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Consider the holomorphic function f = az2 + R(w), where z and w are complex 
variables and R is a rational function. Let Dξ0,ε be a small disc around ξ0 ∈ C. 
Function f defines the foliation in the neighborhood f−1(Dξ0,ε) of the (singular) 
fiber f−1(ξ0). We give a complete topological classification of such foliations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this paper is to give a semi-local topological classification (i.e. the classification up to 
semi-local TR-equivalence, see Definition 2.3) of foliations generated by the holomorphic function f =
az2 + R(w): MC → C. Here a ∈ C \ {0} and MC = C × (C \ {d1, . . . , ds}), where d1, . . . , ds are the poles 
of the rational function R. The problem of semi-local topological classification of such systems came from 
the theory of integrable Hamiltonian systems. Let us explain how this problem originated and give a brief 
overview of closely related questions.

Suppose we have an integrable Hamiltonian system (M, ω, H), dimR M = 2N , with pairwise involutive
first integrals H = H1, . . . , HN . Consider the momentum map Φ = (H1, . . . , HN ): M → R

N and the corre-
sponding Liouville foliation of the phase space M , i.e. the decomposition of M into connected components 
of Φ−1(c), c ∈ R

N . If the vector fields sgradHi = ω−1(dHi) are complete, the system is called completely 
integrable. In this case we can use the Liouville theorem (see [1]), which describes the topology of each non-
singular fiber Φ−1(c), the topology of the foliation in a neighborhood of each connected compact nonsingular 
fiber and also the action-angle coordinates in this neighborhood.

* Correspondence to: Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia.
E-mail address: mnick45@bk.ru.
http://dx.doi.org/10.1016/j.topol.2015.05.090
0166-8641/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2015.05.090
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:mnick45@bk.ru
http://dx.doi.org/10.1016/j.topol.2015.05.090
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2015.05.090&domain=pdf


120 N.N. Martynchuk / Topology and its Applications 191 (2015) 119–130
In particular, the Liouville theorem states that for each connected compact nonsingular fiber of a com-
pletely integrable Hamiltonian system with N degrees of freedom there exists a small neighborhood of 
this fiber that is fiberwise homeomorphic to a direct product DN × TN of an N -dimensional disk and an 
N -dimensional torus. It is natural to ask what happens in the general case: how to classify Liouville folia-
tions in small neighborhoods of (singular) fibers of integrable systems up to Liouville equivalence, i.e. how 
to give a semi-local Liouville classification?

The semi-local Liouville classification of completely integrable Hamiltonian systems with hyperbolic sin-
gularities was given in the work [22], with focus–focus singularities — in [24]. The global topological structure 
of a regular isoenergy 3-surface of a completely integrable nondegenerate system with 2 degrees of freedom 
is described by the Fomenko–Zieschang invariant (the marked molecule), see [1] and [7].

Primarily, the works [1,5–11] and also [22,24] dealt with completely integrable Hamiltonian systems 
with compact fibers and nondegenerate singularities. Because of this A. Fomenko suggested to extend the 
developed theory onto integrable systems that do not satisfy the above conditions. In particular, A. Fomenko 
stated a problem of generalizing the Liouville theorem for integrable systems with incomplete flows, namely, 
for every integrable system from some “natural” class describe the topology of each (singular) fiber Φ−1(c), 
the topology of the foliation in a neighborhood of each (nonsingular) fiber and construct the analogue of 
the action-angle coordinates; here Φ is a momentum map of the corresponding system with N degrees 
of freedom and c ∈ R

N . For these reasons A. Fomenko suggested a special class of integrable systems: 
(MC, Re(dz ∧ dw), Re f), where f is a holomorphic function on a complex manifold MC ⊂ C

2, see [15–20]. 
Because of the Cauchy–Riemann equations the Poisson bracket {Re(f), Im(f)} = 0. Therefore, the Liouville 
foliation corresponding to a system (MC, Re(dz ∧ dw), Re f) is generated by the momentum map Φ =
(Re f, Im f), which is just f . The first one who pointed this out was H. Flashka (see [4]).

Deformations of level surfaces of (Laurent) polynomials, their topology and homotopy type were studied 
in [2], [3] and [12]. Topological properties of elliptic foliations on non-singular compact complex manifolds 
can be found in works [13] and [14]. The semi-local topological classification as well as the analogue of the 
Liouville theorem for Hamiltonian systems defined by a complex hyperelliptic Hamiltonian are described in 
[16] and [17].

In this paper we consider integrable Hamiltonian systems (MC, Re(dz ∧ dw), Re f) defined by a hyper-
elliptic rational Hamiltonian f(z, w) = az2 + R(w). Recall that a ∈ C \ {0}, R is a rational function and 
MC ⊂ C

2 is the domain of the holomorphic function f , i.e. MC = C × (C \{d1, . . . , ds}), where d1, . . . , ds are 
the poles of the rational function R. The main result is a complete classification of such systems (we also 
say rational Hamiltonians) up to semi-local TR-equivalence (and up to semi-local Liouville equivalence, see 
Definition 2.4). Namely, the following theorem holds:

Theorem 1.1. Suppose ξ0 �= f1(0, ∞) and ξ0 �= f2(0, ∞) or ξ0 = f1(0, ∞) = f2(0, ∞). Then rational 
Hamiltonians f1 and f2 are semi-locally TR-equivalent (Liouville equivalent) with respect to ξ0 iff fibers 
T1

ξ0
and T2

ξ0
are homeomorphic and have the same sets of multiplicities of singular points including the 

multiplicity of the point (0, ∞) when ξ0 = fj(0, ∞), j = 1, 2.
In the case ξ0 = f1(0, ∞) �= f2(0, ∞) Hamiltonians f1 and f2 are not semi-locally Liouville equivalent 

with respect to ξ0.

