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Data Informativity for Analysis of Linear Systems
With Convex Conic Constraints

Jaap Eising and M. Kanat Camlibel , Member, IEEE

Abstract—This letter studies the informativity problem
for reachability and null-controllability of constrained
systems. To be precise, we will focus on an unknown linear
systems with convex conic constraints from which we
measure data consisting of exact state trajectories of finite
length. We are interested in performing system analysis of
such an unknown system on the basis of the measured
data. However, from such measurements it is only possi-
ble to obtain a unique system explaining the data in very
restrictive cases. This means that we can not approach
this problem using system identification combined with
model based analysis. As such, we will formulate condi-
tions on the data under which any such system consistent
with the measurements is guaranteed to be reachable or
null-controllable. These conditions are stated in terms of
spectral conditions and subspace inclusions, and therefore
they are easy to verify.

Index Terms—Constrained control, linear systems,
sampled-data control.

I. INTRODUCTION

THIS letter deals with the question: what can be inferred
from an unknown constrained linear system on the basis

of state measurements? A similar question, for unconstrained
systems, has recently led to the development of the informa-
tivity framework in [1]. The observation at the center of this
framework is that we can only conclude that the unknown
system has a given property if all systems compatible with
the measurements have this property. In the context of linear
systems this has lead to, among others, results for analysis
problems in [2] and control problems in [3], [4]. Parallel to
the work performed within this framework, similar analysis
problems are addressed in [5], while control problems are
addressed in [6], [7].

In contrast to this earlier work, we will be focusing on con-
ically constrained linear systems. Such conic constraints often
arise naturally in modeling, taking the form of, e.g., nonneg-
ativity constraints on the input or states. Specifically, we will
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be looking at the class of difference inclusions of the form

xk+1 ∈ H(xk)

where H : R
n ⇒ R

n is a convex process, that is, a set-valued
map whose graph is a convex cone. It it straightforward to
show that any conically constrained linear system can be writ-
ten as such a system and vice versa. Such difference inclusions
arise naturally in many different contexts, including chemical
reaction networks [8], von Neumann-Gale economic growth
models [9] and cable-suspended robots [10], [11]. Lastly, as
shown in, e.g., [12], [13], difference inclusions of convex
processes can be used as meaningful approximations of more
complex set-valued maps.

The many applications of convex processes have led to
interest in the analysis of such systems. In particular, this
letter will consider the system-theoretic properties of reach-
ability and null-controllability. For a given convex process,
tests for these properties have been developed in terms of spec-
tral conditions. First among these were the characterizations of
reachability and null-controllability in [14], [15]. However, the
aforementioned characterizations only regard strict (nonempty
everywhere) convex processes, which limits the applicability
for our goals. In [16] both of these results are generalized to
work for a class of nonstrict convex processes. These char-
acterizations of [16] will be fundamental in our investigation
of informativity. In this letter, we will be interested in ana-
lyzing whether these system-theoretic properties hold for all
convex processes compatible with measured data. Specifically,
the data we consider will consist of exact measurements of the
state. This means that we leave studies involving measurement
noise or partial state measurements as future extensions.

Apart from the aforementioned work, some results in
data-driven analysis and control should be mentioned. With
regard to unconstrained linear systems [17] analysis stability
of an input/output system using time series data. The
works [18]–[21] deal with data-based controllability and
observability analysis. Lastly, many methods arising from
Model Predictive Control (MPC) are well suited to con-
strained systems. For an overview of such methods, we
refer to [22], [23]. More specifically, MPC has recently been
brought into a data-based context in [24], [25].

The contribution of this letter is threefold:
1) We expand the informativity framework of [1] towards

the class of convex processes. This framework will
naturally lead to the formulation of a number of
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problems. In particular, we will illustrate the frame-
work by resolving the problems of informativity for
reachability and null-controllability.

2) We develop explicit tools to manipulate and perform
analysis on convex processes with a polyhedral graph.
Assuming polyhedrality will allow us to represent con-
vex processes and the conditions required for reachabil-
ity and null-controllability in a convenient way.

