original model (Figure 7b), but 

only the stability of the lower AS range of the healthy phase is increased. The shape of 

the landscape of the escape schema modification (Figure 10b), however, is much 

different from the original model, especially around the panic phase. There is a small 

island in the middle between the two phases. As explained earlier (for the landscape of 

E and fear in Figure 7c), this indicates that the pathway the system takes from the 

healthy phase to the panic phase is different than the other way around, so that the 

system does not recover in the same way. In this model, this means that the system goes 

to the panic phase when AS is high, and then the AS level declines during the same 

panic attack. When the system goes back to the healthy phase, the AS value is already at 

a lower level. In the original model and the AS extinction modification, AS decreases at 

a slower time scale, so that the system recovers to the healthy phase with a similarly 

high AS value. These differences enable further theoretical and empirical examinations 

of these two modifications. 

Discussion 

We here introduced a new method to construct potential landscapes for multivariate 

psychological formal models. Based on the steady-state distribution, the stability of any 
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state of the system can be quantified with the potential function. We illustrated the 

method with the panic disorder model by Robinaugh et al. (2019). After several 

adjustments to the original model, we constructed potential landscapes for the system 

and analyzed the absolute, relative, and geometric stability of the healthy phase and the 

panic phase. Then, we examined the influence of two model parameters on the potential 

landscape of the system. Finally, based on the information from the potential landscape, 

we came up with a new way of model modification and compared the simulation output 

and the potential landscape of it with the modification suggested by Robinaugh et al. 

(2019).  

The results of the potential landscape showed that there are one or two phases in 

the system, depending on the parameter settings. The healthy phase is always present, 

while the panic phase only appears under certain conditions (e.g., with high AS) and is 

always less stable than the healthy phase. Increasing AS can thus stabilize the panic 

phase and destabilize the healthy phase. These results are well aligned with the 

conclusions from the case simulations in the original paper. It is important to note that 

we do not think that the potential landscape method can or should replace case 

simulations. On the contrary, we claim that both methods provide important information 

about the nature of psychological formal models. The advantage of our method is that it 

can present the concept of stability in a clear, explicit way. By filtering out the time-

related information in the model output, the stability-related information that does not 

change over time emerges clearly on the potential landscapes. Instead of relying on the 

heuristics from observation, the stability of states is now specified as positions in a 

potential landscape. Specifically, the stability of psychological phases can be described 

accurately based on three aspects: absolute stability, relative stability, and geometric 
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stability. This makes the stability information more apparent for researchers, hence 

facilitating understanding and communication of the models. 

Moreover, the potential landscape method also enables easy investigation of 

variables and parameters. A common problem for psychological formal models is that 

the number of variables and parameters used for constructing the model is much higher 

than the critical variables that are examined to evaluate the model. In this paper, we 

showed how to construct the potential landscape for A, PT, AS, E, and fear and how the 

potential landscape changes with AS and ℎ𝐴,𝐻. With the tools we provided in the 

simlandr package, the same landscape construction method can be easily extended to all 

other variables and parameters in the model. Our method allows researchers to evaluate 

each of their variables and parameters systematically and see if the resulting potential 

landscape is consistent with theory and empirical findings, which parameter range 

produces the expected behavior, and how the parameters influence the stability. This not 

only makes model evaluation more effective and comprehensive but also helps to 

clarify the scope and boundaries of a model or theory. 

Based on the information from the potential landscape, we provided a new 

modification of the original model. The advantage of using a stability measure to guide 

model modification is that, in some cases, the discrepancy between model output and 

real-life phenomena is more closely related to the stability of states or phases rather than 

the simulated trajectories. In the case of the panic disorder model, for example, the 

problem of non-clinical panic attacks can be directly attributed to the geometric stability 

of the healthy phase (i.e., its landscape on the AS direction is too flat). Also, because of 

the close link between the potential landscape and the dynamic functions, changing the 

landscape of the system is usually not difficult, making it straightforward to solve the 

identified problems. In this work, we proposed a way of modification for the panic 
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disorder model based on its potential landscape. There is also a possible theoretical 

explanation for this modification, namely fear extinction. After the association (arousal 

schema, AS) between physical arousal (A) and perceived threat (PT) is learned, even 

when there are no new fear-inducing events, the strength of this association still 

decreases (Mattera et al., 2020; Milad & Quirk, 2012). It is important to emphasize that 

the decision to add a negative value to the AS time derivative in the AS extinction 

modification was inspired by the potential landscape of the model, not based on a 

theoretical analysis. Nevertheless, it later helps to point out a direction in which 

researchers could search for relevant theories. 