The condition that fibers T1
ξ0

and T2
ξ0

are homeomorphic is obviously necessary for semi-local 
TR-equivalence. The fact that multiplicities of singular points of a rational Hamiltonian are invariants 
of semi-local Liouville equivalence (and hence of semi-local TR-equivalence) can be easily obtained using 
methods developed in [21] (see the beginning of the proof of Theorem 4.2). In order to prove other statements 
of the theorem we will
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1) compute the difference χ(Tj
ξ) − χ(Tj

ξ0
), where ξ is close but not equal to ξ0 and χ is an Eulerian 

characteristic (see Lemma 3.4),
2) switch to “semi-local” normal forms of rational Hamiltonians fj (see Theorem 4.1).

Note that for hyperelliptic Hamiltonians f = az2 + Pn(w) we always have f(0, ∞) = ∞. Since the set of 
multiplicities of singular points of the layer f−1(ξ0) completely determines its topology (whenever the degree 
n of the polynomial Pn = Pn(w) is fixed), our classification theorem reduces to the one, obtained in [16]

and [17]. Obviously, it is not true for rational Hamiltonians, i.e. if f = az2 + An(w)
Bm(w) , where A = An(w) and 

B = Bm(w) are relatively prime polynomials of degrees n and m respectively, then the set of multiplicities 
of singular points of the layer f−1(ξ0) does not uniquely determine its topology (for fixed n and m).

The paper is organized as follows. Preparatory work is done in the section “Required statements”. The 
construction of the “semi-local” normal form of a rational Hamiltonian and a complete proof of the classi-
fication theorem is given in the section “Main results”.

2. Definitions

In this section we give necessary definitions and introduce notation to make our results precise.

Definition 2.1. Consider two holomorphic (continuous) functions f1: M1 → C and f2: M2 → C, where M1 and 
M2 are complex manifolds (topological spaces). Suppose there exists a biholomorphism (homeomorphism) 
h: M1 → M2 such that f1 = f2 ◦ h. We say that f1 and f2 are (topologically) right equivalent or simply 
(T )R-equivalent.

Let f = az2 + R(w) be a function of complex variables (z, w) ∈ C × (C \ {d1, . . . , ds}) such that 

a �= 0, d

dw
R(w) �≡ 0, where dj , j = 1, . . . , s, are the poles of the rational function R. We say that f is a 

(hyperelliptic) rational Hamiltonian of the corresponding Hamiltonian system (C ×(C \{d1, . . . , ds}), Re(dz∧
dw), Re f).

Let f : M → C be a function on a space M . By the foliation of M generated by f we mean the decompo-
sition of M into the fibers (level surfaces) Tξ = f−1(ξ), ξ ∈ C.

Suppose M is a manifold and f is a smooth function on it. Then a fiber Tξ, ξ ∈ C, is called nonsingular
if for every point P ∈ Tξ we have df |P �= 0.

Definition 2.2. Consider a rational Hamiltonian f = az2 +R(w) and a point P = (0, w0). Suppose (R(w) −
f(P ))(j)|w0 = 0 for j = 0, . . . , k − 1, R(k)(w0) �= 0. We say that k is the multiplicity (and k − 1 is Milnor 
number, see [21]) of the point P .

If k = 1 we say that P is a simple point of the fiber Tf(P ), otherwise (if k ≥ 2) we say that P is a singular
point of this fiber.

Note that P is a singular point of the rational Hamiltonian f , i.e. df |P = 0, iff P is a singular point of 
the fiber Tf(P ). Thus, each fiber Tξ, ξ ∈ C, is nonsingular iff it has only simple points.

We will be interested in the topology of the foliation of f−1(Dξ0,ε) generated by a rational Hamiltonian f , 
where Dξ0,ε is a small disc in C around ξ0.

Definition 2.3. Consider two rational Hamiltonians f1, f2 and a point ξ0 ∈ C. Suppose f1|f−1
1 (Dξ0,ε) and 

f2|f−1
2 (Dξ0,ε) are TR-equivalent for some ε > 0. Then we say that f1 and f2 (or the corresponding Hamilto-

nian systems) are semi-locally TR-equivalent with respect to ξ0.
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Definition 2.4. Consider two rational Hamiltonians f1, f2 and a point ξ0 ∈ C. We say that f1 and f2 (or the 
corresponding Hamiltonian systems) are semi-locally Liouville equivalent (or semi-locally TRL-equivalent) 
with respect to ξ0 if the corresponding foliations of f−1

1 (Dξ0,ε) and f−1
2 (Dξ0,ε) are fiberwise homeomorphic 

for any small ε > 0.

We will also need the notion of local TR-equivalence and local Liouville equivalence.

Definition 2.5. Consider two rational Hamiltonians f1, f2 and points P1, P2. Let U1 and U2 be neighborhoods 
of P1 and P2 resp. Suppose f1|U1 and f2|U2 are TR-equivalent via the map h such that h(P1) = P2. Then 
we say that f1 and f2 are locally TR-equivalent with respect to P1 and P2.

Definition 2.6. Consider two rational Hamiltonians f1, f2 and points P1, P2. We say that f1 and f2 are 
locally Liouville equivalent (or locally TRL-equivalent) with respect to P1 and P2 if there exist arbitrarily 
small neighborhoods U1 and U2 of P1 and P2 resp. such that the corresponding foliations of U1 and U2 are 
fiberwise homeomorphic via the map h such that h(P1) = P2.

