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Discovery: Aspartate
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Malaria remains one of the most prominent and dangerous tropical diseases. While
artemisinin and analogs have been used as first-line drugs for the past decades, due to
the high mutational rate and rapid adaptation to the environment of the parasite, it remains
urgent to develop new antimalarials. The pyrimidine biosynthesis pathway plays an
important role in cell growth and proliferation. Unlike human host cells, the malarial
parasite lacks a functional pyrimidine salvage pathway, meaning that RNA and DNA
synthesis is highly dependent on the de novo synthesis pathway. Thus, direct or indirect
blockage of the pyrimidine biosynthesis pathway can be lethal to the parasite. Aspartate
transcarbamoylase (ATCase), catalyzes the second step of the pyrimidine biosynthesis
pathway, the condensation of L-aspartate and carbamoyl phosphate to form N-
carbamoyl aspartate and inorganic phosphate, and has been demonstrated to be a
promising target both for anti-malaria and anti-cancer drug development. This is
highlighted by the discovery that at least one of the targets of Torin2 – a potent, yet
unselective, antimalarial – is the activity of the parasite transcarbamoylase. Additionally,
the recent discovery of an allosteric pocket of the human homology raises the intriguing
possibility of species selective ATCase inhibitors. We recently exploited the available
crystal structures of the malarial aspartate transcarbamoylase to perform a fragment-
based screening to identify hits. In this review, we summarize studies on the structure of
Plasmodium falciparum ATCase by focusing on an allosteric pocket that supports the
catalytic mechanisms.

Keywords: aspartate transcarbamoylase, allosteric pocket, pyrimidine biosynthesis, anti-malarials, Plasmodium
falciparum, X-ray structure
INTRODUCTION

Malaria is an infectious disease that remains a clear and present threat to human health. It has been
estimated that the disease is responsible for more than half a million deaths annually. In 2016, nearly
half of the world’s population was at risk of malaria and according to the latest World Malaria
Report 2021 (WHO, 2021), there were an estimated 241 million cases of malaria in 2020 in 85
malaria endemic countries, increasing from 227 million in 2019, and malaria deaths increased by
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12% compared with 2019, to an estimated 627 000. Children
under 5 years accounted for the majority of malaria deaths in
areas of high malaria transmission (77% in 2020). To date there
are more than 200 known species of the genus Plasmodium, but
just five of them cause human malaria, comprising P. vivax, P.
ovale, P. malariae, P. knowlesi and P. falciparum (Majori, 2012),
the most virulent malaria parasite. A potent vaccine is currently
not available and therefore disease control depends mostly on
drugs (Greenwood et al., 2008). Malaria is presently undergoing
resurgence and the control of P. falciparum has become a major
challenge in global health. Due to the high mutational rate of the
parasite and its resulting rapid adaptation to environmental
changes, both drug resistance and the geographic distribution
of the disease are increasing (Piel et al., 2010). The inevitable
emergence of antimalarial drug resistance (López et al., 2010)
forces continuous efforts towards the discovery and development
of new antimalarial drugs. There is therefore an urgent need for
novel chemotherapeutic targets. Highly attractive avenues for the
antimalarial drug discovery are metabolic pathways. The
pyrimidine-biosynthesis pathway of Plasmodium falciparum is
a promising target for antimalarial drug discovery as we reported
previously (Lunev et al., 2016; Lunev et al., 2018). Active
proliferation during the intraerythrocytic stage of P. falciparum
requires a supply of purines and pyrimidines for parasite growth
to support the production of DNA and parasite replication. As
the malarial parasite lacks a purine biosynthetic pathway (De
Koning et al., 2005; Hyde, 2007), as well as a functional
pyrimidine-import pathway (Reyes et al., 1982; Rathod and
Reyes, 1983; Gardner et al., 2002), the parasite relies solely on
the de novo synthesis pathway to produce pyrimidines, and
therefore the de novo pyrimidine biosynthesis pathway has
been demonstrated to be a promising target for antimalarial
drug discovery (Downie et al., 2008; Vaidya and Mather, 2009;
Rodrigues et al., 2010; Belen Cassera et al., 2011).

