University of Groningen

Semi-local Liouville equivalence of complex Hamiltonian systems defined by rational Hamiltonian

Martynchuk, Nikolay

Published in:
Topology and its applications

DOI:
10.1016/j.topol.2015.05.090

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Martynchuk, N. (2015). Semi-local Liouville equivalence of complex Hamiltonian systems defined by rational Hamiltonian. Topology and its applications, 191, 119-130.
https://doi.org/10.1016/j.topol.2015.05.090

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Semi-local Liouville equivalence of complex Hamiltonian systems defined by rational Hamiltonian

N.N. Martynchuk ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
b Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, PO Box 407, 9700 AK, Groningen, The Netherlands

A R T I C L E I N F O

Article history:

Received 25 June 2014
Received in revised form 17
December 2014
Accepted 31 May 2015
Available online 11 June 2015
Keywords:
Hamiltonian system
Liouville theorem
Topological equivalence

Abstract

Consider the holomorphic function $f=a z^{2}+R(w)$, where z and w are complex variables and R is a rational function. Let $D_{\xi_{0}, \varepsilon}$ be a small disc around $\xi_{0} \in \mathbb{C}$. Function f defines the foliation in the neighborhood $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ of the (singular) fiber $f^{-1}\left(\xi_{0}\right)$. We give a complete topological classification of such foliations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this paper is to give a semi-local topological classification (i.e. the classification up to semi-local TR-equivalence, see Definition 2.3) of foliations generated by the holomorphic function $f=$ $a z^{2}+R(w): M_{\mathbb{C}} \rightarrow \mathbb{C}$. Here $a \in \mathbb{C} \backslash\{0\}$ and $M_{\mathbb{C}}=\mathbb{C} \times\left(\mathbb{C} \backslash\left\{d_{1}, \ldots, d_{s}\right\}\right)$, where d_{1}, \ldots, d_{s} are the poles of the rational function R. The problem of semi-local topological classification of such systems came from the theory of integrable Hamiltonian systems. Let us explain how this problem originated and give a brief overview of closely related questions.

Suppose we have an integrable Hamiltonian system $(M, \omega, H), \operatorname{dim}_{\mathbb{R}} M=2 N$, with pairwise involutive first integrals $H=H_{1}, \ldots, H_{N}$. Consider the momentum map $\Phi=\left(H_{1}, \ldots, H_{N}\right): M \rightarrow \mathbb{R}^{N}$ and the corresponding Liouville foliation of the phase space M, i.e. the decomposition of M into connected components of $\Phi^{-1}(c), c \in \mathbb{R}^{N}$. If the vector fields sgrad $H_{i}=\omega^{-1}\left(d H_{i}\right)$ are complete, the system is called completely integrable. In this case we can use the Liouville theorem (see [1]), which describes the topology of each nonsingular fiber $\Phi^{-1}(c)$, the topology of the foliation in a neighborhood of each connected compact nonsingular fiber and also the action-angle coordinates in this neighborhood.

[^0]In particular, the Liouville theorem states that for each connected compact nonsingular fiber of a completely integrable Hamiltonian system with N degrees of freedom there exists a small neighborhood of this fiber that is fiberwise homeomorphic to a direct product $D^{N} \times T^{N}$ of an N-dimensional disk and an N-dimensional torus. It is natural to ask what happens in the general case: how to classify Liouville foliations in small neighborhoods of (singular) fibers of integrable systems up to Liouville equivalence, i.e. how to give a semi-local Liouville classification?

The semi-local Liouville classification of completely integrable Hamiltonian systems with hyperbolic singularities was given in the work [22], with focus-focus singularities - in [24]. The global topological structure of a regular isoenergy 3 -surface of a completely integrable nondegenerate system with 2 degrees of freedom is described by the Fomenko-Zieschang invariant (the marked molecule), see [1] and [7].

Primarily, the works $[1,5-11]$ and also [22,24] dealt with completely integrable Hamiltonian systems with compact fibers and nondegenerate singularities. Because of this A. Fomenko suggested to extend the developed theory onto integrable systems that do not satisfy the above conditions. In particular, A. Fomenko stated a problem of generalizing the Liouville theorem for integrable systems with incomplete flows, namely, for every integrable system from some "natural" class describe the topology of each (singular) fiber $\Phi^{-1}(c)$, the topology of the foliation in a neighborhood of each (nonsingular) fiber and construct the analogue of the action-angle coordinates; here Φ is a momentum map of the corresponding system with N degrees of freedom and $c \in \mathbb{R}^{N}$. For these reasons A. Fomenko suggested a special class of integrable systems: $\left(M_{\mathbb{C}}, \operatorname{Re}(d z \wedge d w), \operatorname{Re} f\right)$, where f is a holomorphic function on a complex manifold $M_{\mathbb{C}} \subset \mathbb{C}^{2}$, see [15-20]. Because of the Cauchy-Riemann equations the Poisson bracket $\{\operatorname{Re}(f), \operatorname{Im}(f)\}=0$. Therefore, the Liouville foliation corresponding to a system $\left(M_{\mathbb{C}}, \operatorname{Re}(d z \wedge d w), \operatorname{Re} f\right)$ is generated by the momentum map $\Phi=$ ($\operatorname{Re} f, \operatorname{Im} f$), which is just f. The first one who pointed this out was H. Flashka (see [4]).

Deformations of level surfaces of (Laurent) polynomials, their topology and homotopy type were studied in [2], [3] and [12]. Topological properties of elliptic foliations on non-singular compact complex manifolds can be found in works [13] and [14]. The semi-local topological classification as well as the analogue of the Liouville theorem for Hamiltonian systems defined by a complex hyperelliptic Hamiltonian are described in [16] and [17].

In this paper we consider integrable Hamiltonian systems $\left(M_{\mathbb{C}}, \operatorname{Re}(d z \wedge d w), \operatorname{Re} f\right)$ defined by a hyperelliptic rational Hamiltonian $f(z, w)=a z^{2}+R(w)$. Recall that $a \in \mathbb{C} \backslash\{0\}, R$ is a rational function and $M_{\mathbb{C}} \subset \mathbb{C}^{2}$ is the domain of the holomorphic function f, i.e. $M_{\mathbb{C}}=\mathbb{C} \times\left(\mathbb{C} \backslash\left\{d_{1}, \ldots, d_{s}\right\}\right)$, where d_{1}, \ldots, d_{s} are the poles of the rational function R. The main result is a complete classification of such systems (we also say rational Hamiltonians) up to semi-local $T R$-equivalence (and up to semi-local Liouville equivalence, see Definition 2.4). Namely, the following theorem holds:

Theorem 1.1. Suppose $\xi_{0} \neq f_{1}(0, \infty)$ and $\xi_{0} \neq f_{2}(0, \infty)$ or $\xi_{0}=f_{1}(0, \infty)=f_{2}(0, \infty)$. Then rational Hamiltonians f_{1} and f_{2} are semi-locally $T R$-equivalent (Liouville equivalent) with respect to ξ_{0} iff fibers $\mathrm{T}_{\xi_{0}}^{1}$ and $\mathrm{T}_{\xi_{0}}^{2}$ are homeomorphic and have the same sets of multiplicities of singular points including the multiplicity of the point $(0, \infty)$ when $\xi_{0}=f_{j}(0, \infty), j=1,2$.

In the case $\xi_{0}=f_{1}(0, \infty) \neq f_{2}(0, \infty)$ Hamiltonians f_{1} and f_{2} are not semi-locally Liouville equivalent with respect to ξ_{0}.

The condition that fibers $\mathrm{T}_{\xi_{0}}^{1}$ and $\mathrm{T}_{\xi_{0}}^{2}$ are homeomorphic is obviously necessary for semi-local $T R$-equivalence. The fact that multiplicities of singular points of a rational Hamiltonian are invariants of semi-local Liouville equivalence (and hence of semi-local $T R$-equivalence) can be easily obtained using methods developed in [21] (see the beginning of the proof of Theorem 4.2). In order to prove other statements of the theorem we will

1) compute the difference $\chi\left(\mathrm{T}_{\xi}^{j}\right)-\chi\left(\mathrm{T}_{\xi_{0}}^{j}\right)$, where ξ is close but not equal to ξ_{0} and χ is an Eulerian characteristic (see Lemma 3.4),
2) switch to "semi-local" normal forms of rational Hamiltonians f_{j} (see Theorem 4.1).