From the definitions it is easily seen that semi-local (local) TR-equivalence of rational Hamiltonians 
implies their semi-local (local) Liouville equivalence. It is known (see [23]) that the converse holds for local 
equivalence. We will show that the same is true in the semi-local case.

3. Required statements

Consider a hyperelliptic rational Hamiltonian f(z, w) = az2 + R(w), i.e. R(w) = An(w)
Bm(w) , where A =

An(w) and B = Bm(w) are relatively prime polynomials of degrees n ≥ 0 and m ≥ 0, R(w) �≡ const
(without loss of generality we will assume that a = 1 and n �= m). On the fiber Tξ0 we have finite number 
sP ≥ 0 of singular points P1, . . . , PsP and finite number sQ ≥ 0 of simple points Qk, k = 1, . . . , sQ. Let 
l1, . . . , lsP denote multiplicities of singular points P1, . . . , PsP . Put Vε,l = {(z′, w′) ∈ C

2 | |z′ 2 + w′ l| <
ε, |w′| < (2ε)1/l}, where l ∈ N and ε > 0 is arbitrarily small.

Next lemma is well known (see, e.g. [19, §2, Lemma 4]). It shows that singularities of Hamiltonian systems 
defined by hyperelliptic rational Hamiltonians are of the type Ak, k ∈ N.

Lemma 3.1. For each Pj, j = 1, . . . , sP , there exists a 4-dimensional neighborhood UP
j of Pj such that f |UP

j

is R-equivalent to gPj : Vε,lj → C, where gPj (z′, w′) = z′ 2 + w′ lj + ξ0.
For each Qk, k = 1, . . . , sQ, there exists a 4-dimensional neighborhood UQ

k of Qk such that f |UQ
k

is 
R-equivalent to gQk : Vε,1 → C, where gQk (z′, w′) = z′ 2 + w′ + ξ0.

Moreover, we can assume that neighborhoods UP
j , UQ

k are pairwise disjoint.

Proof. Consider a singular point Pj = (0, wj) of the rational Hamiltonian f . There exists a neighborhood 
of this point in which f(z, w) = z2 + g(w)(w − wj)lj + ξ0, where g = g(w) is a holomorphic function such 
that g(wj) �= 0. Let Uw be a small neighborhood of the point wj such that (for some branch of the root 
lj
√ ) the map

φP,j :w �→ w′ = (w − wj) lj

√
g(w) (1)

is a diffeomorphism between Uw and φP,j(Uw). Let hP,j = idC × φP,j . Take ε > 0 such that Vε,lj ⊂
hP,j(C × Uw) = C × φ(Uw) and put UP

j = h−1
P,j(Vε,lj ). It is easily seen that f |UP

j
and gPj are R-equivalent 

via the map hP,j : UP
j → Vε,lj . Similarly, we can deal with simple points Qk. �



N.N. Martynchuk / Topology and its Applications 191 (2015) 119–130 123
Consider an open 2-dimensional disk Dξ0,ε around a (singular) value ξ0 of the rational Hamiltonian f =
z2 +R(w). As above, let P1, . . . , PsP be singular points of the fiber Tξ0 with multiplicities lj , j = 1, . . . , sP , 
and Q1, . . . , QsQ be simple points of this fiber. In what follows by a neighborhood of a finite set of points 
we will mean a union of connected neighborhoods of these points with pairwise disjoint closures.

Lemma 3.2. Suppose ξ0 �= f(0, ∞) := lim
w→∞

R(w) ∈ C. Then for every 4-dimensional neighborhood U ′ of the 

set of points Pj and Qk there exist ε > 0 and a 4-dimensional neighborhood U ⊂ U ′ of the set of points Pj

and Qk such that f |f−1(Dξ0,ε)\U is R-equivalent to Pr1: Dξ0,ε ×
(
Tξ0 \ U

)
→ Dξ0,ε, where Pr1(ξ, η) = ξ.

Proof. Let Uw be a circular neighborhood of the set of points Prw(Pj) and Prw(Qk), where Prw is a 
projection on the plane Cw of the complex variable w. Consider the holomorphic function u(ξ, w) = ξ−R(w)
of complex variables ξ and w. Since ξ0 �= R(∞) = f(0, ∞), function u(ξ0, w) extends to a holomorphic map 
from C to C, which zeros are precisely Pj and Qk. Therefore, there exists ε > 0 such that inf

w/∈Uw
|u(ξ0, w)| ≥ ε. 

Put

U = {(±
√
u(ξ, w), w) ∈ C

2 | ξ ∈ Dξ0,ε, w ∈ Uw}. (2)

Reducing, if necessary, the neighborhood Uw and ε > 0, we obtain the inclusion U ⊂ U ′. Let us now prove 
that U is as required.