The de novo synthesis of pyrimidines process in general
contains six sequential enzymatic steps (Figure 1) in P.
falciparum and starts with the Carbamoyl phosphate
synthetase II (CPS II) which is responsible for the formation of
carbamoyl phosphate in the cytosol from bicarbonate, glutamine
and ATP (Müller et al., 2010; Müller et al., 2010). The Aspartate
transcarbamoylase (PF3D7_1344800, ATCase), the second
enzyme in the pathway, catalyzes the condensation of aspartate
and carbamoyl phosphate to form N-carbamoyl-l-aspartate and
inorganic phosphate. The third step is the intramolecular
condensation catalyzed by dihyroorotase (DHOase) to the
product dihydroorotate. Then dihydroorotate dehydrogenase
oxidizes dihydroorotate to orotate. Subsequently orotate and
5-phosphoribosyl-1-pyrophosphate (PRPP) are combined to
produce orotidine-5’-monophosphate (OMP) by orotate
phosphoribosyl transferase (OPRTase), the final product,
molecular uridine monophosphate (UMP), is yielded by
decarboxylation of OMP catalyzed by OMP decarboxylase
(O’Donovan and Neuhard, 1970; Jones, 1980).

In the following review, we summarize the current knowledge
of the PfATCase, by highlighting the potential of an allosteric
pocket and describing how these structures provide insights into
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
the ATCase catalytic mode of action. We will also review current
studies on drug discovery against other ATCases, not solely
against the human malaria parasite by Torin 2 (Bosch
et al., 2020).
ASPARTATE TRANSCARBAMOYLASE
STRUCTURE AND IMPACT ON
MECHANISM

Aspartate transcarbamoylase catalyzes the second step in de novo
pyrimidine biosynthesis, where the condensation of L-aspartate
(L-Asp) and carbamoyl phosphate (CP) to form N-carbamoyl
aspartate (CA) and phosphate (Pi) (Figure 2A). The Escherichia
coli aspartate transcarbamoylase holoenzyme represents the
canonical form and is composed of six catalytic and six
regulator subunits in which three regulatory pairs coordinate
two catalytic trimers (G., 1964; Gerhart and Schachman, 1965;
Weber, 1968; Ke et al., 1984; Stevens et al., 1990). The E. coli
enzyme has been extensively studied and is now a textbook
example that regulates pyrimidine biosynthesis pathway through
its catalytic and regulatory mechanisms and has been fully
characterized by Lipscomb and Kantrowitz (2012). The E. coli
ATCase is inhibited by the final products of the pyrimidine
biosynthesis pathway (CTP) and by a combination of CTP and
UTP. The catalytic reaction by the canonical ATCase is
sequential (Wang et al., 2005); CP binds first inducing a
conformational changes and creating a binding site for
L-aspartate. Similarly, N-carbamoyl aspartate leaves the active
site before phosphate.

The P. falciparum ATCase is a homotrimer with three active
sites in which each of the three active sites is formed at adjacent
oligomeric interface (Figure 3A), following the canonical
example. Each catalytic site is composed of two functional
domains - the aspartate domain, which is mainly responsible
for the binding of the substrate L-aspartate, and the carbamoyl
phosphate domain, which is mainly responsible for the binding
of the substrate carbamoyl phosphate. Apart from the catalytic
site, the E. coli ATCase also contains regulatory sites, which are
targets for the binding of the allosteric effectors – ATP and CTP
(Lipscomb and Kantrowitz, 2012). These regulatory sites on the
E. coli ATCase, are located approximately 60 Å from the closest
active site. However, no homologs of the ATCase allosteric chain
have been reported in the plasmodial genome.
STRUCTURE OF PLASMODIUM
FALCIPARUM ATCASE

PfATCase is a 43.3 kDa polypeptide with 375 amino acids. In
previous studies we determined the crystal structure of truncate
aspartate transcarbamoylase from P. falciparum (Lunev et al.,
2016). Superposition of the PfATCase structure with catalytic
chain of E. coli ATCase (PDB code: 1ZA1) and huATCase (PDB
code: 5G1O) (Figures 3B–D), showed a high degree of homology
March 2022 | Volume 12 | Article 841833
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with the catalytic domain of E. coli ATCase and huATCase.
Similarly to E. coli ATCase, PfATCase is a homo-trimer in which
each of the three active site is formed at the oligomeric interface.
Each active site comprises residues from two adjacent subunits in
the trimer with a high degree of evolutionary conservation.
THE STRUCTURAL CHANGES OF ATCASE
BETWEEN T STATE AND R STATE