Note that for hyperelliptic Hamiltonians $f=a z^{2}+P_{n}(w)$ we always have $f(0, \infty)=\infty$. Since the set of multiplicities of singular points of the layer $f^{-1}\left(\xi_{0}\right)$ completely determines its topology (whenever the degree n of the polynomial $P_{n}=P_{n}(w)$ is fixed), our classification theorem reduces to the one, obtained in [16] and [17]. Obviously, it is not true for rational Hamiltonians, i.e. if $f=a z^{2}+\frac{A_{n}(w)}{B_{m}(w)}$, where $A=A_{n}(w)$ and $B=B_{m}(w)$ are relatively prime polynomials of degrees n and m respectively, then the set of multiplicities of singular points of the layer $f^{-1}\left(\xi_{0}\right)$ does not uniquely determine its topology (for fixed n and m).

The paper is organized as follows. Preparatory work is done in the section "Required statements". The construction of the "semi-local" normal form of a rational Hamiltonian and a complete proof of the classification theorem is given in the section "Main results".

2. Definitions

In this section we give necessary definitions and introduce notation to make our results precise.

Definition 2.1. Consider two holomorphic (continuous) functions $f_{1}: M_{1} \rightarrow \mathbb{C}$ and $f_{2}: M_{2} \rightarrow \mathbb{C}$, where M_{1} and M_{2} are complex manifolds (topological spaces). Suppose there exists a biholomorphism (homeomorphism) $h: M_{1} \rightarrow M_{2}$ such that $f_{1}=f_{2} \circ h$. We say that f_{1} and f_{2} are (topologically) right equivalent or simply (T) R-equivalent.

Let $f=a z^{2}+R(w)$ be a function of complex variables $(z, w) \in \mathbb{C} \times\left(\mathbb{C} \backslash\left\{d_{1}, \ldots, d_{s}\right\}\right)$ such that $a \neq 0, \frac{d}{d w} R(w) \not \equiv 0$, where $d_{j}, j=1, \ldots, s$, are the poles of the rational function R. We say that f is a (hyperelliptic) rational Hamiltonian of the corresponding Hamiltonian system $\left(\mathbb{C} \times\left(\mathbb{C} \backslash\left\{d_{1}, \ldots, d_{s}\right\}\right), \operatorname{Re}(d z \wedge\right.$ $d w), \operatorname{Re} f)$.

Let $f: M \rightarrow \mathbb{C}$ be a function on a space M. By the foliation of M generated by f we mean the decomposition of M into the fibers (level surfaces) $\mathrm{T}_{\xi}=f^{-1}(\xi), \xi \in \mathbb{C}$.

Suppose M is a manifold and f is a smooth function on it. Then a fiber $\mathrm{T}_{\xi}, \xi \in \mathbb{C}$, is called nonsingular if for every point $P \in \mathrm{~T}_{\xi}$ we have $\left.d f\right|_{P} \neq 0$.

Definition 2.2. Consider a rational Hamiltonian $f=a z^{2}+R(w)$ and a point $P=\left(0, w_{0}\right)$. Suppose $(R(w)-$ $f(P))\left.^{(j)}\right|_{w_{0}}=0$ for $j=0, \ldots, k-1, R^{(k)}\left(w_{0}\right) \neq 0$. We say that k is the multiplicity (and $k-1$ is Milnor number, see [21]) of the point P.

If $k=1$ we say that P is a simple point of the fiber $\mathrm{T}_{f(P)}$, otherwise (if $k \geq 2$) we say that P is a singular point of this fiber.

Note that P is a singular point of the rational Hamiltonian f, i.e. $\left.d f\right|_{P}=0$, iff P is a singular point of the fiber $\mathrm{T}_{f(P)}$. Thus, each fiber $\mathrm{T}_{\xi}, \xi \in \mathbb{C}$, is nonsingular iff it has only simple points.

We will be interested in the topology of the foliation of $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ generated by a rational Hamiltonian f, where $D_{\xi_{0}, \varepsilon}$ is a small disc in \mathbb{C} around ξ_{0}.

Definition 2.3. Consider two rational Hamiltonians f_{1}, f_{2} and a point $\xi_{0} \in \mathbb{C}$. Suppose $\left.f_{1}\right|_{f_{1}^{-1}\left(D_{\xi_{0}, \varepsilon}\right)}$ and $\left.f_{2}\right|_{f_{2}^{-1}\left(D_{\xi_{0}, \varepsilon}\right)}$ are $T R$-equivalent for some $\varepsilon>0$. Then we say that f_{1} and f_{2} (or the corresponding Hamiltonian systems) are semi-locally TR-equivalent with respect to ξ_{0}.

Definition 2.4. Consider two rational Hamiltonians f_{1}, f_{2} and a point $\xi_{0} \in \mathbb{C}$. We say that f_{1} and f_{2} (or the corresponding Hamiltonian systems) are semi-locally Liouville equivalent (or semi-locally TRL-equivalent) with respect to ξ_{0} if the corresponding foliations of $f_{1}^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ and $f_{2}^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ are fiberwise homeomorphic for any small $\varepsilon>0$.

We will also need the notion of local $T R$-equivalence and local Liouville equivalence.
Definition 2.5. Consider two rational Hamiltonians f_{1}, f_{2} and points P_{1}, P_{2}. Let U_{1} and U_{2} be neighborhoods of P_{1} and P_{2} resp. Suppose $\left.f_{1}\right|_{U_{1}}$ and $\left.f_{2}\right|_{U_{2}}$ are $T R$-equivalent via the map h such that $h\left(P_{1}\right)=P_{2}$. Then we say that f_{1} and f_{2} are locally $T R$-equivalent with respect to P_{1} and P_{2}.

Definition 2.6. Consider two rational Hamiltonians f_{1}, f_{2} and points P_{1}, P_{2}. We say that f_{1} and f_{2} are locally Liouville equivalent (or locally TRL-equivalent) with respect to P_{1} and P_{2} if there exist arbitrarily small neighborhoods U_{1} and U_{2} of P_{1} and P_{2} resp. such that the corresponding foliations of U_{1} and U_{2} are fiberwise homeomorphic via the map h such that $h\left(P_{1}\right)=P_{2}$.

From the definitions it is easily seen that semi-local (local) $T R$-equivalence of rational Hamiltonians implies their semi-local (local) Liouville equivalence. It is known (see [23]) that the converse holds for local equivalence. We will show that the same is true in the semi-local case.

3. Required statements

Consider a hyperelliptic rational Hamiltonian $f(z, w)=a z^{2}+R(w)$, i.e. $R(w)=\frac{A_{n}(w)}{B_{m}(w)}$, where $A=$ $A_{n}(w)$ and $B=B_{m}(w)$ are relatively prime polynomials of degrees $n \geq 0$ and $m \geq 0, R(w) \not \equiv$ const (without loss of generality we will assume that $a=1$ and $n \neq m$). On the fiber $\mathrm{T}_{\xi_{0}}$ we have finite number $s^{P} \geq 0$ of singular points $P_{1}, \ldots, P_{s^{P}}$ and finite number $s^{Q} \geq 0$ of simple points $Q_{k}, k=1, \ldots, s^{Q}$. Let $l_{1}, \ldots, l_{s^{P}}$ denote multiplicities of singular points $P_{1}, \ldots, P_{s^{P}}$. Put $V_{\varepsilon, l}=\left\{\left(z^{\prime}, w^{\prime}\right) \in \mathbb{C}^{2}| | z^{\prime 2}+w^{\prime l} \mid<\right.$ $\left.\varepsilon,\left|w^{\prime}\right|<(2 \varepsilon)^{1 / l}\right\}$, where $l \in \mathbb{N}$ and $\varepsilon>0$ is arbitrarily small.

Next lemma is well known (see, e.g. [19, §2, Lemma 4]). It shows that singularities of Hamiltonian systems defined by hyperelliptic rational Hamiltonians are of the type $A_{k}, k \in \mathbb{N}$.

Lemma 3.1. For each $P_{j}, j=1, \ldots, s^{P}$, there exists a 4-dimensional neighborhood U_{j}^{P} of P_{j} such that $\left.f\right|_{U_{j}^{P}}$ is R-equivalent to $g_{j}^{P}: V_{\varepsilon, l_{j}} \rightarrow \mathbb{C}$, where $g_{j}^{P}\left(z^{\prime}, w^{\prime}\right)={z^{\prime}}^{2}+w^{\prime l_{j}}+\xi_{0}$.

For each $Q_{k}, k=1, \ldots, s^{Q}$, there exists a 4-dimensional neighborhood U_{k}^{Q} of Q_{k} such that $\left.f\right|_{U_{k}^{Q}}$ is R-equivalent to $g_{k}^{Q}: V_{\varepsilon, 1} \rightarrow \mathbb{C}$, where $g_{k}^{Q}\left(z^{\prime}, w^{\prime}\right)=z^{\prime 2}+w^{\prime}+\xi_{0}$.

