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1. INTRODUCTION

Controllability is not only a fundamental system-theoretic
property but also a prerequisite virtually for all control
design problems. Kalman’s and Hautus’ tests for control-
lability are among the classical results of linear system
theory. Apart from finite-dimensional linear time-invariant
systems, there are only a few cases for which easily ver-
ifiable controllability conditions exist. For instance, nec-
essary and sufficient conditions that are linear in nature
exist for linear switched systems with state-independent
switching Sun et al. (2002). This result relies on the fact
that the switching signal can be considered as an exter-
nal input. Yet another instance for which controllability
admits a simple characterization is the case of continuous
piecewise affine dynamical systems Thuan and Camlibel
(2014). Contrary to linear switched systems, piecewise
affine dynamical systems exhibit state-dependent switch-
ing phenomenon that makes the analysis much harder.
Nevertheless, Hautus-like tests can be devised by exploit-
ing the structure imposed by continuity of the vector field.
Moreover, this Hautus-like controllability test also extends
to stabilizability.

In this paper, we study a particular class of continuous
piecewise affine dynamical systems, namely linear comple-
mentarity systems. Complementarity systems are encoun-
tered in a multitude of applications in various disciplines
of science and engineering including electrical/mechanical
engineering and operations research van der Schaft and
Schumacher (1998, 2000); Brogliato (2003); Heemels and
Brogliato (2003); Camlibel et al. (2004); Schumacher
(2004). We refer to van der Schaft and Schumacher (1996);
Heemels et al. (2000); Camlibel (2001); Camlibel and
Schumacher (2002); Camlibel et al. (2003); Heemels et al.
(2002); Camlibel et al. (2002); Camlibel (2007); Camlibel
et al. (2008b, 2014) for the work on the analysis of general
LCSs.

Under certain conditions, a linear complementarity system
can be cast as a continuous piecewise affine dynamical
system. We will exploit the structure of such piecewise

affine systems and the results in Thuan and Camlibel
(2014) in order to present tailor-made necessary and
sufficient conditions for controllability and stabilizability
of linear complementarity systems.

The organization of the paper is as follows. In Section 2, we
will introduce the class of linear complementarity systems.
Section 3 is devoted to continuous piecewise affine dynam-
ical systems and Hautus-like controllability/stabilizability
tests for these systems. Subsequently, Section 4 will discuss
the relationships between linear complementarity systems
and continuous piecewise affine systems. This will be fol-
lowed by the main results and their proofs in Section 5.
Finally, the paper closes with the conclusions in Section 6.

2. LINEAR COMPLEMENTARITY SYSTEMS

Consider the linear system

ẋ(t) = Ax(t) +Bu(t) + Ez(t) (1a)

w(t) = Cx(t) +Du(t) + Fz(t) (1b)

where x ∈ Rn, u ∈ Rm, and (z, w) ∈ Rp+p. When the
external variables (z, w) satisfy the so-called complemen-
tarity relations

0 � z(t) ⊥ w(t) � 0 (1c)

where the inequalities are componentwise and ⊥ denotes
orthogonality, that is z ⊥ w if and only if zTw = 0. We
call the overall system (1) a linear complementarity system
(LCS).

3. CONTINUOUS PIECEWISE AFFINE SYSTEMS

In order to introduce continuous piecewise affine dynami-
cal systems, we first begin with piecewise affine functions
and their properties.

A function ψ : Rν → R� is said to be affine if there
exist a matrix H ∈ R�×ν and a vector g ∈ R� such that
ψ(x) = Hx + g for all x ∈ Rν . A function φ is called
piecewise affine if there exists a finite family of affine
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functions ψi : Rν → R� with i = 1, 2, . . . , r such that
φ(x) ∈ {ψ1(x), ψ2(x), . . . , ψr(x)} for all x ∈ Rν .