As reported the active site of ATCase exists in two distinct states,
which are known as the T state and R state. These two states
differ in substrate affinity and activity, with the T state, active site
present in an open conformation with lower affinity and lower
activity for substrate than the R state (Lipscomb and Kantrowitz,
2012; Ruiz-Ramos et al., 2016). We have recently elucidated
several structures (Lunev et al., 2016; Lunev et al., 2018) of the
plasmodial ATCase (PfATCase) which provide insight into the
conformational changes present in the transition between T and
R states in the plasmodial enzyme. While the parasite lacks an
ATCase regulatory element, an understanding of this transition
may allow for the discovery of drugs that can provide a similar
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
allosteric inhibition impact to that shown by the CTP feedback
inhibition of the human and E. coli enzymes.

The structures reported by ourselves and others (Lipscomb
and Kantrowitz, 2012; Lunev et al., 2016; Ruiz-Ramos et al.,
2016) show that the conformation of ATCase can be induced
from the T state to the R state when both aspartate and
carbamoyl phosphate are present at the active site as well as N-
phosphonacetyl-L-aspartate (PALA Figure 2A) – an analog of
the transition state of the reaction catalyzed by ATCase.
Additionally, the enzyme can also change from T state to R
state by binding carbamoyl phosphate (CP) and succinate, an
analog of aspartate.
INHIBITORS AGAINST ATCASE

N-(Phosphonacetyl)-L-Aspartate (PALA)
N-(phosphonacetyl)-L-aspartate (PALA) has been the most
potent ATCase inhibitor of ATCase for the past 48 years
(Swyryd et al., 1974). PALA is an analog of the transition state
of reaction catalyzed by aspartate transcarbamoylase and it
combines the structural features of two natural substrates
FIGURE 1 | The de novo pyrimidine biosynthesis pathway. Enzymes in de no pathway are italicized and colored with light orange. Enzymes: CPS II, carbamoyl
phosphate synthetase II; ATCase, aspartate transcarbamoylase; DHO, dihydroorotase; DHODH, dihydroorotate dehydrogenase; OPRT, orotate phosphoribosyl
transferase; ODC, orotidine 5’-monophosphate decarboxylase.
March 2022 | Volume 12 | Article 841833

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Wang et al. ATCase: A Target for Antimalarials?
(Figure 2A), CP and ASP. The inhibition of PALA against
ATCase is competitive with respect to carbamoyl phosphate
(CP) and noncompetitive with respect to aspartate
(Hoogenraad, 1974; Roberts et al., 1976). From human cell
lines and patient tissue samples, PALA was found to bind
around 1000 times more tightly than CP, displaying a Kd of
0.69 mM (Moore et al., 1982; Baillon et al., 1983). Unfortunately,
while PALA is a strong in vitro inhibitor of the E. coli and human
ATC enzymes it is a poor inhibitor of the malarial homolog in
vitro (Bosch et al., 2020). However, the potential exists that
PALA could be developed as an active site inhibitor of the
malarial ATCase, as the transition state is identical in all species.