Consider the case when the manifold Tξ0 \ U is connected. Take a point (z0, w0) ∈ Tξ0 \ U . We choose 
the branch of the root so that z0 =

√
u(ξ0, w0). Obviously, for every ξ ∈ Dξ0,ε and for every w in a small 

neighborhood of w0 we have a uniquely defined value of the root 
√
u(ξ, w), which smoothly depends on ξ

and w.
Note that (

√
u(ξ, w), w) ∈ Tξ \ U for all w /∈ Uw, ξ ∈ Dξ0,ε. Therefore, for every ξ ∈ Dξ0,ε the manifold 

Tξ \ U is a Riemann surface of a multivalued analytic function uξ = u(ξ, w), w /∈ Uw.
Take a curve γ = γ(t) ⊂ C

w, t ∈ [0, 1], that starts at w0 and doesn’t pass through the poles of the rational 
function R and Uw. It induces a curve u(ξ, γ(t)) ⊂ C

u. The value of the root 
√

u(ξ, γ(1)), depends on the 
parity of the “number of revolutions” of the curve u(ξ, γ(t)) around zero in Cu. By the number of revolutions 
of the curve u(ξ, γ(t)) we mean an integer r = r(u(ξ, γ(t))) such that 2πr ≤ Arg(u(ξ, γ(t))) < 2π(r + 1), 
where Arg(u(ξ, γ(t))) is the increment of argument of u along the curve u(ξ, γ(t)). Since inf

w/∈Uw
|u(ξ0, w)| ≥ ε, 

this number of revolutions coincides with the number of revolutions of the curve u(ξ, γ(t)) + ξ0 − ξ. The 
latter is u(ξ0, γ(t)).

Consider the map μ: f−1(Dξ0,ε) \ U → Tξ0 , defined by the formula μ(z, w) = (v(z, w), w), where v =
v(z, w) is a function that can be constructed as follows. Take (z, w) ∈ Tξ \ U . Let γ = γ(t), t ∈ [0, 1], be a 
curve such that γ(0) = w0, γ(1) = w and z =

√
u(ξ, w). Put v(z, w) =

√
u(ξ0, w), where the value of the 

root 
√
u(ξ0, w) is determined by the same curve γ. Since Tξ0 \ U is connected, we see that v = v(z, w) is 

well defined on f−1(Dξ0,ε) \ U . Moreover, v2(z, w) + R(w) = ξ0. Thus, the map μ = μ(z, w) is well defined 
on f−1(Dξ0,ε) \U , the restriction of μ to the fiber Tξ0 is the identity map: μ(z, w)|Tξ0

= id and μ(z, w)|Tξ\U
is a biholomorphism between Tξ \ U and Tξ0 \ U for every ξ ∈ Dξ0,ε

Define h1: f−1(Dξ0,ε) \ U → Dξ0,ε ×
(
Tξ0 \ U

)
as follows:

h1(z, w) = (f(z, w), μ(z, w)) (μ(z, w) is a point on Tξ0). (3)

Let H1 = i ◦ h1, where i: Dξ0,ε ×
(
Tξ0 \ U

)
↪→ Dξ0,ε × C

2 is the inclusion map. It is easily seen that the 
Jacobian matrix of H1 has the maximum rank at every point. Indeed, the Jacobian matrix has the form:

(
fz vz 0

)
,

fw vw 1



124 N.N. Martynchuk / Topology and its Applications 191 (2015) 119–130
and on the set f−1(Dξ0,ε) \U we have the inequality fz �= 0. Since h1 is a complex-differentiable bijection and 
the differential dh1 is an isomorphism at each point, we conclude that h1 is a biholomorphism. Obviously, 
f |f−1(Dξ0,ε)\U = Pr1 ◦h1. Therefore, we are done with the case when the manifold Tξ0 \ U is connected.

Suppose Tξ0 \ U is the union of two connected components. Then, for sufficiently small ε > 0, we have 
that each Tξ \U, ξ ∈ Dξ0,ε, is also the union of two connected components. Thus, we can repeat the above 
reasoning for each of the two components of Tξ0 \ U and get the required statement. �
Lemma 3.3. Suppose ξ0 �= f(0, ∞). Then for every 4-dimensional neighborhood V ′ of the set of points Pj

there exist ε > 0 and a 4-dimensional neighborhood V ⊂ V ′ of the set of points Pj such that f |f−1(Dξ0,ε)\V
is R-equivalent to Pr1: Dξ0,ε × L → Dξ0,ε, where L = Tξ0 \ V , Pr1(ξ, η) = ξ.

Proof. Keep in mind the proof of the previous lemma. If Tξ0 doesn’t have simple points, then everything is 
done. Assume that there exist simple points Qk. Take one of them, let it be a point Q = (0, wξ0). For every 
ξ ∈ Dξ0,ε we have a simple point Qξ = (0, wξ) ∈ Tξ near Q. According to Lemma 3.1, in a neighborhood 
OQ of Q there exist coordinates (z, w′) in which Hamiltonian f can be written as f(z, w′) = z2 + w′ + ξ0. 
Note that in coordinates (z, w′) we have (z, w′)(Qξ) = (0, ξ − ξ0), and Qξ0 = Q. Let UQ be the connected 
component of the neighborhood U from (2) such that Q ∈ UQ. We can assume that UQ ⊂ OQ. We can also 
assume that for every ξ ∈ Dξ0,ε the point Qξ ∈ UQ and there are no more simple or singular points in UQ.

Consider some ξ ∈ Dξ0,ε and a neighborhood Prw(UQ) ⊂ Uw of the point wξ0 . Let ϕξ be a homeomor-
phism of the plain Cw that coincides with the identity map in a small neighborhood of Cw \ Prw(UQ) and 
also coincides with the map (written in a new coordinate w′) w′ �→ w′+ξ0−ξ in a small neighborhood of wξ. 
Such a homeomorphism can be obtained by a shift along the integral curves of the vector field Xξ that is con-
structed as follows. Let W1 and W2 be neighborhoods of a point wξ0 such that W 1 ⊂ W2 ⊂ W 2 ⊂ Prw(UQ)
and wξ ∈ W1 for every ξ ∈ Dξ0,ε. There exists a smooth function α: Cw → R (α doesn’t depend on ξ) 

such that α|Cw\W2 ≡ 0 and α|W1 ≡ 1. We set Xξ = α(w)(ξ0 − ξ) d

dw′ , then corresponding maps ϕξ are as 
required. Moreover, they smoothly depend on ξ ∈ Dξ0,ε.