Moreover, we can assume that neighborhoods $\overline{U_{j}^{P}}, \overline{U_{k}^{Q}}$ are pairwise disjoint.
Proof. Consider a singular point $P_{j}=\left(0, w_{j}\right)$ of the rational Hamiltonian f. There exists a neighborhood of this point in which $f(z, w)=z^{2}+g(w)\left(w-w_{j}\right)^{l_{j}}+\xi_{0}$, where $g=g(w)$ is a holomorphic function such that $g\left(w_{j}\right) \neq 0$. Let U^{w} be a small neighborhood of the point w_{j} such that (for some branch of the root $\sqrt[I_{j}]{ }$) the map

$$
\begin{equation*}
\phi_{P, j}: w \mapsto w^{\prime}=\left(w-w_{j}\right) \sqrt[l_{l}]{g(w)} \tag{1}
\end{equation*}
$$

is a diffeomorphism between U^{w} and $\phi_{P, j}\left(U^{w}\right)$. Let $h_{P, j}=\operatorname{id}_{\mathbb{C}} \times \phi_{P, j}$. Take $\varepsilon>0$ such that $V_{\varepsilon, l_{j}} \subset$ $h_{P, j}\left(\mathbb{C} \times U^{w}\right)=\mathbb{C} \times \phi\left(U^{w}\right)$ and put $U_{j}^{P}=h_{P, j}^{-1}\left(V_{\varepsilon, l_{j}}\right)$. It is easily seen that $\left.f\right|_{U_{j}^{P}}$ and g_{j}^{P} are R-equivalent via the map $h_{P, j}: U_{j}^{P} \rightarrow V_{\varepsilon, l_{j}}$. Similarly, we can deal with simple points Q_{k}.

Consider an open 2-dimensional disk $D_{\xi_{0}, \varepsilon}$ around a (singular) value ξ_{0} of the rational Hamiltonian $f=$ $z^{2}+R(w)$. As above, let $P_{1}, \ldots, P_{s^{P}}$ be singular points of the fiber $\mathrm{T}_{\xi_{0}}$ with multiplicities $l_{j}, j=1, \ldots, s^{P}$, and $Q_{1}, \ldots, Q_{s^{Q}}$ be simple points of this fiber. In what follows by a neighborhood of a finite set of points we will mean a union of connected neighborhoods of these points with pairwise disjoint closures.

Lemma 3.2. Suppose $\xi_{0} \neq f(0, \infty):=\lim _{w \rightarrow \infty} R(w) \in \overline{\mathbb{C}}$. Then for every 4-dimensional neighborhood U^{\prime} of the set of points P_{j} and Q_{k} there exist $\varepsilon>0$ and a 4-dimensional neighborhood $U \subset U^{\prime}$ of the set of points P_{j} and Q_{k} such that $\left.f\right|_{f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash \bar{U}}$ is R-equivalent to $\operatorname{Pr}_{1}: D_{\xi_{0}, \varepsilon} \times\left(\mathrm{T}_{\xi_{0}} \backslash \bar{U}\right) \rightarrow D_{\xi_{0}, \varepsilon}$, where $\operatorname{Pr}_{1}(\xi, \eta)=\xi$.

Proof. Let U^{w} be a circular neighborhood of the set of points $\operatorname{Pr}_{w}\left(P_{j}\right)$ and $\operatorname{Pr}_{w}\left(Q_{k}\right)$, where Pr_{w} is a projection on the plane \mathbb{C}^{w} of the complex variable w. Consider the holomorphic function $u(\xi, w)=\xi-R(w)$ of complex variables ξ and w. Since $\xi_{0} \neq R(\infty)=f(0, \infty)$, function $u\left(\xi_{0}, w\right)$ extends to a holomorphic map from $\overline{\mathbb{C}}$ to $\overline{\mathbb{C}}$, which zeros are precisely P_{j} and Q_{k}. Therefore, there exists $\varepsilon>0$ such that $\inf _{w \notin U w}\left|u\left(\xi_{0}, w\right)\right| \geq \varepsilon$. Put

$$
\begin{equation*}
U=\left\{(\pm \sqrt{u(\xi, w)}, w) \in \mathbb{C}^{2} \mid \xi \in D_{\xi_{0}, \varepsilon}, w \in U^{w}\right\} \tag{2}
\end{equation*}
$$

Reducing, if necessary, the neighborhood U^{w} and $\varepsilon>0$, we obtain the inclusion $U \subset U^{\prime}$. Let us now prove that U is as required.

Consider the case when the manifold $\mathrm{T}_{\xi_{0}} \backslash \bar{U}$ is connected. Take a point $\left(z_{0}, w_{0}\right) \in \mathrm{T}_{\xi_{0}} \backslash \bar{U}$. We choose the branch of the root so that $z_{0}=\sqrt{u\left(\xi_{0}, w_{0}\right)}$. Obviously, for every $\xi \in D_{\xi_{0}, \varepsilon}$ and for every w in a small neighborhood of w_{0} we have a uniquely defined value of the root $\sqrt{u(\xi, w)}$, which smoothly depends on ξ and w.

Note that $(\sqrt{u(\xi, w)}, w) \in \mathrm{T}_{\xi} \backslash U$ for all $w \notin U^{w}, \xi \in D_{\xi_{0}, \varepsilon}$. Therefore, for every $\xi \in D_{\xi_{0}, \varepsilon}$ the manifold $\mathrm{T}_{\xi} \backslash U$ is a Riemann surface of a multivalued analytic function $u_{\xi}=u(\xi, w), w \notin U^{w}$.

Take a curve $\gamma=\gamma(t) \subset \mathbb{C}^{w}, t \in[0,1]$, that starts at w_{0} and doesn't pass through the poles of the rational function R and U^{w}. It induces a curve $u(\xi, \gamma(t)) \subset \mathbb{C}^{u}$. The value of the root $\sqrt{u(\xi, \gamma(1))}$, depends on the parity of the "number of revolutions" of the curve $u(\xi, \gamma(t))$ around zero in \mathbb{C}^{u}. By the number of revolutions of the curve $u(\xi, \gamma(t))$ we mean an integer $r=r(u(\xi, \gamma(t)))$ such that $2 \pi r \leq \operatorname{Arg}(u(\xi, \gamma(t)))<2 \pi(r+1)$, where $\operatorname{Arg}(u(\xi, \gamma(t)))$ is the increment of argument of u along the curve $u(\xi, \gamma(t))$. Since $\inf _{w \notin U w}\left|u\left(\xi_{0}, w\right)\right| \geq \varepsilon$, this number of revolutions coincides with the number of revolutions of the curve $u(\xi, \gamma(t))+\xi_{0}-\xi$. The latter is $u\left(\xi_{0}, \gamma(t)\right)$.

Consider the map $\mu: f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash \bar{U} \rightarrow \mathrm{~T}_{\xi_{0}}$, defined by the formula $\mu(z, w)=(v(z, w), w)$, where $v=$ $v(z, w)$ is a function that can be constructed as follows. Take $(z, w) \in \mathrm{T}_{\xi} \backslash \bar{U}$. Let $\gamma=\gamma(t), t \in[0,1]$, be a curve such that $\gamma(0)=w_{0}, \gamma(1)=w$ and $z=\sqrt{u(\xi, w)}$. Put $v(z, w)=\sqrt{u\left(\xi_{0}, w\right)}$, where the value of the root $\sqrt{u\left(\xi_{0}, w\right)}$ is determined by the same curve γ. Since $\mathrm{T}_{\xi_{0}} \backslash \bar{U}$ is connected, we see that $v=v(z, w)$ is well defined on $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash \bar{U}$. Moreover, $v^{2}(z, w)+R(w)=\xi_{0}$. Thus, the map $\mu=\mu(z, w)$ is well defined on $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash \bar{U}$, the restriction of μ to the fiber $\mathrm{T}_{\xi_{0}}$ is the identity map: $\left.\mu(z, w)\right|_{\mathrm{T}_{\xi_{0}}}=\mathrm{id}$ and $\left.\mu(z, w)\right|_{\mathrm{T}_{\xi} \backslash \bar{U}}$ is a biholomorphism between $\mathrm{T}_{\xi} \backslash \bar{U}$ and $\mathrm{T}_{\xi_{0}} \backslash \bar{U}$ for every $\xi \in D_{\xi_{0}, \varepsilon}$