Continuous piecewise affine functions admit useful geomet-
rical representations that will be used later on this paper.
To elaborate, we first need to introduce some terminology.
A set of Rν is called a polyhedron if it is the intersection
of a finite family of closed half-spaces or hyperplanes in
Rν . If P ⊆ Rν is a polyhedron, then there exist a matrix
P ∈ Rk×ν and a vector q ∈ Rk such that P = {x ∈ Rν |
Px � q}. A finite collection Ξ of polyhedra of Rν is said
to be a polyhedral subdivision of Rν if (see Facchinei and
Pang (2002) for more details)

i. the union of all polyhedra in Ξ is equal to Rν ,
ii. each polyhedron in Ξ is of dimension ν, and
iii. the intersection of any two polyhedra in Ξ is either

empty or a common proper face of both polyhedra

As stated next, polyhedral subdivisions appear in the
description of continuous piecewise affine functions.

Proposition 1. (Facchinei and Pang (2002), Prop. 4.2.1).
A continuous function ψ : Rν → R� is piecewise affine
if and only if there exist a polyhedral subdivision Ξ =
{Ξ1,Ξ2, . . . ,Ξr} of Rν and a finite family of affine func-
tions ψi : Rν → R� with i = 1, 2, . . . , r such that ψ
coincides ψi on Ξi for every i = 1, 2, . . . , r.

By a continuous piecewise affine system (CPAS), we mean
a dynamical system of the form

ẋ(t) = Ax(t) +Bu(t) + Φ(y(t)) (2a)

y(t) = Cx(t) +Du(t) (2b)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is
the output, all involved matrices are of appropriate sizes,
and Φ : Rp → Rn is a continuous piecewise affine function.

Since the piecewise affine function Φ is continuous, the
right-hand side of (2a) is globally Lipschitz (see e.g.
(Facchinei and Pang, 2002, Proposition 4.2.2)). Thus, it
follows from the theory of ordinary differential equations
that the system (2) must admit a unique solution for each
initial state x0 and locally integrable input u. We denote
this solution by xu(t;x0), and denote the corresponding
output by yu(t;x0).

Next, we define controllability and stabilizability for
CPASs.

Definition 2. We say that the system (2) is

• controllable if for any two states x0, xf there exist
T > 0 and a locally integrable input u such that
xu(T ;x0) = xf .

• stabilizable if for any initial state x0 there exists a
locally integrable input u such that lim

t→∞
xu(t;x0) = 0.

In this paper, the following blanket assumption will be in
force.

Assumption 3. The transfer matrix D+C(sI −A)−1B is
right invertible as a rational matrix.

Similar invertibility assumptions are common in the anal-
ysis of linear systems with output constraints (see e.g.
Saberi et al. (2002); Shi et al. (2003); Saberi et al. (2003);
Heemels and Camlibel (2008)). The main restriction of the

assumption is that the number of inputs should be at least
as the number of outputs. Whenever this is the case, right
invertibility is generically satisfied.

A complete characterization of controllability and stabiliz-
ability of CPASs are established in Thuan and Camlibel
(2014). In order to quote the results of Thuan and Camli-
bel (2014), we need to introduce the following terminology.
For a nonempty convex set S ⊆ Rn, S− denotes the dual
cone

S− := {ξ ∈ Rn | ξTx � 0 for all x ∈ S},

S⊥ denotes orthogonal complement in Cn, and Cr(S)
denotes the recession cone

Cr(S) := {ξ ∈ Rn | z + λx ∈ Λ for all λ � 0 and z ∈ S}.

Necessary and sufficient conditions for controllability of
CPASs are stated next.

Proposition 4. (Thuan and Camlibel (2014),Thm. 3.4]).
Consider a CPAS (2) satisfying Assumption 3. Suppose
that the origin is contained in the closure of the convex hull
of the image of the function Φ. Let Ξ = {Y1,Y2, . . . ,Yh}
be a polyhedral subdivision of Rp induced by Φ. Also let

Φ(y) = Hiy − gi whenever y ∈ Yi. (3)

Then, the system (2) is controllable if and only if the
following four implications hold:

i. λ ∈ C, z ∈ Cn, z∗gi = 0, and

z∗
[
A+HiC − λI B +HiD

]
= 0 ∀ i =⇒ z = 0.

ii. λ ∈ R, z ∈ Rn, (z, wi) ∈ ({gi} × Yi)−, and
[
z
wi

]T[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

iii. λ ∈ C, Re(λ) �= 0, z ∈ Cn, wi ∈ Cr(Yi)
⊥, and

[
z
wi

]∗[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

iv. λ ∈ R, λ �= 0, z ∈ Rn, wi ∈ Cr(Yi)
−, and

[
z
wi

]T[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

Stabilizability of CPASs can also be characterized by
similar spectral conditions.