Let us define a map h2: OQ → Dξ0,ε × Tξ0 , where OQ is the above neighborhood of Q in which we have 
new coordinates (z, w′) from Lemma 3.1 (generally speaking, with ε′ �= ε in its statement). To construct 
the map h2 we introduce a family of maps gξ: Tξ ∩O(Q) → Tξ0 , ξ ∈ Dξ0,ε, defined by the following formula 

(z, w′)(gξ(z, w)) =
(√

−w′(γξ(w)), w′(γξ(w))
)
. We choose the branch of the root so that gξ0 is the inclusion 

map Tξ0 ∩ O(Q) ↪→ Tξ0 . Put h2(z, w) = (f(z, w), gf(z,w)(z, w)). Obviously, this map can be extended to a 
neighborhood of the set of simple points Qk.

Now we “combine” the map h1 from (3) with h2. The resulting map f−1(Dξ0,ε) \V → Dξ0,ε×
(
Tξ0 \ V

)
, 

where V ⊂ U is a union of connected components of the neighborhood U containing singular points Pj , is 
well defined. Moreover, it extends to a homeomorphism

h3: f−1(Dξ0,ε) \ V → Dξ0,ε × (Tξ0 \ V ) . (4)

We see that functions f and Pr1 (considered on the sets f−1(Dξ0,ε) \ V and Dξ0,ε×L resp.) are TR-equivalent 
via the map h3. �
Corollary 3.1. Suppose Tξ0 is nonsingular. If ξ0 �= f(0, ∞), then for sufficiently small ε > 0 the foliation of 
f−1(Dξ0,ε) generated by the rational Hamiltonian f is a trivial bundle Tξ0 × Dξ0,ε. If ξ0 = f(0, ∞), then 
the corresponding foliation is not a trivial bundle, since χ(Tξ) −χ(Tξ0) < 0, where ξ �= ξ0 is close to ξ0 (see 
Lemma 3.4).
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Picture 1. Layers Tξ and Tξ0 .

Since we assumed that n �= m (see the beginning of Section 3), condition ξ0 = f(0, ∞) implies n < m

and ξ0 = 0. In this case put l0 = m − n (multiplicity of the point (0, ∞)). Let lj denote multiplicities of 
singular points Pj on Tξ0 . By the direct computation of the topology of a given fiber we get

Lemma 3.4. χ(Tξ) − χ(Tξ0) =
sP∑
j=1

(1 − lj) when ξ0 �= f(0, ∞) and χ(Tξ) − χ(Tξ0) = −l0 +
sP∑
j=1

(1 − lj) when 

ξ0 = f(0, ∞).

Remark 3.1. There is a “geometrical” way to prove Lemma 3.4. Namely, if P ∈ Tξ0 is a singular point, then 
there exist a neighborhood VP of this point and coordinates (z, w′) such that Hamiltonian f = z2 +w′ l + ξ0
for some l ≥ 2. If ε > 0 is small enough, then for each ξ ∈ Dξ0,ε, ξ �= ξ0 we have a “vanishing graph” 
ΓP
l,ξ ⊂ VP ∩Tξ on two vertices with l edges connecting these vertices. This graph ΓP

l,ξ shrinks to a point P as 
ξ → ξ0 (see [16, §3, propositions 1 and 2]). Therefore, to calculate χ(Tξ) −χ(Tξ0) we can use the additivity 
of Eulerian characteristic χ and the fact that χ(ΓP

l,ξ) = 2 − l.

Example 3.1. Let f(z, w) = z2 + w + 1/w, ξ0 = 2 and ξ ∈ Dξ0,ε, ξ �= ξ0, where ε > 0 is small enough. It is 
easily seen that P = (0, 1) is the only singular point of the fiber Tξ0 . Since multiplicity l of this singular point 
equals 2, the corresponding “vanishing graph” ΓP

l,ξ ⊂ Tξ is a “vanishing circle”, and χ(Tξ0) − χ(Tξ) = 1. 
Moreover, Tξ is a torus with 2 punctures and Tξ0 is a sphere with two punctures and a pair of identified 
points (see Picture 1).

Suppose ξ0 �= f(0, ∞). Take a singular point Pj and a map φP,j from (1). It is easily seen that if we 
define a neighborhood V of the set of singular points Pj so that each connected component of Prw(V ) is 
φ−1
P,j(D0,(2ε)1/lj ) for some j, j = 1, . . . , sP , it will satisfy the assertion of Lemma 3.3. From now on we will 

assume that V is chosen in exactly this way.

Remark 3.2. Note that in the case when R(w) = wlj and ξ0 = 0, our neighborhood V is just Vε,lj (see 
Lemma 3.1).

As above, let lj , j = 1, . . . , sP , denote multiplicities of singular points Pj on the fiber Tξ0 . Put V 4
ε =

sP�
j=1

V ε,lj . Define g:V 4
ε → C by the formula g|V ε,lj

(z′, w′) = z′ 2 + w′ lj + ξ0. Let VP be the connected 

component of V , such that P ∈ VP . By definition of V we see, that in coordinates (z, w′) from Lemma 3.1
neighborhood VP coincides with Vε,lj . Therefore, there exists a biholomorphism h4: V → N4

ε such that 
g|V 4

ε
= f |V ◦ h4. Thus, we get

Corollary 3.2. Suppose ξ0 �= f(0, ∞). Then there exists ε > 0 such that f |V and g|V 4
ε

are TR-equivalent.