Define $h_{1}: f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash \bar{U} \rightarrow D_{\xi_{0}, \varepsilon} \times\left(\mathrm{T}_{\xi_{0}} \backslash \bar{U}\right)$ as follows:

$$
\begin{equation*}
h_{1}(z, w)=(f(z, w), \mu(z, w))\left(\mu(z, w) \text { is a point on } \mathrm{T}_{\xi_{0}}\right) . \tag{3}
\end{equation*}
$$

Let $H_{1}=i \circ h_{1}$, where $i: D_{\xi_{0}, \varepsilon} \times\left(\mathrm{T}_{\xi_{0}} \backslash \bar{U}\right) \hookrightarrow D_{\xi_{0}, \varepsilon} \times \mathbb{C}^{2}$ is the inclusion map. It is easily seen that the Jacobian matrix of H_{1} has the maximum rank at every point. Indeed, the Jacobian matrix has the form:

$$
\left(\begin{array}{ccc}
f_{z} & v_{z} & 0 \\
f_{w} & v_{w} & 1
\end{array}\right)
$$

and on the set $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash \bar{U}$ we have the inequality $f_{z} \neq 0$. Since h_{1} is a complex-differentiable bijection and the differential $d h_{1}$ is an isomorphism at each point, we conclude that h_{1} is a biholomorphism. Obviously, $\left.f\right|_{f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash \bar{U}}=\operatorname{Pr}_{1} \circ h_{1}$. Therefore, we are done with the case when the manifold $\mathrm{T}_{\xi_{0}} \backslash \bar{U}$ is connected.

Suppose $\mathrm{T}_{\xi_{0}} \backslash \bar{U}$ is the union of two connected components. Then, for sufficiently small $\varepsilon>0$, we have that each $\mathrm{T}_{\xi} \backslash \bar{U}, \xi \in D_{\xi_{0}, \varepsilon}$, is also the union of two connected components. Thus, we can repeat the above reasoning for each of the two components of $\mathrm{T}_{\xi_{0}} \backslash \bar{U}$ and get the required statement.

Lemma 3.3. Suppose $\xi_{0} \neq f(0, \infty)$. Then for every 4-dimensional neighborhood V^{\prime} of the set of points P_{j} there exist $\varepsilon>0$ and a 4-dimensional neighborhood $V \subset V^{\prime}$ of the set of points P_{j} such that $\left.f\right|_{f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash V}$ is R-equivalent to $\operatorname{Pr}_{1}: D_{\xi_{0}, \varepsilon} \times \bar{L} \rightarrow D_{\xi_{0}, \varepsilon}$, where $\bar{L}=\mathrm{T}_{\xi_{0}} \backslash V, \operatorname{Pr}_{1}(\xi, \eta)=\xi$.

Proof. Keep in mind the proof of the previous lemma. If $\mathrm{T}_{\xi_{0}}$ doesn't have simple points, then everything is done. Assume that there exist simple points Q_{k}. Take one of them, let it be a point $Q=\left(0, w_{\xi_{0}}\right)$. For every $\xi \in D_{\xi_{0}, \varepsilon}$ we have a simple point $Q^{\xi}=\left(0, w_{\xi}\right) \in \mathrm{T}_{\xi}$ near Q. According to Lemma 3.1, in a neighborhood O_{Q} of Q there exist coordinates $\left(z, w^{\prime}\right)$ in which Hamiltonian f can be written as $f\left(z, w^{\prime}\right)=z^{2}+w^{\prime}+\xi_{0}$. Note that in coordinates $\left(z, w^{\prime}\right)$ we have $\left(z, w^{\prime}\right)\left(Q^{\xi}\right)=\left(0, \xi-\xi_{0}\right)$, and $Q^{\xi_{0}}=Q$. Let U_{Q} be the connected component of the neighborhood U from (2) such that $Q \in U_{Q}$. We can assume that $U_{Q} \subset O_{Q}$. We can also assume that for every $\xi \in D_{\xi_{0}, \varepsilon}$ the point $Q^{\xi} \in U_{Q}$ and there are no more simple or singular points in U_{Q}.

Consider some $\xi \in D_{\xi_{0}, \varepsilon}$ and a neighborhood $\operatorname{Pr}_{w}\left(U_{Q}\right) \subset U^{w}$ of the point $w_{\xi_{0}}$. Let φ_{ξ} be a homeomorphism of the plain \mathbb{C}^{w} that coincides with the identity map in a small neighborhood of $\mathbb{C}^{w} \backslash \operatorname{Pr}_{w}\left(U_{Q}\right)$ and also coincides with the map (written in a new coordinate w^{\prime}) $w^{\prime} \mapsto w^{\prime}+\xi_{0}-\xi$ in a small neighborhood of w_{ξ}. Such a homeomorphism can be obtained by a shift along the integral curves of the vector field X_{ξ} that is constructed as follows. Let W_{1} and W_{2} be neighborhoods of a point $w_{\xi_{0}}$ such that $\bar{W}_{1} \subset W_{2} \subset \bar{W}_{2} \subset \operatorname{Pr}_{w}\left(U_{Q}\right)$ and $w_{\xi} \in W_{1}$ for every $\xi \in D_{\xi_{0}, \varepsilon}$. There exists a smooth function $\alpha: \mathbb{C}^{w} \rightarrow \mathbb{R}(\alpha$ doesn't depend on $\xi)$ such that $\left.\alpha\right|_{\mathbb{C}^{w} \backslash W_{2}} \equiv 0$ and $\left.\alpha\right|_{W_{1}} \equiv 1$. We set $X_{\xi}=\alpha(w)\left(\xi_{0}-\xi\right) \frac{d}{d w^{\prime}}$, then corresponding maps φ_{ξ} are as required. Moreover, they smoothly depend on $\xi \in D_{\xi_{0}, \varepsilon}$.

Let us define a map $h_{2}: O_{Q} \rightarrow D_{\xi_{0}, \varepsilon} \times \mathrm{T}_{\xi_{0}}$, where O_{Q} is the above neighborhood of Q in which we have new coordinates $\left(z, w^{\prime}\right)$ from Lemma 3.1 (generally speaking, with $\varepsilon^{\prime} \neq \varepsilon$ in its statement). To construct the map h_{2} we introduce a family of maps $g_{\xi}: \mathrm{T}_{\xi} \cap O(Q) \rightarrow \mathrm{T}_{\xi_{0}}, \xi \in D_{\xi_{0}, \varepsilon}$, defined by the following formula $\left(z, w^{\prime}\right)\left(g_{\xi}(z, w)\right)=\left(\sqrt{-w^{\prime}\left(\gamma_{\xi}(w)\right)}, w^{\prime}\left(\gamma_{\xi}(w)\right)\right)$. We choose the branch of the root so that $g_{\xi_{0}}$ is the inclusion $\operatorname{map} \mathrm{T}_{\xi_{0}} \cap O(Q) \hookrightarrow \mathrm{T}_{\xi_{0}}$. Put $h_{2}(z, w)=\left(f(z, w), g_{f(z, w)}(z, w)\right)$. Obviously, this map can be extended to a neighborhood of the set of simple points Q_{k}.

Now we "combine" the map h_{1} from (3) with h_{2}. The resulting map $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash \bar{V} \rightarrow D_{\xi_{0}, \varepsilon} \times\left(\mathrm{T}_{\xi_{0}} \backslash \bar{V}\right)$, where $V \subset U$ is a union of connected components of the neighborhood U containing singular points P_{j}, is well defined. Moreover, it extends to a homeomorphism

$$
\begin{equation*}
h_{3}: f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash V \rightarrow D_{\xi_{0}, \varepsilon} \times\left(\mathrm{T}_{\xi_{0}} \backslash V\right) . \tag{4}
\end{equation*}
$$

We see that functions f and Pr_{1} (considered on the sets $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash V$ and $D_{\xi_{0}, \varepsilon} \times \bar{L}$ resp.) are $T R$-equivalent via the map h_{3}.

Corollary 3.1. Suppose $\mathrm{T}_{\xi_{0}}$ is nonsingular. If $\xi_{0} \neq f(0, \infty)$, then for sufficiently small $\varepsilon>0$ the foliation of $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ generated by the rational Hamiltonian f is a trivial bundle $\mathrm{T}_{\xi_{0}} \times D_{\xi_{0}, \varepsilon}$. If $\xi_{0}=f(0, \infty)$, then the corresponding foliation is not a trivial bundle, since $\chi\left(\mathrm{T}_{\xi}\right)-\chi\left(\mathrm{T}_{\xi_{0}}\right)<0$, where $\xi \neq \xi_{0}$ is close to ξ_{0} (see Lemma 3.4).