Proposition 5. ((Thuan and Camlibel, 2014, Thm. 3.6)).
Consider a CPAS (2) satisfying Assumption 3. Suppose
that Φ(0) = 0. Let Ξ = {Y1,Y2, . . . ,Yh} be a polyhedral
subdivision of Rp induced by Φ. Also let

Φ(y) = Hiy − gi whenever y ∈ Yi. (4)

Then, the system (2) is stabilizable if and only if the
following four implications hold:

i. λ ∈ C, Re(λ) � 0, z ∈ Cn, z∗gi = 0 and

z∗
[
A+HiC − λI B +HiD

]
= 0 ∀ i =⇒ z = 0.

ii. λ ∈ R, λ � 0, z ∈ Rn, (z, wi) ∈ ({gi} × Yi)−, and
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[
z
wi

]T[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

iii. λ ∈ C+, z ∈ Cn, wi ∈ Cr(Yi)
⊥, and

[
z
wi

]∗[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

iv. λ ∈ R, λ > 0, z ∈ Rn, wi ∈ Cr(Yi)
−, and

[
z
wi

]T[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

4. FROM LCS TO CPAS

A linear complementarity system of the form (1) can be
cast as a CPAS of the form (2) when F is a P -matrix,
that is a matrix whose principal minors are all positive.
It is well-known that every positive definite matrix is
a P -matrix (see for instance (Cottle et al., 1992, Thm.
3.1.6 and Thm. 3.3.7)). In particular, P -matrices play an
important role in the context of linear complementarity
problem, i.e. the problem of finding a p-vector z satisfying

0 � z ⊥ q + Fz � 0

for a given p-vector q and a p × p matrix F . We denote
the linear complementarity problem for a given vector
q and a given matrix F by LCP(q, F ). If F is a P -
matrix, LCP(q, F ) admits a unique solution z(q) for every
q ∈ Rp (see (Cottle et al., 1992, Thm. 3.3.7)). In addition,
one can verify that for every q there exists an index set
α ⊆ {1, 2, . . . , p} such that

[
−(Fαα)

−1 0|α|×|αc|

−Fαcα(Fαα)
−1 I|αc|

] [
qα
qαc

]
� 0 (5a)

and the unique solution z of the LCP(q, F ) is given by

z(q)α = −(Fαα)
−1qα and z(q)αc = 0. (5b)

Here αc denotes the set {1, 2, . . . , p} \α. Furthermore, the
map q �→ z(q) is known to be Lipschitz continuous (Cottle
et al., 1992, Lem. 7.3.10).

By using the Lipschitz continuity, it can be shown that
Camlibel (2001) for every initial state x0 ∈ Rn and
locally integrable input u, there exists a unique locally
absolutely continuous x : R+ → Rn such that x(0) = x0,
(1a) is satisfied for almost all t � 0, and (1b)-(1c) are
satisfied for all t � 0. Moreover, we can employ the
parametrization given in (5) to conclude that there is one-
to-one correspondence between the trajectories of the LCS
(1) and those of the following conewise linear system (see
Camlibel et al. (2008a) for more details)

ẋ(t) = Ax(t) +Bu(t) + Ψ
(
y(t)

)
(6a)

y(t) = Cx(t) +Du(t) (6b)

where Ψ is a Lipschitz continuous function given by

Ψ(y) = Hαyα if y ∈ Yα (7)

where α ⊆ {1, 2, . . . , p},

Hα = −E•αF
−1
αα yα, (8)

and

Yα={y ∈ Rp |

[
−(Fαα)

−1 0|α|×|αc|

−Fαcα(Fαα)
−1 I|αc|

][
yα
yαc

]
� 0}. (9)

5. MAIN RESULTS

In this section, our aim is first to streamline the conditions
in Proposition 4 and Proposition 5.