Limitations and possible pitfalls 

Despite the advantages of the method discussed above, we also want to point out several 

limitations and possible pitfalls of our method. First, the potential landscape is 

calculated from a generalized potential function. This means that it does not contain all 

the dynamic information of the model. In other words, psychological systems are not 

totally the same as a ball on a landscape. Some additional non-gradient forces also 

influence the system, which can drive it in a different direction instead of the direct path 

towards the most stable state. For example, in the landscape of E and fear, there are two 

paths connecting two phases of the system. We suppose these paths are different in 

directions (i.e., the system state goes through one path to the healthy phase and the other 

path to the panic phase). However, the choice of which path to take is influenced by 

some non-gradient forces, which are not shown in the potential landscape. In 

psychology, non-gradient forces may be related to emotional or behavioral inertia, 

which means that some emotional or behavioral variables in the system may be more 

resistant to change (e.g., E and fear in the panic disorder model; Alós-Ferrer et al., 

2016; Kuppens et al., 2010). These non-gradient forces are canceled out when 
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calculating the stability of states. Nevertheless, researchers should be aware of their 

existence and investigate their influences if the dynamic properties of the system are 

also a concern. 

Second, to ensure the ergodicity in the Monte Carlo simulation, we added some 

noise terms to the original model. We suggest that researchers do the same if their 

simulation is difficult to converge. However, we want to point out that for some systems 

these noise terms can affect the stability of phases. For example, Van den Broeck et al. 

(1994) showed that for a specific kind of dynamic system, an ordered phase only exists 

if the noise is in a certain range. The conditions under which noise terms can affect the 

stability of phases are not yet clear. Further investigations on this issue are needed. 

Third, although psychological models usually have a large number of variables, 

the potential landscape can only be visualized in a lower (up to three) dimensional 

space. This means one phase or transition path on the landscape can actually be several 

ones in the high-dimensional space. For example, there is only one pathway between the 

healthy phase and the panic phase in the landscape of A and PT, but two pathways in the 

landscape of fear and E. Therefore, we suggest researchers look into different 

combinations of variables and investigate how the phases and paths in those low 

dimension landscapes correspond. 

Fourth, the potential landscape can only show the stability of individual states. 

For a system that has periodic or chaotic phases (Schiepek et al., 2017), the potential 

landscape may not be able to clearly represent its stability. In these cases, some 

preprocessing of the original variables may be needed. For example, if two phases of a 

system have similar mean values but differ in their variation, then the moving-window 

standard deviation can be used to construct the landscape instead of the original variable 

values. The suitable way of transformation depends on the exact system of interest. 
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Future directions 

Incorporating the potential landscape method opens up new avenues for psychological 

(modeling) research. Here we want to point out several possible directions. First, there 

is still much room to further develop the potential landscape method for psychological 

models. Apart from the generalized potential function used in our work, there are also 

several other potential functions that have different definitions and calculation methods 

(see P. Zhou & Li, 2016, for a review). These methods may have a higher requirement 

for the form of dynamic functions, but they also have strengths in representing other 

aspects of stability (e.g., the quasi-potential landscape by J. X. Zhou et al., 2012, 

emphasizes more on the transition path between states). We encourage future research 

to test the use of those methods for psychological models. 

Second, we encourage modelers to further explore the usage of this method and 

apply this method to different kinds of models. In this paper, we showed several 

applications of the potential landscape methods, namely representing stability, 

investigating the influence of parameters, and guiding modifications, and the formal 

model we used is an emotion-cognition-behavior model of a mental disorder. However, 

we are confident that the usage of this method is not limited to this range. For example, 

it may be possible to draw a phase diagram to show the parameter ranges where 

different phases exist and use the potential landscape as a way to choose parameter 

values systematically. Some cognitive models also have multistability (e.g., Kogo et al., 

2011), which can possibly be analyzed with this method. We look forward to future 

researchers exploring those possibilities. 

Third, potential landscapes can also be helpful in clinical practice. 

Understanding individual differences of psychological phases and clinical change 

processes is critical to establish more effective therapies. From the potential landscape 
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perspective, the difference in people’s parameter values makes them differ in their 

vulnerability to mental disorders, and successful therapies are related to changes in 

parameter values. This idea can be better understood if we can construct landscapes 

with different parameters to represent different individuals or different therapeutic 

stages. We illustrated how systems with different AS and ℎ𝐴,𝐻 values differ in the 

stability of the healthy phase and the panic phase. These AS and ℎ𝐴,𝐻 values may 

correspond to different individuals and/or stages. Apart from panic disorder, this 

approach can also be readily applied for conceptualizing other mental disorders. 