Picture 1. Layers T_{ξ} and $\mathrm{T}_{\xi_{0}}$.

Since we assumed that $n \neq m$ (see the beginning of Section 3), condition $\xi_{0}=f(0, \infty)$ implies $n<m$ and $\xi_{0}=0$. In this case put $l_{0}=m-n$ (multiplicity of the point $\left.(0, \infty)\right)$. Let l_{j} denote multiplicities of singular points P_{j} on $\mathrm{T}_{\xi_{0}}$. By the direct computation of the topology of a given fiber we get

Lemma 3.4. $\chi\left(\mathrm{T}_{\xi}\right)-\chi\left(\mathrm{T}_{\xi_{0}}\right)=\sum_{j=1}^{s^{P}}\left(1-l_{j}\right)$ when $\xi_{0} \neq f(0, \infty)$ and $\chi\left(\mathrm{T}_{\xi}\right)-\chi\left(\mathrm{T}_{\xi_{0}}\right)=-l_{0}+\sum_{j=1}^{s^{P}}\left(1-l_{j}\right)$ when $\xi_{0}=f(0, \infty)$.

Remark 3.1. There is a "geometrical" way to prove Lemma 3.4. Namely, if $P \in \mathrm{~T}_{\xi_{0}}$ is a singular point, then there exist a neighborhood V_{P} of this point and coordinates $\left(z, w^{\prime}\right)$ such that Hamiltonian $f=z^{2}+w^{\prime l}+\xi_{0}$ for some $l \geq 2$. If $\varepsilon>0$ is small enough, then for each $\xi \in D_{\xi_{0}, \varepsilon}, \xi \neq \xi_{0}$ we have a "vanishing graph" $\Gamma_{l, \xi}^{P} \subset V_{P} \cap \mathrm{~T}_{\xi}$ on two vertices with l edges connecting these vertices. This graph $\Gamma_{l, \xi}^{P}$ shrinks to a point P as $\xi \rightarrow \xi_{0}$ (see [16, §3, propositions 1 and 2]). Therefore, to calculate $\chi\left(\mathrm{T}_{\xi}\right)-\chi\left(\mathrm{T}_{\xi_{0}}\right)$ we can use the additivity of Eulerian characteristic χ and the fact that $\chi\left(\Gamma_{l, \xi}^{P}\right)=2-l$.

Example 3.1. Let $f(z, w)=z^{2}+w+1 / w, \xi_{0}=2$ and $\xi \in D_{\xi_{0}, \varepsilon}, \xi \neq \xi_{0}$, where $\varepsilon>0$ is small enough. It is easily seen that $P=(0,1)$ is the only singular point of the fiber $\mathrm{T}_{\xi_{0}}$. Since multiplicity l of this singular point equals 2, the corresponding "vanishing graph" $\Gamma_{l, \xi}^{P} \subset \mathrm{~T}_{\xi}$ is a "vanishing circle", and $\chi\left(\mathrm{T}_{\xi_{0}}\right)-\chi\left(\mathrm{T}_{\xi}\right)=1$. Moreover, T_{ξ} is a torus with 2 punctures and $\mathrm{T}_{\xi_{0}}$ is a sphere with two punctures and a pair of identified points (see Picture 1).

Suppose $\xi_{0} \neq f(0, \infty)$. Take a singular point P_{j} and a map $\phi_{P, j}$ from (1). It is easily seen that if we define a neighborhood V of the set of singular points P_{j} so that each connected component of $\operatorname{Pr}_{w}(V)$ is $\phi_{P, j}^{-1}\left(D_{0,(2 \varepsilon)^{1 / l_{j}}}\right)$ for some $j, j=1, \ldots, s^{P}$, it will satisfy the assertion of Lemma 3.3. From now on we will assume that V is chosen in exactly this way.

Remark 3.2. Note that in the case when $R(w)=w^{l_{j}}$ and $\xi_{0}=0$, our neighborhood V is just $V_{\varepsilon, l_{j}}$ (see Lemma 3.1).

As above, let $l_{j}, j=1, \ldots, s^{P}$, denote multiplicities of singular points P_{j} on the fiber $\mathrm{T}_{\xi_{0}}$. Put $\bar{V}_{\varepsilon}^{4}=$ $\bigsqcup_{j=1}^{s^{P}} \bar{V}_{\varepsilon, l_{j}}$. Define $g: \bar{V}_{\varepsilon}^{4} \rightarrow \mathbb{C}$ by the formula $\left.g\right|_{\bar{V}_{\varepsilon, l_{j}}}\left(z^{\prime}, w^{\prime}\right)=z^{\prime 2}+w^{\prime l_{j}}+\xi_{0}$. Let V_{P} be the connected component of V, such that $P \in V_{P}$. By definition of V we see, that in coordinates (z, w^{\prime}) from Lemma 3.1 neighborhood V_{P} coincides with $V_{\varepsilon, l_{j}}$. Therefore, there exists a biholomorphism $h_{4}: V \rightarrow N_{\varepsilon}^{4}$ such that $\left.g\right|_{V_{\varepsilon}^{4}}=\left.f\right|_{V} \circ h_{4}$. Thus, we get

Corollary 3.2. Suppose $\xi_{0} \neq f(0, \infty)$. Then there exists $\varepsilon>0$ such that $\left.f\right|_{\bar{V}}$ and $\left.g\right|_{\bar{V}_{\varepsilon}^{4}}$ are TR-equivalent.
We will also need the following lemma

Lemma 3.5. Let $X, X_{1}^{\prime}, X_{2}^{\prime}$ be topological spaces. Suppose X_{1} and X_{2} are closed subsets of X such that $X_{1} \cup X_{2}=X$. Let $H_{j}: X_{j} \rightarrow X_{j}^{\prime}, j=1,2$ be homeomorphisms. Glue X_{1}^{\prime} and X_{2}^{\prime} via the map $H_{12}: H_{1}\left(X_{1} \cap\right.$ $\left.X_{2}\right) \rightarrow H_{2}\left(X_{1} \cap X_{2}\right)$, where $H_{12}=\left.H_{2} \circ H_{1}^{-1}\right|_{H_{1}\left(X_{1} \cap X_{2}\right)}$. Denote this gluing by \sim_{12}. Then, the map $H: X \rightarrow$ $\left(X_{1}^{\prime} \sqcup X_{2}^{\prime}\right) / \sim_{12}$, defined by the rule $\left.H\right|_{X_{j}}=H_{j}, j=1,2$, is a homeomorphism.

Proof. By definition, H is an open bijection. Therefore, we only need to check if this map is continuous. Let O be an open set in $\left(X_{1}^{\prime} \sqcup X_{2}^{\prime}\right) / \sim_{12}$. We now prove that the set $H^{-1}(O)=H_{1}^{-1}\left(O \cap X_{1}^{\prime}\right) \cup H_{2}^{-1}\left(O \cap X_{2}^{\prime}\right)$ is open in X. Take a point $x \in H_{1}^{-1}\left(O \cap X_{1}^{\prime}\right) \cup H_{2}^{-1}\left(O \cap X_{2}^{\prime}\right)$ and suppose $x \in X_{1} \cap X_{2}$. Then there exist a neighborhood $V_{1} \subset X_{1}$ of x and a neighborhood $V_{2} \subset X_{2}$ of x such that $H_{1}\left(V_{1}\right) \subset O \cap X_{1}^{\prime}$ and $H_{2}\left(V_{2}\right) \subset O \cap X_{2}^{\prime}$. Consider open sets $U_{1} \subset X$ and $U_{2} \subset X$ such that $U_{1} \cap X_{1}=V_{1}, U_{2} \cap X_{2}=V_{2}$. Put $U=U_{1} \cap U_{2}$. It is easily seen that $x \in U \subset H^{-1}(O)$. Suppose $x \notin X_{1} \cap X_{2}$. Then there also exists a neighborhood $U \subset X$ of x such that $U \subset H^{-1}(O)$, because H_{1} and H_{2} are homeomorphisms, and also because X_{1} and X_{2} are closed subsets of X.