We will also need the following lemma
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Lemma 3.5. Let X, X ′
1, X

′
2 be topological spaces. Suppose X1 and X2 are closed subsets of X such that 

X1 ∪X2 = X. Let Hj : Xj → X ′
j , j = 1, 2 be homeomorphisms. Glue X ′

1 and X ′
2 via the map H12: H1(X1 ∩

X2) → H2(X1 ∩X2), where H12 = H2 ◦H−1
1 |H1(X1∩X2). Denote this gluing by ∼12. Then, the map H: X →

(X ′
1 �X ′

2)/ ∼12, defined by the rule H|Xj
= Hj , j = 1, 2, is a homeomorphism.

Proof. By definition, H is an open bijection. Therefore, we only need to check if this map is continuous. Let 
O be an open set in (X ′

1 �X ′
2)/ ∼12. We now prove that the set H−1(O) = H−1

1 (O ∩X ′
1) ∪H−1

2 (O ∩X ′
2)

is open in X. Take a point x ∈ H−1
1 (O ∩ X ′

1) ∪ H−1
2 (O ∩ X ′

2) and suppose x ∈ X1 ∩ X2. Then there 
exist a neighborhood V1 ⊂ X1 of x and a neighborhood V2 ⊂ X2 of x such that H1(V1) ⊂ O ∩ X ′

1 and 
H2(V2) ⊂ O ∩ X ′

2. Consider open sets U1 ⊂ X and U2 ⊂ X such that U1 ∩ X1 = V1, U2 ∩ X2 = V2. Put 
U = U1 ∩ U2. It is easily seen that x ∈ U ⊂ H−1(O). Suppose x /∈ X1 ∩ X2. Then there also exists a 
neighborhood U ⊂ X of x such that U ⊂ H−1(O), because H1 and H2 are homeomorphisms, and also 
because X1 and X2 are closed subsets of X. �
4. Main results

Now we are ready to introduce a “semi-local” normal form of a rational Hamiltonian f . Consider the 
following set

∂+Vε,lj = {(z, w) ∈ C
2 | |z2 + wlj | < ε, |w| = (2ε)1/lj}.

Let (z′, w′) be our new coordinates, i.e. w′ = φP,j(w) and z′ = z, see (1). Let μ(z, w) be a map as in 
formula (3) and L = Tξ0 \ V be as in Lemma 3.3. We can assume that for each (z′, w′) ∈ ∂+Vε,lj we have a 

well-defined value μ(z′, φ−1
P,j(w′)) =

(√
−w′ lj , φ−1

P,j(w′)
)
. Consider functions νj : ∂+Vε,lj → Dξ0,ε×∂L, where

νj(z′, w′) =
(
z′ 2 + w′ lj + ξ0, μ(z′, φ−1

P,j(w
′))

)
=

(
z′ 2 + w′ lj + ξ0,

√
−w′ lj , φ−1

P,j(w
′)
)
.

Note that each νj is a homeomorphism. Therefore, we can glue spaces +N4
ε =

sP�
j=1

(Vε,lj ∪ ∂+Vε,lj ) and 

Dξ0,ε × L via the maps νj . Denote this gluing by ∼. Consider the following space

M4 = +N4
ε �

(
Dξ0,ε × L

)
/ ∼

and a function G: M4 → C that is defined as follows. On the set Dξ0,ε × L let G = Pr1, and on each set 
Vε,lj ∪∂+Vε,lj let G(z′, w′) = z′ 2 +w′ lj + ξ0. Note that (z′, w′) ∈ ∂+Vε,lj implies G(z′, w′) = Pr1 ◦νj(z′, w′), 
so G is well defined. We have the following

Theorem on the normal form 4.1. Suppose ξ0 �= f(0, ∞). Then there exists ε > 0 such that functions 
f |f−1(Dξ0,ε) and G are TR-equivalent.

Proof. We will construct a homeomorphism h: f−1(Dξ0,ε) → M4 such that f |f−1(Dξ0,ε) = G ◦ h. Let

X = f−1(Dξ0,ε), X1 = f−1(Dξ0,ε) \ V, X2 = V ∩ f−1(Dξ0,ε),

X ′
1 = Dξ0,ε × L and X ′

2 = +N4
ε .
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Picture 2. Cross.

Picture 3. Atom.

We see that X = X1 ∪ X2, where X1 and X2 are closed subsets of X. According to the proofs of 
Lemma 3.3 and Corollary 3.2, we let H1 = h3 and H2 = h4. Take the corresponding homeomorphism H
from Lemma 3.5 and let h = H, i.e. we define h as follows:

h(z, w) =
{
h3(z, w) when (z, w) ∈ f−1(Dξ0,ε) \ V,
h4(z, w) = (z′, w′) when (z, w) ∈ V ∩ f−1(Dξ0,ε).

The map h is well defined. Indeed, consider (z, w) ∈ X1 ∩ X2 = ∂V ∩ f−1(Dξ0,ε). Then νj ◦ h4(z, w) =
νj(z′, w′) = (z′ 2 + w′ lj + ξ0, μ(z, w)) = (f(z, w), μ(z, w)) = h3(z, w). From Lemma 3.5 we get that h
is a homeomorphism. Moreover, it is easily seen that f |f−1(Dξ0,ε) = G ◦ h. Indeed, let (z, w) ∈ X1 =
f−1(Dξ0,ε) \V . Then the composition G ◦h(z, w) = f(z, w) by definition. Let (z, w) ∈ X2 = V ∩f−1(Dξ0,ε). 
Then G ◦ h(z, w) = z′ 2 + w′ lj + ξ0 = f(z, w), and theorem is proved. �
Remark 4.1. The gluing ∼ from above is not uniquely determined. In fact, it has one degree of freedom. 
Because of this, we can assume that for each rational Hamiltonian f such that ξ0 �= f(0, ∞), with specified 
topological type of the fiber Tξ0 and set of multiplicities of singular points on this fiber, the corresponding 
normal form is the same (see the proof of Theorem 4.2).