PALA Analogues
Inspired by success of PALA as a potent inhibitor of ATCase,
several groups tried to improve the inhibition ability of PALA for
ATCase (Figure 2B and Table 1). Kafarski et al. (Kafarski et al.,
1985) designed a series of phosphate analogues of PALA, as well
as the synthesis of other N-(phosphonoacetyl) amino
phosphonic acids to evaluate their anticancer activity in
human tumor cell lines. However, replacing the a- or b-
carboxylic groups in the aspartate moiety by a phosphate
group resulted in the total loss of inhibition activity in human
KB cell lines. In 2004, Grison et al. (Grison et al., 2004)
synthesized N-phosphonoacetyl-L-glutamate (PALG), replacing
the aspartate of PALA with glutamate, as the side chain of
glutamate is larger than aspartate, they hypothesized that
PALG would bind to the open T state and prevent the closure
of the two substrate binding domains, thus stabilizing it in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
low affinity, low activity T state. The results showed that PALG
failed to inhibit E. coli ATCase at concentration of 1 mM. Grison
et al. also synthesized other analogues of PALA by introducing
one [PALA (F)] or two fluorine [PALA (FF)] atoms in the a-
position of the phosphorus atom. Unfortunately, PALA(F)
inhibited E.coli ATCase to only 45% at concentration of 5mM
while PALA(FF) show no inhibitory activity towards E.coli
ATCase. PALA (P) is a bisubstrate analogue, incorporating an
element to mimic the leaving phosphate group, that also showed
no inhibitory effect on native E. coli ATCase. As PALA is highly
negatively charged, it is possible that it is difficult for PALA to be
transported across lipid bilayers to the enzyme active site
(Kempe et al., 1976). Based on this hypothesis, Eldo et al.
(Eldo et al., 2006) synthesized the a-amide derivative of PALA,
termed PALI, which would reduce the negative charge of the
analogue and at the same time enhance the its lipophilicity. The
Kd of PALI against E. coli ATCase was 2 mM, while PALA is
reported as 0.69 mM.

T State ATCase Inhibitors
To generate a class of inhibitors of ATCase targeted at T state of
the enzyme, Heng et al. (Heng et al., 2006) synthesized a series of
compounds (Figure 2C) that were composed of two
phosphonacetamide groups linked together based on co-crystal
structure of E. coli ATCase-CP complex in its T-structure state.
The X-ray structure determination of these enzyme-inhibitor
complexes showed that these compounds bind to the T state,
preventing the conversion of the enzyme to the R state, thereby
trapping the enzyme in the low-activity, low affinity T state.
A B

D

C

FIGURE 2 | The reaction catalyzed by ATCase and feedback regulation mechanism in de novo pyrimidine biosynthesis pathway, and inhibitors against ATCase. (A)
Aspartate Transcarbamoylase (ATCase) combines L-aspartate and carbamoyl phosphate into carbamoyl aspartate through an enzyme stabilized transition state and
inhibition feedback by CTP. The ATC inhibitor PALA closely resembles this transition state intermediate. CTP (a product of the pyrimidine biosynthesis pathway)
provides feedback inhibition of ATC activity. (B) Structures of PALA analogues as E. coli ATCase inhibitors. (C) Structures of T-state inhibitors against E. coli ATCase
that prevent the allosteric transition. (D) Structures of allosteric inhibitors of huATCase (Lei et al., 2020).
March 2022 | Volume 12 | Article 841833
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However, the Ki values for inhibition of ATCase with respect to
CP by compounds 1, 2, 3 were 2160, 420, 250 mM, respectively.
Compound 1 is a relatively weaker inhibitor compared to
compounds 2 and 3.

Allosteric Inhibitors of Human ATCase
Recently Zhen et al. applied a computational approach to the
discovery of inhibitors of the human ATCase (Lei et al., 2020).
Based on a large-scale docking experiment the authors identified
a series of compounds that were predicted to bind to a previously
undetermined allosteric site of the human ATCase. compounds
YD19 and YD21 (Figure 2D) showed good inhibitory effect on
cancer cell lines. Xenograph results showed both YD19 and
YD21 inhibited xenograft Hela tumor growth similar to 5FU,
one of the most commonly used anti-cancer drugs, as a positive
control. These results clearly showed the potential for the
discovery of an allosteric pocket for P. falciparum.

Identification of Hits for PfATCase
To identify the initial hits for PfATCase, we performed a
Differential Scanning Fluorimetry (DSF) based screening against
our in-house small fragment library (Lunev et al., 2018).
2,3-naphthalenediol showed a significant increase in the thermal
stability of PfATCase, indicating it binds and stabilizes the enzyme
in vitro. Further, we performed Microscale Thermophoresis
(MST) assay to confirm hit binding ability against PfATCase,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
with the dissociation constant (Kd) of binding measured as 19.9 ±
4.7 mM. To cross-validate 2, 3-naphthalenediol inhibitory activity
against PfATCase, we performed an enzyme assay in vitro, in
which 2, 3-naphthalenediol demonstrated inhibition of PfATCase
with an IC50 of 5.5 ± 0.9 mM. The X-ray crystal structure of 2, 3-
naphthalenediol in complex with PfATCase was solved at a
resolution of 2.0 Å. The PfATCase-2, 3-naphthalenediol
complex crystal structure has been deposited under accession
code 6FBA.
MECHANISM OF ALLOSTERIC INHIBITION
OF PFATCASE BY 2,3-NAPTHALENEDIOL