Proposition 6. Consider an LCS of the form (1) satisfying
Assumption 3. Suppose that F is a P -matrix. Then, the
following statements hold:

(a) The system (2) is controllable if and only if the fol-
lowing two implications hold:

i. λ ∈ C, z ∈ Cn, and

z∗
[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

]
= 0

for all α ⊆ {1, 2, . . . , p} implies z = 0.

ii. λ ∈ R, z ∈ Rn, wα ∈ (Yα)−, and

[
z
wα

]T[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

C D

]
= 0

for all α ⊆ {1, 2, . . . , p} implies z = 0.

(b) The system (2) is stabilizable if and only if the follow-
ing two implications hold:

i. λ ∈ C, Re(λ) � 0, z ∈ Cn, and

z∗
[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

]
= 0

for all α ⊆ {1, 2, . . . , p} implies z = 0.

ii. λ ∈ R, λ � 0, z ∈ Rn, wα ∈ (Yα)−, and

[
z
wα

]T[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

C D

]
= 0

for all α ⊆ {1, 2, . . . , p} implies z = 0.

To prove this proposition, we need the following auxiliary
result.

Lemma 7. Let C ⊆ Rp be a polyhedral cone given by
C = {ξ ∈ Rp | Mξ � 0} for some matrix M ∈ Rq×p.
Then, C− = {η ∈ Rp | η = MT ζ for some 0 � ζ ∈ Rq}.
Moreover, if kerMT = {0}, then C⊥ = {0}.

Proof. The first statement readily follows from Farkas’
Lemma (see e.g. (Bertsekas, 2009, Prop. 2.3.1)). To prove
the second statement, note that C⊥ = −C− ∩ C−. There-
fore, η ∈ C⊥ if and only if there exist ζ1 � 0 and ζ2 � 0
such that η = MT ζ1 = MT ζ2. This means that ζ1 −
ζ2 ∈ kerMT and hence ζ1 = ζ2 = 0. Consequently, η = 0.

�

Now, we are in a position to prove Proposition 6.

Proof of Proposition 6: The idea of the proof is to
apply Proposition 4 for controllability and Proposition 5
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[
z
wi

]T[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

iii. λ ∈ C+, z ∈ Cn, wi ∈ Cr(Yi)
⊥, and

[
z
wi

]∗[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

iv. λ ∈ R, λ > 0, z ∈ Rn, wi ∈ Cr(Yi)
−, and

[
z
wi

]T[
A+HiC − λI B +HiD

C D

]
= 0 ∀ i =⇒ z = 0.

4. FROM LCS TO CPAS

A linear complementarity system of the form (1) can be
cast as a CPAS of the form (2) when F is a P -matrix,
that is a matrix whose principal minors are all positive.
It is well-known that every positive definite matrix is
a P -matrix (see for instance (Cottle et al., 1992, Thm.
3.1.6 and Thm. 3.3.7)). In particular, P -matrices play an
important role in the context of linear complementarity
problem, i.e. the problem of finding a p-vector z satisfying

0 � z ⊥ q + Fz � 0

for a given p-vector q and a p × p matrix F . We denote
the linear complementarity problem for a given vector
q and a given matrix F by LCP(q, F ). If F is a P -
matrix, LCP(q, F ) admits a unique solution z(q) for every
q ∈ Rp (see (Cottle et al., 1992, Thm. 3.3.7)). In addition,
one can verify that for every q there exists an index set
α ⊆ {1, 2, . . . , p} such that

[
−(Fαα)

−1 0|α|×|αc|

−Fαcα(Fαα)
−1 I|αc|

] [
qα
qαc

]
� 0 (5a)

and the unique solution z of the LCP(q, F ) is given by

z(q)α = −(Fαα)
−1qα and z(q)αc = 0. (5b)

Here αc denotes the set {1, 2, . . . , p} \α. Furthermore, the
map q �→ z(q) is known to be Lipschitz continuous (Cottle
et al., 1992, Lem. 7.3.10).