Remark 4.2. Suppose P is the only singular point on the fiber Tξ0 and ξ0 �= f(0, ∞). One may notice that 
the foliation of f−1(Dξ0,ε) (considered up to fiberwise homeomorphism) generated by f is the 4-dimensional 
analogue of the atom (see [1] and [9]) of a singularity and the set +N4

ε is the analogue of the so-called cross
(see Picture 2 and Picture 3). As in 2-dimensional case “atom” f−1(Dξ0,ε) of the singularity P can be 
obtained from the “cross” +N4

ε (and a “ribbon” Dξ0,ε × L) via the appropriate gluing (see Theorem 4.1).

In the above construction we assumed that ξ0 �= f(0, ∞). Similarly, we can construct a normal form of 
a rational Hamiltonian f in the case ξ0 = f(0, ∞). Indeed, condition ξ0 = f(0, ∞) = R(∞) implies that 
the rational function R(w) has at least one pole w0 in Cw. Make the change of variable w → w′ = 1

w−w0
. 

Obviously, functions f = f(z, w) and g = g(z, w′) = f(z, w0 + 1
w′ ) are R-equivalent (we assume that points 

(z, w′) with w′ = 0 do not belong to the domain of g). Note that w′ = 0 is not a pole of the function 
g(0, w′) since g(0, 0) = ξ0 = f(0, ∞) �= ∞. In fact, this “punctured” point is a removable singularity of the 
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function g(0, w′). Therefore, we can define multiplicity l0 of the point (0, ∞) of the fiber Tξ0 as multiplicity 
of zero w′ = 0 of the function g(0, w′) − ξ0. It is easily seen that l0 is well defined, i.e. it doesn’t depend 

on the choice of a pole of R. Indeed, condition ξ0 = R(∞) = An(∞)
Bm(∞) implies ξ0 = 0 (since n < m), and 

l0 = m − n. Thus, since g(0, ∞) �= ξ0, we can construct the normal form (M4, G) as in Theorem 4.1, where 
M4 ≈ g−1(Dξ0,ε) has an additional puncture in the plain Cw′ at zero. Note that we may have l0 = 1, but 
it will not impede the construction of the normal form because of Lemma 3.1.

Consider two (hyperelliptic) rational Hamiltonians f1 and f2. We have the following

Theorem 4.2. Suppose ξ0 �= f1(0, ∞) and ξ0 �= f2(0, ∞) or ξ0 = f1(0, ∞) = f2(0, ∞). Then rational 
Hamiltonians f1 and f2 are semi-locally Liouville equivalent with respect to ξ0 iff fibers T1

ξ0
and T2

ξ0
are 

homeomorphic and have the same sets of multiplicities of singular points (including the multiplicity of the 
(singular) point (0, ∞) when ξ0 = fj(0, ∞), j = 1, 2).

In the case ξ0 = f1(0, ∞) �= f2(0, ∞) Hamiltonians f1 and f2 are not semi-locally Liouville equivalent 
with respect to ξ0.

Proof. Suppose f1 and f2 are semi-locally Liouville equivalent with respect to ξ0. At first, we are going to 
show that fibers T1

ξ0
and h(T1

ξ0
) must have the same sets of multiplicities of singular points. Because of 

Lemma 3.1 it is sufficient to show that local Liouville equivalence of gk = z2 + wk and gl = z2 + wl (with 
respect to Pk and Pl, Pk = Pl = (0, 0)) implies k = l.

Suppose gk and gl are locally Liouville equivalent via the map hloc. Let Bδ ∈ C
2 a closed ball of radius δ

around (0, 0). It is well known that for sufficiently small δ > 0 first homology groups H1(Bδ∩g−1
k (ξ)) = Z

k−1

for every small ξ ∈ C. We choose δ, δ1 and δ2, 0 < δ < δ1 < δ2, so that Bδ ⊂ hloc(Bδ1) ⊂ Bδ2 , and the 
inclusion map i1: Bδ → Bδ2 induces a homotopy equivalence between Bδ ∩ g−1

k (ξ) and Bδ2 ∩ g−1
k (ξ) for all 

sufficiently small ξ. Then it is easily seen that the inclusion map i2: Bδ → hloc(Bδ1) induces an injective 
homomorphism H1(Bδ∩g−1

k (ξ)) ↪→ H1(h(Bδ1) ∩g−1
k (ξ)) of abelian groups. Thus, if δ2 > 0 was small enough, 

for some ξ we get an injective homomorphism Zk−1 ↪→ Z
l−1, so k ≤ l. Similarly, k ≥ l.

Now let us prove that the foliations of f−1
1 (Dξ0,ε) and f−1

1 (Dξ0,ε) are fiberwise homeomorphic via a map 
h such that h(T1

ξ0
) = T2

ξ0
. Note that since ε > 0 is arbitrary small, fibers Tj

ξ, j = 1, 2, where ξ0 �= ξ ∈ Dξ0,ε, 
are nonsingular. Therefore, if T1

ξ0
is a singular fiber, then h(T1

ξ0
) is also a singular fiber. The case of 

nonsingular fibers T1
ξ0

and T2
ξ0

is clear because of Corollary 3.1.
Thus, if f1 and f2 are semi-locally Liouville equivalent with respect to ξ0, then fibers T1

ξ0
and T2

ξ0
are 

homeomorphic and have the same sets of multiplicities of singular points. Therefore, using Lemma 3.4 we 
immediately get the second assertion of the theorem.