4. Main results

Now we are ready to introduce a "semi-local" normal form of a rational Hamiltonian f. Consider the following set

$$
\partial^{+} V_{\varepsilon, l_{j}}=\left\{(z, w) \in \mathbb{C}^{2}| | z^{2}+w^{l_{j}}\left|<\varepsilon,|w|=(2 \varepsilon)^{1 / l_{j}}\right\} .\right.
$$

Let $\left(z^{\prime}, w^{\prime}\right)$ be our new coordinates, i.e. $w^{\prime}=\phi_{P, j}(w)$ and $z^{\prime}=z$, see (1). Let $\mu(z, w)$ be a map as in formula (3) and $\bar{L}=\mathrm{T}_{\xi_{0}} \backslash V$ be as in Lemma 3.3. We can assume that for each $\left(z^{\prime}, w^{\prime}\right) \in \partial^{+} V_{\varepsilon, l_{j}}$ we have a well-defined value $\mu\left(z^{\prime}, \phi_{P, j}^{-1}\left(w^{\prime}\right)\right)=\left(\sqrt{-w^{\prime \prime} l_{j}}, \phi_{P, j}^{-1}\left(w^{\prime}\right)\right)$. Consider functions $\nu_{j}: \partial^{+} V_{\varepsilon, l_{j}} \rightarrow D_{\xi_{0}, \varepsilon} \times \partial \bar{L}$, where

$$
\nu_{j}\left(z^{\prime}, w^{\prime}\right)=\left(z^{\prime 2}+w^{\prime l_{j}}+\xi_{0}, \mu\left(z^{\prime}, \phi_{P, j}^{-1}\left(w^{\prime}\right)\right)\right)=\left(z^{\prime 2}+w^{\prime l_{j}}+\xi_{0}, \sqrt{-w^{\prime l_{j}}}, \phi_{P, j}^{-1}\left(w^{\prime}\right)\right) .
$$

Note that each ν_{j} is a homeomorphism. Therefore, we can glue spaces ${ }^{+} N_{\varepsilon}^{4}=\bigsqcup_{j=1}^{s^{P}}\left(V_{\varepsilon, l_{j}} \cup \partial^{+} V_{\varepsilon, l_{j}}\right)$ and $D_{\xi_{0}, \varepsilon} \times \bar{L}$ via the maps ν_{j}. Denote this gluing by \sim. Consider the following space

$$
M^{4}={ }^{+} N_{\varepsilon}^{4} \sqcup\left(D_{\xi_{0}, \varepsilon} \times \bar{L}\right) / \sim
$$

and a function $G: M^{4} \rightarrow \mathbb{C}$ that is defined as follows. On the set $D_{\xi_{0, \varepsilon}} \times \bar{L}$ let $G=\operatorname{Pr}_{1}$, and on each set $V_{\varepsilon, l_{j}} \cup \partial^{+} V_{\varepsilon, l_{j}}$ let $G\left(z^{\prime}, w^{\prime}\right)=z^{\prime 2}+w^{\prime l_{j}}+\xi_{0}$. Note that $\left(z^{\prime}, w^{\prime}\right) \in \partial^{+} V_{\varepsilon, l_{j}}$ implies $G\left(z^{\prime}, w^{\prime}\right)=\operatorname{Pr}_{1} \circ \nu_{j}\left(z^{\prime}, w^{\prime}\right)$, so G is well defined. We have the following

Theorem on the normal form 4.1. Suppose $\xi_{0} \neq f(0, \infty)$. Then there exists $\varepsilon>0$ such that functions $\left.f\right|_{f^{-1}\left(D_{\left.\xi_{0}, \varepsilon\right)}\right.}$ and G are TR-equivalent.

Proof. We will construct a homeomorphism $h: f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \rightarrow M^{4}$ such that $\left.f\right|_{f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)}=G \circ h$. Let

$$
\begin{gathered}
X=f^{-1}\left(D_{\xi_{0}, \varepsilon}\right), X_{1}=f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash V, X_{2}=\bar{V} \cap f^{-1}\left(D_{\xi_{0}, \varepsilon}\right), \\
X_{1}^{\prime}=D_{\xi_{0}, \varepsilon} \times \bar{L} \text { and } X_{2}^{\prime}={ }^{+} N_{\varepsilon}^{4} .
\end{gathered}
$$

Picture 2. Cross.

Picture 3. Atom.

We see that $X=X_{1} \cup X_{2}$, where X_{1} and X_{2} are closed subsets of X. According to the proofs of Lemma 3.3 and Corollary 3.2, we let $H_{1}=h_{3}$ and $H_{2}=h_{4}$. Take the corresponding homeomorphism H from Lemma 3.5 and let $h=H$, i.e. we define h as follows:

$$
h(z, w)= \begin{cases}h_{3}(z, w) & \text { when }(z, w) \in f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash V, \\ h_{4}(z, w)=\left(z^{\prime}, w^{\prime}\right) & \text { when }(z, w) \in \bar{V} \cap f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) .\end{cases}
$$

The map h is well defined. Indeed, consider $(z, w) \in X_{1} \cap X_{2}=\partial \bar{V} \cap f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$. Then $\nu_{j} \circ h_{4}(z, w)=$ $\nu_{j}\left(z^{\prime}, w^{\prime}\right)=\left(z^{\prime 2}+w^{\prime l_{j}}+\xi_{0}, \mu(z, w)\right)=(f(z, w), \mu(z, w))=h_{3}(z, w)$. From Lemma 3.5 we get that h is a homeomorphism. Moreover, it is easily seen that $\left.f\right|_{f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)}=G \circ h$. Indeed, let $(z, w) \in X_{1}=$ $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right) \backslash V$. Then the composition $G \circ h(z, w)=f(z, w)$ by definition. Let $(z, w) \in X_{2}=\bar{V} \cap f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$. Then $G \circ h(z, w)=z^{\prime 2}+w^{\prime l_{j}}+\xi_{0}=f(z, w)$, and theorem is proved.

Remark 4.1. The gluing \sim from above is not uniquely determined. In fact, it has one degree of freedom. Because of this, we can assume that for each rational Hamiltonian f such that $\xi_{0} \neq f(0, \infty)$, with specified topological type of the fiber $\mathrm{T}_{\xi_{0}}$ and set of multiplicities of singular points on this fiber, the corresponding normal form is the same (see the proof of Theorem 4.2).

Remark 4.2. Suppose P is the only singular point on the fiber $\mathrm{T}_{\xi_{0}}$ and $\xi_{0} \neq f(0, \infty)$. One may notice that the foliation of $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ (considered up to fiberwise homeomorphism) generated by f is the 4 -dimensional analogue of the atom (see [1] and [9]) of a singularity and the set ${ }^{+} N_{\varepsilon}^{4}$ is the analogue of the so-called cross (see Picture 2 and Picture 3). As in 2-dimensional case "atom" $f^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ of the singularity P can be obtained from the "cross" ${ }^{+} N_{\varepsilon}^{4}$ (and a "ribbon" $D_{\xi_{0}, \varepsilon} \times \bar{L}$) via the appropriate gluing (see Theorem 4.1).

In the above construction we assumed that $\xi_{0} \neq f(0, \infty)$. Similarly, we can construct a normal form of a rational Hamiltonian f in the case $\xi_{0}=f(0, \infty)$. Indeed, condition $\xi_{0}=f(0, \infty)=R(\infty)$ implies that the rational function $R(w)$ has at least one pole w_{0} in \mathbb{C}^{w}. Make the change of variable $w \rightarrow w^{\prime}=\frac{1}{w-w_{0}}$. Obviously, functions $f=f(z, w)$ and $g=g\left(z, w^{\prime}\right)=f\left(z, w_{0}+\frac{1}{w^{\prime}}\right.$) are R-equivalent (we assume that points $\left(z, w^{\prime}\right)$ with $w^{\prime}=0$ do not belong to the domain of g). Note that $w^{\prime}=0$ is not a pole of the function $g\left(0, w^{\prime}\right)$ since $g(0,0)=\xi_{0}=f(0, \infty) \neq \infty$. In fact, this "punctured" point is a removable singularity of the
function $g\left(0, w^{\prime}\right)$. Therefore, we can define multiplicity l_{0} of the point $(0, \infty)$ of the fiber $\mathrm{T}_{\xi_{0}}$ as multiplicity of zero $w^{\prime}=0$ of the function $g\left(0, w^{\prime}\right)-\xi_{0}$. It is easily seen that l_{0} is well defined, i.e. it doesn't depend on the choice of a pole of R. Indeed, condition $\xi_{0}=R(\infty)=\frac{A_{n}(\infty)}{B_{m}(\infty)}$ implies $\xi_{0}=0$ (since $n<m$), and $l_{0}=m-n$. Thus, since $g(0, \infty) \neq \xi_{0}$, we can construct the normal form $\left(M^{4}, G\right)$ as in Theorem 4.1, where $M^{4} \approx g^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ has an additional puncture in the plain $\mathbb{C}^{w^{\prime}}$ at zero. Note that we may have $l_{0}=1$, but it will not impede the construction of the normal form because of Lemma 3.1.