By using the Lipschitz continuity, it can be shown that
Camlibel (2001) for every initial state x0 ∈ Rn and
locally integrable input u, there exists a unique locally
absolutely continuous x : R+ → Rn such that x(0) = x0,
(1a) is satisfied for almost all t � 0, and (1b)-(1c) are
satisfied for all t � 0. Moreover, we can employ the
parametrization given in (5) to conclude that there is one-
to-one correspondence between the trajectories of the LCS
(1) and those of the following conewise linear system (see
Camlibel et al. (2008a) for more details)

ẋ(t) = Ax(t) +Bu(t) + Ψ
(
y(t)

)
(6a)

y(t) = Cx(t) +Du(t) (6b)

where Ψ is a Lipschitz continuous function given by

Ψ(y) = Hαyα if y ∈ Yα (7)

where α ⊆ {1, 2, . . . , p},

Hα = −E•αF
−1
αα yα, (8)

and

Yα={y ∈ Rp |

[
−(Fαα)

−1 0|α|×|αc|

−Fαcα(Fαα)
−1 I|αc|

][
yα
yαc

]
� 0}. (9)

5. MAIN RESULTS

In this section, our aim is first to streamline the conditions
in Proposition 4 and Proposition 5.

Proposition 6. Consider an LCS of the form (1) satisfying
Assumption 3. Suppose that F is a P -matrix. Then, the
following statements hold:

(a) The system (2) is controllable if and only if the fol-
lowing two implications hold:

i. λ ∈ C, z ∈ Cn, and

z∗
[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

]
= 0

for all α ⊆ {1, 2, . . . , p} implies z = 0.

ii. λ ∈ R, z ∈ Rn, wα ∈ (Yα)−, and

[
z
wα

]T[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

C D

]
= 0

for all α ⊆ {1, 2, . . . , p} implies z = 0.

(b) The system (2) is stabilizable if and only if the follow-
ing two implications hold:

i. λ ∈ C, Re(λ) � 0, z ∈ Cn, and

z∗
[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

]
= 0

for all α ⊆ {1, 2, . . . , p} implies z = 0.

ii. λ ∈ R, λ � 0, z ∈ Rn, wα ∈ (Yα)−, and

[
z
wα

]T[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

C D

]
= 0

for all α ⊆ {1, 2, . . . , p} implies z = 0.

To prove this proposition, we need the following auxiliary
result.

Lemma 7. Let C ⊆ Rp be a polyhedral cone given by
C = {ξ ∈ Rp | Mξ � 0} for some matrix M ∈ Rq×p.
Then, C− = {η ∈ Rp | η = MT ζ for some 0 � ζ ∈ Rq}.
Moreover, if kerMT = {0}, then C⊥ = {0}.

Proof. The first statement readily follows from Farkas’
Lemma (see e.g. (Bertsekas, 2009, Prop. 2.3.1)). To prove
the second statement, note that C⊥ = −C− ∩ C−. There-
fore, η ∈ C⊥ if and only if there exist ζ1 � 0 and ζ2 � 0
such that η = MT ζ1 = MT ζ2. This means that ζ1 −
ζ2 ∈ kerMT and hence ζ1 = ζ2 = 0. Consequently, η = 0.

�

Now, we are in a position to prove Proposition 6.

Proof of Proposition 6: The idea of the proof is to
apply Proposition 4 for controllability and Proposition 5

2019 IFAC SSSC
Sinaia, Romania, September 9-11, 2019

21



4	 M.K. Camlibel  / IFAC PapersOnLine 52-17 (2019) 1–6

for stabilizability. First note that, we have Ψ(0) = 0 due
to (7)-(9). Therefore, hypotheses of both propositions are
satisfied.