Constructing landscapes from empirical data, however, requires future methodological 

development. Previous research found that recovering the psychological dynamics from 

experience sampling data is difficult, while the distribution of psychological variables is 

more assessable (Haslbeck & Ryan, 2021). The generalized potential landscape is 

defined from the steady-state distribution of the system, which can be possibly 

estimated from the observed variable distribution. Therefore, maybe fitting the potential 

landscape directly from empirical data is a possible alternative to fitting the dynamic 

functions. 

Finally, we want to note that, in the abstract sense, the form of psychological 

formal models does not differ much from many dynamic models in biology, chemistry, 

and other natural science fields. For example, we coincidentally found out that the panic 

disorder model also has an equivalent form represented by chemical reactions (see S4. 

Equivalent chemical representations in the Supplementary Materials). While 

formalizing psychological theory is a new trend in psychology, the same effort has been 

undertaken in many fields, with various analytical methods readily available. With the 

current work as an example, we would encourage further interdisciplinary cooperation 

in the psychological modeling field. We hope the insights from expertise in all fields of 
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science can somehow come together, helping us to better understand human 

psychology, a complex yet fascinating subject. 

Conclusion 

The stability of states and phases is an important property for psychological formal 

models, yet not concretely addressed with the common case simulation method. By 

incorporating the generalized potential function by Wang et al. (2008) and Monte Carlo 

simulation, we developed a method to construct the potential landscape for multivariate 

psychological dynamic models. This method can contribute to a better understanding of 

the stability concept, the influence of model parameters, and the way to modify a model. 

We hope this method can help researchers to better evaluate and develop their models 

and ultimately help to guide clinical practice in the future. 
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Figure captions: 

 

Figure 1. Diagram of concepts in the landscape metaphor of psychopathology. 

 

 

Figure 2. Simplified causal diagram of the panic disorder model (adapted from 

Robinaugh et al., 2019). Each circle represents a variable of the model. The solid lines 

represent positive influences on the changing rate of the target variable, and the dashed 

lines represent negative influences on the changing rate of the target variable. The circle 

on the path from arousal to perceived threat represents the moderating effect of arousal 

schema on this relationship. 
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Figure 3. The simulation results using the panic disorder model by Robinaugh et al. 

(2019). The first panic attack of the system appears probabilistically. To make 

simulation results comparable, time was set as zero at the first panic attack (the time 

when the peak value of fear is reached). 

 

 

Figure 4. The Penrose impossible stairs (Sakurambo, 2005). 
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Figure 5. The relationships among the potential function, parameters, variables, state, 

and phase in the framework of our method. 

 

 

Figure 6. The relationships among the absolute stability, relative stability, and 

geometric stability of a psychological phase. 
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Figure 7. Bivariate potential landscapes of (a) A and PT, (b) AS and fear, and (c) E and 

fear. All three landscapes were constructed using the simplified model. The first plot in 

each row is the 2D heatmap with contours, and the second plot is the 3D surface plot. 

The white and red dots on the 2D heatmaps represent the local minima of the phases 

and the saddle points, respectively. 
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Figure 8. Bivariate potential landscapes of A and PT with different (a) AS, (b) ℎ𝐴,𝐻, and 

(c) both AS and ℎ𝐴,𝐻. The landscapes were constructed using the constant AS model. 

The first plot in each row is the potential landscapes represented in 2D heatmaps. The 

white dots represent the local minima of the phases in the landscape, the white lines 

connecting two white dots represent the minimum energy path between two local 

minima, and the red dots represent the saddle points in the paths. The second plot in (a) 

and (b) shows the barrier heights (ΔU) of both phases in the potential landscapes for 
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different parameter values. For cases where there is only one phase in the system, it is 

not possible for the system to transition to an alternative phase, hence the barrier height 

cannot be defined. Therefore, barrier heights were not calculated for those cases. 

 

Figure 9. Model simulation results of fear and AS for the two modifications. The first 

panic attack of the system appears probabilistically. To make simulation results 

comparable, time was set as zero at the first panic attack (the time when the peak value 

of fear is reached). In the AS extinction modification, rextinction = 0.001, ASbaseline = 0.5; in 

the escape schema modification, SE = 0. 
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Figure 10. Bivariate potential landscapes of AS and fear for (a) the AS extinction 

modification and (b) the escape schema modification. The first plot in each row is the 

2D heatmap with contours, and the second plot is the 3D surface plot. The white and red 

dots on the 2D heatmaps represent the local minima of the phases and the saddle points, 

respectively. 