Consider two (hyperelliptic) rational Hamiltonians f_{1} and f_{2}. We have the following

Theorem 4.2. Suppose $\xi_{0} \neq f_{1}(0, \infty)$ and $\xi_{0} \neq f_{2}(0, \infty)$ or $\xi_{0}=f_{1}(0, \infty)=f_{2}(0, \infty)$. Then rational Hamiltonians f_{1} and f_{2} are semi-locally Liouville equivalent with respect to ξ_{0} iff fibers $\mathrm{T}_{\xi_{0}}^{1}$ and $\mathrm{T}_{\xi_{0}}^{2}$ are homeomorphic and have the same sets of multiplicities of singular points (including the multiplicity of the (singular) point $(0, \infty)$ when $\left.\xi_{0}=f_{j}(0, \infty), j=1,2\right)$.

In the case $\xi_{0}=f_{1}(0, \infty) \neq f_{2}(0, \infty)$ Hamiltonians f_{1} and f_{2} are not semi-locally Liouville equivalent with respect to ξ_{0}.

Proof. Suppose f_{1} and f_{2} are semi-locally Liouville equivalent with respect to ξ_{0}. At first, we are going to show that fibers $\mathrm{T}_{\xi_{0}}^{1}$ and $h\left(\mathrm{~T}_{\xi_{0}}^{1}\right)$ must have the same sets of multiplicities of singular points. Because of Lemma 3.1 it is sufficient to show that local Liouville equivalence of $g_{k}=z^{2}+w^{k}$ and $g_{l}=z^{2}+w^{l}$ (with respect to P_{k} and $\left.P_{l}, P_{k}=P_{l}=(0,0)\right)$ implies $k=l$.

Suppose g_{k} and g_{l} are locally Liouville equivalent via the map $h^{\text {loc }}$. Let $B_{\delta} \in \mathbb{C}^{2}$ a closed ball of radius δ around $(0,0)$. It is well known that for sufficiently small $\delta>0$ first homology groups $\mathrm{H}_{1}\left(B_{\delta} \cap g_{k}^{-1}(\xi)\right)=\mathbb{Z}^{k-1}$ for every small $\xi \in \mathbb{C}$. We choose δ, δ_{1} and $\delta_{2}, 0<\delta<\delta_{1}<\delta_{2}$, so that $B_{\delta} \subset h^{l o c}\left(B_{\delta_{1}}\right) \subset B_{\delta_{2}}$, and the inclusion map $i_{1}: B_{\delta} \rightarrow B_{\delta_{2}}$ induces a homotopy equivalence between $B_{\delta} \cap g_{k}^{-1}(\xi)$ and $B_{\delta_{2}} \cap g_{k}^{-1}(\xi)$ for all sufficiently small ξ. Then it is easily seen that the inclusion map $i_{2}: B_{\delta} \rightarrow h^{l o c}\left(B_{\delta_{1}}\right)$ induces an injective homomorphism $\mathrm{H}_{1}\left(B_{\delta} \cap g_{k}^{-1}(\xi)\right) \hookrightarrow \mathrm{H}_{1}\left(h\left(B_{\delta_{1}}\right) \cap g_{k}^{-1}(\xi)\right)$ of abelian groups. Thus, if $\delta_{2}>0$ was small enough, for some ξ we get an injective homomorphism $\mathbb{Z}^{k-1} \hookrightarrow \mathbb{Z}^{l-1}$, so $k \leq l$. Similarly, $k \geq l$.

Now let us prove that the foliations of $f_{1}^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ and $f_{1}^{-1}\left(D_{\xi_{0}, \varepsilon}\right)$ are fiberwise homeomorphic via a map h such that $h\left(\mathrm{~T}_{\xi_{0}}^{1}\right)=\mathrm{T}_{\xi_{0}}^{2}$. Note that since $\varepsilon>0$ is arbitrary small, fibers $\mathrm{T}_{\xi}^{j}, j=1,2$, where $\xi_{0} \neq \xi \in D_{\xi_{0}, \varepsilon}$, are nonsingular. Therefore, if $\mathrm{T}_{\xi_{0}}^{1}$ is a singular fiber, then $h\left(\mathrm{~T}_{\xi_{0}}^{1}\right)$ is also a singular fiber. The case of nonsingular fibers $\mathrm{T}_{\xi_{0}}^{1}$ and $\mathrm{T}_{\xi_{0}}^{2}$ is clear because of Corollary 3.1.

Thus, if f_{1} and f_{2} are semi-locally Liouville equivalent with respect to ξ_{0}, then fibers $\mathrm{T}_{\xi_{0}}^{1}$ and $\mathrm{T}_{\xi_{0}}^{2}$ are homeomorphic and have the same sets of multiplicities of singular points. Therefore, using Lemma 3.4 we immediately get the second assertion of the theorem.

Let us now prove the first assertion of the theorem. Consider the case when $\xi_{0} \neq f_{1}(0, \infty)$ and $\xi_{0} \neq$ $f_{2}(0, \infty)$. Necessity is already proved.

Sufficiency. Let P_{j}^{1} and $P_{j}^{2}, j=1, \ldots, s^{P^{1}}=s^{P^{2}}$ be singular points on fibers $\mathrm{T}_{\xi_{0}}^{1}$ and $\mathrm{T}_{\xi_{0}}^{2}$ such that for each j multiplicities $l_{j}^{1}=l_{j}^{2}$ coincide. Let $\varepsilon>0$ be sufficiently small. Denote by V^{1} and V^{2} the neighborhoods of singular points P_{j}^{1} and P_{j}^{2} as in Theorem 4.1. Let $\bar{L}_{1}=\mathrm{T}_{\xi_{0}}^{1} \backslash V^{1}$ and $\bar{L}_{2}=\mathrm{T}_{\xi_{0}}^{2} \backslash V^{2}$. We have the normal forms $\left(M_{1}^{4}, G_{1}\right)$ and $\left(M_{2}^{4}, G_{2}\right)$ of the Hamiltonians f_{1} and f_{2}, where

$$
\begin{gathered}
M_{1}^{4}=\left(D_{\xi_{0}, \varepsilon} \times \bar{L}_{1}\right) \sqcup\left(\bigsqcup_{j=1}^{s^{P^{1}}}\left(V_{\varepsilon, l_{j}} \cup \partial^{+} V_{\varepsilon, l_{j}}\right)\right) / \sim_{1} \quad \text { and } \\
M_{2}^{4}=\left(D_{\xi_{0}, \varepsilon} \times \bar{L}_{2}\right) \sqcup\left(\bigsqcup_{j=1}^{s^{P^{2}}}\left(V_{\varepsilon, l_{j}} \cup \partial^{+} V_{\varepsilon, l_{j}}\right)\right) / \sim_{2} .
\end{gathered}
$$

We know that $G_{1}: M_{1}^{4} \rightarrow \mathbb{C}$ and $G_{2}: M_{2}^{4} \rightarrow \mathbb{C}$ are $T R$-equivalent to $\left.f_{1}\right|_{f_{1}^{-1}\left(D_{\xi_{0}, \varepsilon}\right)}$ and $\left.f_{2}\right|_{f_{2}^{-1}\left(D_{\xi_{0}, \varepsilon}\right)}$ resp. Therefore, it is sufficient to show that functions G_{1} and G_{2} are $T R$-equivalent.

Since fibers $\mathrm{T}_{\xi_{0}}^{1}$ and $\mathrm{T}_{\xi_{0}}^{2}$ are homeomorphic and have the same sets of multiplicities of singular points, there exists an orientation-preserving homeomorphism $\mathrm{T}_{\xi_{0}}^{1} \rightarrow \mathrm{~T}_{\xi_{0}}^{2}$ such that for each $j=1, \ldots, s^{P^{1}}$ the singular point P_{j}^{1} goes to P_{j}^{2}. In particular, manifolds with boundary $\mathrm{T}_{\xi_{0}}^{1} \backslash V^{1}$ and $\mathrm{T}_{\xi_{0}}^{2} \backslash V^{2}$ are homeomorphic. For every connected component of $D_{\xi_{0}, \varepsilon} \times \partial\left(\mathrm{T}_{\xi_{0}}^{1} \backslash V^{1}\right)$ consider its small blowing in $D_{\xi_{0}, \varepsilon} \times\left(\mathrm{T}_{\xi_{0}}^{1} \backslash V^{1}\right)$ which is homeomorphic to a direct product $D_{\xi_{0}, \varepsilon} \times[0,1] \times S^{1}$ and add this blowings to the set $\bigsqcup_{j} V_{\varepsilon, l_{j}} \approx$ V^{1}. Denote the resulting set by \widetilde{V}^{1}. Note that \widetilde{V}^{1} is a closed subset of M_{1}^{4}. Similarly, we can construct a closed subset $\widetilde{V}^{2} \subset M_{2}^{4}$. It is easily seen that there exists an orientation-preserving homeomorphism $\mathrm{id} \times h_{L}: D_{\xi_{0}, \varepsilon} \times\left(\mathrm{T}_{\xi_{0}}^{1} \backslash \widetilde{V}^{1}\right) \rightarrow D_{\xi_{0}, \varepsilon} \times\left(\mathrm{T}_{\xi_{0}}^{2} \backslash \widetilde{V}^{2}\right)$.