It follows from (9) that Yα is a polyhedral cone for
all α ⊆ {1, 2, . . . , p}. As such, we have Cr(Yα) = Yα.
Moreover, it follows from Lemma 7 that Y⊥ = {0} for all
α ⊆ {1, 2, . . . , p} since the matrix

[
−(Fαα)

−1 0|α|×|αc|

−Fαcα(Fαα)
−1 I|αc|

]

is nonsingular.

As (8) does not contain translation term, that is gα = 0,
we see that the condition (iv) of Proposition 4 is implied by
the condition (ii) of Proposition 4 whereas the condition
(iii) of Proposition 4 is implied by the condition (i) of
Proposition 4. Moreover, the same reasoning holds if we
replace Proposition 4 by Proposition 5 above.

Note that

HαC = −E•αF
−1
ααCα• and HαD = −E•αF

−1
ααDα•.

Therefore, we can conclude that (a) is implied by Propo-
sition 4 and (b) by Proposition 5. �

Proposition 6 requires checking the involved conditions
for all index sets α ⊆ {1, 2, . . . , p}. It turns out that
the structure of LCSs can be exploited to obtain more
streamlined conditions that can be checked much more
easily as stated next.

Theorem 8. Consider an LCS of the form (1) satisfying
Assumption 3. Suppose that F is a P -matrix. Then, the
following statements hold:

(a) The system (2) is controllable if and only if the fol-
lowing two implications hold:

i. (A, [B E]) is controllable.

ii. λ ∈ R, z ∈ Rn, w � 0, and

[
z

w

]T [
A− λI B

C D

]
= 0 and

[
z

w

]T [
E

F

]
� 0

implies z = 0 and w = 0.

(b) The system (2) is stabilizable if and only if the follow-
ing two implications hold:

i. (A, [B E]) is stabilizable.

ii. λ ∈ R, λ � 0, z ∈ Rn, w � 0, and

[
z

w

]T [
A− λI B

C D

]
= 0 and

[
z

w

]T [
E

F

]
� 0

implies z = 0 and w = 0.

The proof of this theorem will rely on the following
intermediate result.

Lemma 9. Suppose that (A,B,C,D) satisfies Assump-
tion 3 and F is a P -matrix. Then, the following statements
hold:

(i) Let λ ∈ C and z ∈ Cn. Then, for all α ⊆ {1, 2, . . . , p}

z∗
[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

]
= 0

if and only if

z∗ [A− λI B E] = 0.

(ii) Let λ ∈ R and z ∈ Rn. Then, for all α ⊆ {1, 2, . . . , p}
there exists wα ∈ (Yα)− such that

[
z

wα

]T[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

C D

]
= 0

if and only if there exists w � 0 such that

[
z

w

]T [
A− λI B

C D

]
= 0 and

[
z

w

]T [
E

F

]
� 0.

Proof. For the ‘only if’ part of (i), note that the choice
α = ∅ results in

z∗ [A− λI B] = 0. (10)

Therefore, it remains to show that z∗E = 0. Let α =
{1, 2, . . . , p}. Then, we have

z∗
[
A− EF−1C − λI B − EF−1D

]
= 0.

By using (10), we further obtain

0 = z∗
[
EF−1C EF−1D

]
= z∗EF−1 [C D] . (11)

Note that [C D] is full row rank due to Assumption 3.
Therefore, it follows from (11) that z∗E = 0.

For the ‘if’ part of (i), note that z∗E = 0 implies that
z∗E•α = 0 for all α ⊆ {1, 2, . . . , p}. Therefore,

z∗ [A− λI B E] = 0

implies

z∗
[
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

]
= 0

for all α ⊆ {1, 2, . . . , p}.
For the ‘only if’ part of (ii), we claim that w∅ � 0,

[
z

w∅

]T [
A− λI B

C D

]
= 0, (12)

and

[
z

w∅

]T [
E

F

]
� 0. (13)

Since (12) readily follows from the choice of α = ∅, it
remains to show that w∅ � 0 and (13) holds. To do so, we
first note that Y∅ = Rp

+ due to (9). Since w∅ ∈ (Y∅)−,
we see that w∅ � 0. For the rest, let ᾱ = {1, 2, . . . , p} and
w̄ = wᾱ. Then, we have

[
z

w̄

]T [
A− EF−1C − λI B − EF−1D

C D

]
= 0.