Previously, we determined the high-resolution of X-ray crystal
structure of the 2, 3-napthalenediol-PfATCase complex
(Figure 4A). 2, 3-napthalenediol was identified buried in cavity
between two adjacent monomers, which is close to the traditional
substrates binding site (Figure 4B) and is accommodated in a
hydrophobic region buried under the 128-142 loop. Analysis the
binding site of 2, 3-napthalenediol reveals the hydroxyl groups of
2, 3-napthalenediol forms polar contact with the side chain of
Glu140 and a water bridge with Pro333 and Leu334’s carbonyl
main chain oxygens (Figure 4C). The structural alignment of the
2, 3-napthalenediol-PfATCase complex structure with apo-
PfATCase structure did not significantly affect the structure of
A B

D

C

FIGURE 3 | The structure of PfATCase compare to huATCase and catalytic subunit of E.coli ATCase. (A) A ribbon diagram of the crystal structure of the truncated
PfATCase indicating an overall trimeric assembly (Lunev et al., 2016), three active sites formed at the oligomeric interfaces are labeled with stars. (B) structural
alignment of the monomeric PfATCase structure (blue, PDB code: 5ILQ) with human ATCase (grey, PDB code: 5G1O) and the catalytic chain of E.coli ATCase
(magenta, PDB code: 1ZA1) (C). The structural alignments were carried out with Pymol (Schrödinger and DeLano, 2020). (D) multiple protein sequence alignment of
the human, P. falciparum and E. coli ATCases using Tcoffee (Armougom et al., 2006; Di Tommaso et al., 2011).
March 2022 | Volume 12 | Article 841833

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Wang et al. ATCase: A Target for Antimalarials?
PfATCase compared to un-ligand crystal structure. Which
strongly suggests that the 2, 3-napthalenediol-PfATCase
complex (PDB ID: 6FBA) is still in T state. In addition, both
the X-ray and DSF results determined that 2, 3-napthalenediol
can stabilize the PfATCase.

Furthermore, the comparison of PfATCase complexed with 2,
3-naphthalenediol, citrate-liganded crystal structures (PDB ID:
5ILN) suggest an allosteric mode of inhibition, as 2,
3-naphthalenediol binds in a cavity between adjacent subunits
of the trimer. The 128-142 loop of the citrate-bound PfATCase
loop showed a significant shift compared to 2, 3-
naphthalenediol-bound structure (11.2 Å between the alpha-
carbons of Thr134 in the two structures) (Figure 4D), indicating
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
that 2, 3-naphthalenediol could hold PfATCase in its low affinity,
low activity T-state, preventing the 128-142 loop pushing the
Asp domain and CP domain towards each other to form the
carbamoyl aspartate and phosphate.

The superposition of the PfATCase with human ATCase and
catalytic subunit of E.coli ATCase showed high level of sequence
and secondary structure conservation (Figures 3B–D). Tcoffee
(Armougom et al., 2006; Di Tommaso et al., 2011) analysis
against human ATCase and the catalytic subunit of E.coli
ATCase showed that of 12 active site residues 9 (75%) were
absolutely conserved, and the residues which we found to have
polar contact with 2, 3-naphthalenediol showed 2 of 3 (66.7%)
are absolutely conversed.
TABLE 1 | A table summarizing the ATCase inhibitors described in this review.