On each set $V_{\varepsilon, l_{j}} \cup \partial^{+} V_{\varepsilon, l_{j}}$ consider a homeomorphism h_{V}, defined by the formula $(z, w) \mapsto(z, w)$. Consider a connected component of $\widetilde{V}^{1} \backslash \bigsqcup_{j} V_{\varepsilon, l_{j}}$, which is homeomorphic to $D_{\xi_{0}, \varepsilon} \times[0,1] \times S^{1}$, and the restrictions of the maps h_{L} and h_{V} to the corresponding parts of the boundary $\partial\left(\widetilde{V}^{1} \backslash \bigsqcup_{j} V_{\varepsilon, l_{j}}\right)$ (which are homeomorphic to a solid torus $D_{\xi_{0}, \varepsilon} \times S^{1}$). By the construction of \sim_{1} and \sim_{2} induced orientations on this solid tori are compatible. Therefore, there exists a homeomorphism $\widetilde{V}^{1} \backslash \bigsqcup_{j} V_{\varepsilon, l_{j}} \rightarrow \widetilde{V}^{2} \backslash \bigsqcup_{j} V_{\varepsilon, l_{j}}$ that "glue" h_{L} and h_{V} into a homeomorphism $h_{M}: M_{1}^{4} \rightarrow M_{2}^{4}$ (use the following fact: the space of orientation-preserving homeomorphisms of a circle is arcwise connected). It is easily seen that $G_{1}=G_{2} \circ h_{M}$, so we are done with the case $\xi_{0} \neq f_{1}(0, \infty)$ and $\xi_{0} \neq f_{2}(0, \infty)$.

Now consider the case $\xi_{0}=f_{1}(0, \infty)$ and $\xi_{0}=f_{2}(0, \infty)$. Necessity follows from the above reasoning and Lemma 3.4.

Sufficiency. Consider functions $g_{1}=g_{1}\left(z, w^{\prime}\right)$ and $g_{1}=g_{2}\left(z, w^{\prime}\right)$ that are R-equivalent to f_{1} and f_{2} and have additional punctures in $\mathbb{C}^{w^{\prime}}$ at zero. We know that fibers $g_{1}^{-1}\left(\xi_{0}\right)$ and $g_{2}^{-1}\left(\xi_{0}\right)$ are homeomorphic and have the same sets of multiplicities of singular points and the same multiplicity of the point $\left(z, w^{\prime}\right)(0, \infty)=$ $(0,0)$). Since $g_{1}(0, \infty) \neq \xi_{0}$ and $g_{2}(0, \infty) \neq \xi_{0}$, functions g_{1} and g_{2} (considered as Hamiltonians) are semi-locally $T R$-equivalent with respect to ξ_{0}. Thus, theorem is proved.

Remark 4.3. From the proof of Theorem 4.2 we easily get that its assertion holds not only for semi-local Liouville equivalence, but also for semi-local $T R$-equivalence.

Note that order of a pole of a rational Hamiltonian f is not an invariant even of smooth semi-local Liouville equivalence, as the following example shows

Example 4.1. Consider rational Hamiltonians

$$
\begin{aligned}
& f_{1}(z, w)=z^{2}+\frac{(w-3)(w-4)}{(w-1)(w-2)} \text { and } \\
& f_{2}(z, w)=z^{2}+\frac{(w-1)(w-2)(w-3)(w-4)}{(w-5)^{2}}
\end{aligned}
$$

Parity of the poles of the functions $R_{1}=f_{1}(0, w)$ and $R_{2}=f_{2}(0, w)$ are different. Despite this, f_{1} and f_{2} are semi-locally $T R$-equivalent with respect to $\xi_{0}=0$, since fibers T_{0}^{1} and T_{0}^{2} are homeomorphic and since the corresponding foliations near them are trivial bundles.

Acknowledgements

The author is indebted to A. Fomenko and E. Kudryavtseva for their help and valuable advice.

References

[1] A. Bolsinov, A. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification, Vol. 1, Chapman and Hall, Boca Raton, FL, 2004.
[2] S. Broughton, On the topology of polynomial hypersurfaces, I, Proc. AMS Symp. Pure. Math. 40 (1983) 165-178.
[3] S. Dirk, M. Tibar, Deformations of polynomials, boundary singularities and monodromy, Mosc. Math. J. 3 (2) (2003) 661-679.
[4] H. Flaschka, A remark on integrable Hamiltonian systems, Phys. Lett. A 131 (9) (1988) 505-508.
[5] A. Fomenko, The symplectic topology of completely integrable Hamiltonian systems, Russ. Math. Surv. 44 (1) (1989) 181-219.
[6] A. Fomenko, V. Sharko, Exact round Morse functions, inequalities of Morse type and integrals of Hamiltonian systems, Ukr. Math. J. 41 (6) (1989) 621-629.
[7] A. Fomenko, H. Zieschang, A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom, Math. USSR, Izv. 36 (3) (1991) 567-596.
[8] A. Fomenko, Symplectic Geometry, second revised edition, Gordon and Breach, 1995.
[9] A. Fomenko, E. Kudryavtseva, I. Nikonov, Maximum symmetric cellular partitions of surfaces and their coverings, Sb. Math. 199 (9) (2008) 3-96.
[10] A. Fomenko, A. Konyaev, New approach to symmetries and singularities in integrable Hamiltonian systems, Topol. Appl. 159 (2012) 1964-1975.
[11] A. Fomenko, A. Konyaev, Algebra and Geometry Through Hamiltonian Systems, in: Continuous and Distributed Systems, in: Theory and Applications, Solid Mechanics and Its Applications, vol. 211, 2014, pp. 3-21.
[12] A. Khovanskii, Newton polyhedra, and the genus of complete intersections, Funct. Anal. Appl. 12 (1) (1978) 38-46.
[13] K. Kodaira, On the structure of compact complex analytic surfaces, I, Am. J. Math. 50 (1963) 218-221.
[14] K. Kodaira, On the structure of compact complex analytic surfaces, II, Am. J. Math. 51 (1964) 1100-1104.
[15] E. Kudryavtseva, The Liouville-type theorem for integrable Hamiltonian systems with incomplete flows, Rep. RAS 445 (4) (2012) 383-385.
[16] E. Kudryavtseva, T. Lepski, The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian, Transl. Sb. Math. 202 (3) (2011) 373-411.
[17] E. Kudryavtseva, T. Lepski, The topology of foliation and the Liouville theorem for integrable systems with incomplete flows, Sb. Tr. Semin. Vektorn. Tenzorn. Anal. 28 (2011) 106-149.
[18] E. Kudryavtseva, T. Lepski, Integrable Hamiltonian systems with incomplete flows and Newton's polygons, Contemp. Probl. Math., Mech. 6 (3) (2011) 42-55.
[19] T. Lepski, Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree, Sb. Math. 201 (10) (2010) 1511-1538.
[20] N. Martynchuk, Complex Hamiltonian systems on \mathbb{C}^{2} with Hamiltonian function of low Laurent degree, Mosc. Univ. Math. Bull. 70 (2) (2015) 53-59.
[21] J. Milnor, Singular Points of Complex Hypersurfaces, Princeton Univ. Press, NJ, 1968.
[22] A. Oshemkov, Classification of hyperbolic singularities of rank 0 of integrable Hamiltonian systems, Math. Sb. 201 (8) (2010) 63-102.
[23] O. Saeki, Topological types of complex isolated hypersurface singularities, Kodai Math. J. 12 (1989) 23-29.
[24] N. Zung, A note on focus-focus singularities, Differ. Geom. Appl. 7 (1997) 123-130.

[^0]: * Correspondence to: Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia.

 E-mail address: mnick45@bk.ru.