By using (12), we obtain

[
z

w̄ − w∅

]T [
−EF−1C −EF−1D

C D

]
= 0.

2019 IFAC SSSC
Sinaia, Romania, September 9-11, 2019

22

Hence, we see that
(
w̄T − (w∅)T − zTEF−1

)
[C D] = 0.

Since [C D] is full row rank due to Assumption 3, we
obtain [

z

w∅

]T [
E

F

]
= w̄TF.

As such, it is enough to show that w̄TF � 0. Note that
w̄ ∈ (Y ᾱ)−. Since

Y ᾱ = {y | −F−1y � 0}

due to (9), it follows from Lemma 7 that

(Y ᾱ)− = {η | η = (FT )−1ζ for some 0 � ζ}.

Therefore, w̄ = (FT )−1ζ̄ for some ζ̄ � 0. Note that

w̄TF = ζ̄T � 0.

For the ‘if’ part of (ii), w be such that w � 0,

[
z

w

]T [
A− λI B

C D

]
= 0, (14)

and [
z

w

]T [
E

F

]
� 0. (15)

For all α ⊆ {1, 2, . . . , p}, define wα by

wα
αc = wαc and (wα

α)
T = (wα)

T + zTE•αF
−1
αα (16)

With this definition, we have

[
z

wα

]T [
A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

C D

]

=




z

wα
α

wα
αc



T 

A− E•αF

−1
ααCα• − λI B − E•αF

−1
ααDα•

Cα• Dα•

Cαc• Dαc•




=

[
z

w

]T [
A− λI B

C D

]
= 0.

It remains to show that wα ∈ (Yα)−. From (15), we see
that

zTE•α + wT
αFαα + wT

αcFαcα � 0.

By using (16), we get

zTE•α +
(
(wα

α)
T − zTE•αF

−1
αα

)
Fαα + (wα

αc)TFαcα � 0.

This leads to

(wα
α)

TFαα + (wα
αc)TFαcα � 0. (17)

In addition, we have

wα
αc � 0 (18)

since w � 0. By combining (17) and (18), we can write
[
(Fαα)

T (Fαcα)
T

0 −I

] [
wα

α
wα

αc

]
� 0. (19)

It follows from (9) and Lemma 7 that

η ∈ (Yα)− ⇐⇒ η =

[
(Fαα)

−T (Fαα)
−T (Fαcα)

T

0 −I

]
ζ.

for some ζ � 0. Note that
[
(Fαα)

−T (Fαα)
−T (Fαcα)

T

0 −I

] [
(Fαα)

T (Fαcα)
T

0 −I

]
= I.

Therefore, (19) implies that wα ∈ (Yα)−. �

Now, we are in a position to prove Theorem 8.

Proof of Theorem 8: In view of Lemma 9, the conditions
in the statement (a) of Proposition 6 are equivalent with
the conditions in the statement of Theorem 8. This proves
the controllability claims of Theorem 8. The claims about
stabilizability also follows from Lemma 9 in a similar
fashion.

6. CONCLUSIONS

In this paper, we studied controllability and stabilizability
of linear complementarity systems. The main results are
Hautus-like necessary and sufficient conditions for both
controllability and stabilizability. By working under the
assumption that the transfer matrix of the underlying
linear system from inputs to one of the complementarity
variable is right invertible, we first showed that the existing
tests for controllability and stabilizability of continuous
piecewise affine systems can be streamlined. Based on
these streamlined tests, we presented tailor-made tests for
linear complementarity systems.

Future research directions include relaxing the right-
invertibility assumption on the one hand and studying
linear complementarity systems that cannot be cast as
continuous piecewise affine systems on the other hand.
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F
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For all α ⊆ {1, 2, . . . , p}, define wα by

wα
αc = wαc and (wα
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C D
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=
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

z

wα
α

wα
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

T 

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−1
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−1
ααDα•
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
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A− λI B

C D

]
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αα
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