Compound code PDB ID Activity assay Compound structure/binding mode

ATCase inhibitors R state inhibitors PALA 1D09 Ki= 27 nM (against E. coli ATCase)

PALG NA IC50 > 5mM (against E. coli ATCase) NA
PALA(F) NA IC50 > 5mM (against E. coli ATCase) NA
PALA(FF) NA No inhibition against E. coli ATCase NA
PALI 2H3E KD= 2 mM (against E. coli ATCase)

T state inhibitors 1 2FZC Ki= 2160 mM (against E. coli ATCase)

2 2FZG Ki= 420 mM (against E. coli ATCase)

3 2FZK Ki= 250 mM (against E. coli ATCase)

Allosteric inhibitors YD19 NA Kd= 12.63 mM (against human ATCase) NA
Kd= 8.93 mM (against E. coli ATCase)

YD21 NA Kd= 18.08 mM (against human ATCase) NA
Kd= 14.06 mM (against E. coli ATCase)
Mar
*NA means not available.
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CONCLUSION

Malaria is an infectious disease that remains a clear and present
threat to human health. Though several anti-malarial
medications are available, the spread of multidrug-resistant
severely limits their efficacy. There is pressing need for
academic research to discover new targets and drugs for the
treatment of severe malaria. For intracellular proliferation, P.
falciparum requires biosynthesis of pyrimidines for parasite
growth to support the production of DNA and parasite
replication. ATCase supports the second step of the de novo
biosynthesis pathway and, as the malaria parasite lacks a
functional pyrimidine-import pathway, the de novo pyrimidine
biosynthesis pathway has been demonstrated to be a major target
for antimalarial drug development. While PALA has been long
available as a strong ATCase inhibitor, it represents a suboptimal
starting point for the development of an anti-malarial for several
reasons. Firstly, PALA has been shown to be relatively poor
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
inhibitor of the plasmodial ATCase (Bosch et al., 2020).
Secondly, while PALA is a strong in vitro inhibitor of
canonical ATCases it appears to be limited in development
towards a selective inhibitor as it is a mimic of the enzyme
transition state. This transition state is likely to be absolutely
conserved across species, suggesting that inhibitors of the
transition state of the plasmodial homolog may show
significant side effects through their inhibition of the human
homologs. Finally, the transition state intermediate mimicked by
PALA is by nature rather highly charged, which possibly
accounts for its relatively poor performance in cell-based
assays, as this high charge state is not compatible with efficient
transfer across cell membranes. A situation that would be made
more challenging when considering the additional membranes
that must be traversed to access the parasite ATCase. A potential
mechanism to address these limitations and leverage the
sensitivity of the parasite to inhibition of de novo pyrimidine
biosynthesis is to identify allosteric sites of inhibition. Such sites
A B

DC

FIGURE 4 | Crystal structure of the 2,3-naphthalenediol-PfATCase complex. (A) structural alignment of the 2,3-naphthalenediol-bounded PfATCase [PDB ID: 6FBA;
blue (Lunev et al., 2018)] with citrate-bound PfATCase [PDB ID: 5ILN; grey (Lunev et al., 2018)], RMSD=0.478 Å, providing a structural model of PfATCase in the T-
state compared with the R-state. The location of the active site is shown for orientation. The conformational change in the loop128-142 in both cases is highlighted
in red. (B) shows the structural rearrangements of 2,3-naphthalenediol binding site, the traditional active site is highlighted in yellow for orientation, 2Fo-Fc electron
density of 2,3-naphthalenediol is shown in blue mesh at a contour of 1.0s. (C) shows the binding site of 2,3-naphthalenediol and the polar contacts between 2,3-
naphthalenediol and surrounding residues. (D) magnified view of the newly discovered allosteric binding site and active binding site. The structural alignments were
carried out with Pymol (Schrödinger and DeLano, 2020).
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would allow for more selectivity between species and would not
be constrained by the limitations imposed by the heavily charged
transition state. Our studies have focused on the structure of
PfATCase, and identified an allosteric pocket through the
determination of a co-crystal structure of PfATCase with 2,3-
naphthalenediol. By comparing the crystal structure of the 2.3-
naphthalenediol:ATCase complex structure as an exemplary of
the low-affinity low-activity T-state with a high-affinity high
activity R-state represented by the structure of PfATCase in
complex with citrate, there exists the intriguing potential for the
development of an allosteric inhibitor of PfATCase represented
by the 2,3-napthalenediol binding site. The further
understanding of the mechanism of inhibition of 2,3-
napthalenediol would provide an opportunity for further drug
development. Such a compound would strengthen the case of
PfATCase as a drug target and would be an invaluable addition
to the antimalarial “toolbox”.
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