Let us now prove the first assertion of the theorem. Consider the case when ξ0 �= f1(0, ∞) and ξ0 �=
f2(0, ∞). Necessity is already proved.

Sufficiency. Let P 1
j and P 2

j , j = 1, . . . , sP 1 = sP
2 be singular points on fibers T1

ξ0
and T2

ξ0
such that for 

each j multiplicities l1j = l2j coincide. Let ε > 0 be sufficiently small. Denote by V 1 and V 2 the neighborhoods 
of singular points P 1

j and P 2
j as in Theorem 4.1. Let L1 = T1

ξ0
\V 1 and L2 = T2

ξ0
\V 2. We have the normal 

forms (M4
1 , G1) and (M4

2 , G2) of the Hamiltonians f1 and f2, where

M4
1 =

(
Dξ0,ε × L1

)
�

⎛
⎝sP

1

�
j=1

(Vε,lj ∪ ∂+Vε,lj )

⎞
⎠ / ∼1 and

M4
2 =

(
Dξ0,ε × L2

)
�

⎛
⎝sP

2

�
j=1

(Vε,lj ∪ ∂+Vε,lj )

⎞
⎠ / ∼2 .
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We know that G1: M4
1 → C and G2: M4

2 → C are TR-equivalent to f1|f−1
1 (Dξ0,ε) and f2|f−1

2 (Dξ0,ε) resp. 
Therefore, it is sufficient to show that functions G1 and G2 are TR-equivalent.

Since fibers T1
ξ0

and T2
ξ0

are homeomorphic and have the same sets of multiplicities of singular points, 
there exists an orientation-preserving homeomorphism T1

ξ0
→ T2

ξ0
such that for each j = 1, . . . , sP 1 the 

singular point P 1
j goes to P 2

j . In particular, manifolds with boundary T1
ξ0
\V 1 and T2

ξ0
\V 2 are homeomorphic. 

For every connected component of Dξ0,ε × ∂(T1
ξ0

\ V 1) consider its small blowing in Dξ0,ε × (T1
ξ0

\ V 1)
which is homeomorphic to a direct product Dξ0,ε × [0, 1] × S1 and add this blowings to the set �j Vε,lj ≈
V 1. Denote the resulting set by Ṽ 1. Note that Ṽ 1 is a closed subset of M4

1 . Similarly, we can construct 
a closed subset Ṽ 2 ⊂ M4

2 . It is easily seen that there exists an orientation-preserving homeomorphism 
id × hL: Dξ0,ε × (T1

ξ0
\ Ṽ 1) → Dξ0,ε × (T2

ξ0
\ Ṽ 2).

On each set Vε,lj ∪ ∂+Vε,lj consider a homeomorphism hV , defined by the formula (z, w) �→ (z, w). 
Consider a connected component of Ṽ 1 \ �j Vε,lj , which is homeomorphic to Dξ0,ε × [0, 1] × S1, and the 
restrictions of the maps hL and hV to the corresponding parts of the boundary ∂(Ṽ 1 \�j Vε,lj ) (which are 
homeomorphic to a solid torus Dξ0,ε × S1). By the construction of ∼1 and ∼2 induced orientations on this 
solid tori are compatible. Therefore, there exists a homeomorphism Ṽ 1\�j Vε,lj → Ṽ 2\�j Vε,lj that “glue” 
hL and hV into a homeomorphism hM : M4

1 → M4
2 (use the following fact: the space of orientation-preserving 

homeomorphisms of a circle is arcwise connected). It is easily seen that G1 = G2 ◦ hM , so we are done with 
the case ξ0 �= f1(0, ∞) and ξ0 �= f2(0, ∞).

Now consider the case ξ0 = f1(0, ∞) and ξ0 = f2(0, ∞). Necessity follows from the above reasoning and 
Lemma 3.4.

Sufficiency. Consider functions g1 = g1(z, w′) and g1 = g2(z, w′) that are R-equivalent to f1 and f2 and 
have additional punctures in Cw′ at zero. We know that fibers g−1

1 (ξ0) and g−1
2 (ξ0) are homeomorphic and 

have the same sets of multiplicities of singular points and the same multiplicity of the point (z, w′)(0, ∞) =
(0, 0)). Since g1(0, ∞) �= ξ0 and g2(0, ∞) �= ξ0, functions g1 and g2 (considered as Hamiltonians) are 
semi-locally TR-equivalent with respect to ξ0. Thus, theorem is proved. �
Remark 4.3. From the proof of Theorem 4.2 we easily get that its assertion holds not only for semi-local 
Liouville equivalence, but also for semi-local TR-equivalence.

Note that order of a pole of a rational Hamiltonian f is not an invariant even of smooth semi-local 
Liouville equivalence, as the following example shows

Example 4.1. Consider rational Hamiltonians

f1(z, w) = z2 + (w − 3)(w − 4)
(w − 1)(w − 2) and

f2(z, w) = z2 + (w − 1)(w − 2)(w − 3)(w − 4)
(w − 5)2 .

Parity of the poles of the functions R1 = f1(0, w) and R2 = f2(0, w) are different. Despite this, f1 and f2

are semi-locally TR-equivalent with respect to ξ0 = 0, since fibers T1
0 and T2

0 are homeomorphic and since 
the corresponding foliations near them are trivial bundles.
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