3) Lastly, we note the fact that polyhedral convex processes
naturally arise from the aforementioned informativ-
ity problems with finite measurements. This allows
us to combine the previous points to formulate tests
on measured state data to conclude that all convex
processes consistent with the data are reachable or
null-controllable.

This letter is organized as follows: We begin in Section II
with definitions of convex process and reachability and null-
controllability. After this, Section III introduces informativity
and formally states the problem we will consider in this letter.
In Section IV, we will present some known results regard-
ing the analysis of convex processes, which will be applied
in Section V to our problem. We finalize this letter with
conclusions in Section VI.

II. CONVEX PROCESSES

Given convex sets S, T ⊆ R
n and scalar ρ ∈ R we define

the sum and scalar multiplication of sets as:

S + T := {s + t | s ∈ S, t ∈ T }, ρS := {ρs | s ∈ S}.
We denote the closure of S by clS. A convex cone is a
nonempty convex set that is closed under nonnegative scalar
multiplication.

A set-valued map, denoted H : R
n ⇒ R

n is a map taking
elements of R

n to subsets of R
n. It is called a convex process,

closed convex process or linear process if its graph

gr H := {(x, y) ∈ R
n × R

n | y ∈ H(x)}
is a convex cone, closed convex cone or subspace, respectively.

The domain and image of H are defined as dom H = {x ∈
R

n | H(x) �= ∅} and im H = {y ∈ R
n : ∃ x s.t. y ∈ H(x)}. If

dom H = R
n, we say that H is strict.

In this letter we consider systems described by a difference
inclusion of the form

xk+1 ∈ H(xk) (1)

where H : R
n ⇒ R

n is a convex process. Our main motivation
for considering this class of systems is the fact that this class
of systems captures the behavior of all linear systems with
convex conic constraints. This will be made explicit in the
following example.

Example 1: Consider states xk in R
n and inputs uk ∈ R

m.
Let A and B be linear maps of appropriate dimensions and let
C ⊆ R

n+m be a convex cone. Consider the linear system with
conic constraints given by:

xk+1 = Axk + Buk,

[
xk
uk

]
∈ C. (2)

Note that this description can be applied to any combination
of input, state and output constraints.

We can describe the dynamics of (2) by the difference
inclusion (1) with the convex process H defined by:

H(x) :=
{

Ax + Bu

∣∣∣∣
[

x
u

]
∈ C

}
.

This reveals that we can study the properties of conically con-
strained linear systems by studying convex processes, without
any loss of generality.

Next, we define a number of sets associated with the differ-
ence inclusion (1). A q-step trajectory is a (finite) sequence
x0, . . . , xq such that (1) holds for all k < q. We define the
q-step behavior as:

Bq(H) :=
{
(xk)

q
k=0 ∈ (Rn)q+1 | (xk) satisfies (1)

}
.

Using this, we define the reachable and null-controllable sets
by:

R(H) := {
ξ | ∃q, (xk)

q
k=0 ∈ Bq(H) s.t. x0 = 0, xq = ξ

}
,

N (H) := {
ξ | ∃q, (xk)

q
k=0 ∈ Bq(H) s.t. x0 = ξ, xq = 0

}
.

We say that a point ξ ∈ R
n is reachable if ξ ∈ R(H). That is,

there exists a q-step trajectory from the origin to ξ . Similarly,
we say a point ξ ∈ R

n is null-controllable if ξ ∈ N (H).
By a trajectory of (1), we mean a sequence (xk)k∈N such

that (1) holds for all k ≥ 0. The behavior is the set of all
trajectories:

B(H) :=
{
(xk) ∈ (Rn)N | (xk) is a trajectory of (1)

}
.

The set of feasible states of the difference inclusion (1) is
the set of states from which a trajectory emanates:

F(H) := {ξ | ∃(xk) ∈ B(H) with x0 = ξ}.
Clearly, if H is a convex process, then F(H) is a convex cone.

It is important to stress that in general not every point in
the state space is feasible: In Example 1, if we consider a
point x0 for which no u0 satisfies the constraints, we have that
H(x0) = ∅. This means that x0 is not a feasbile point. As there
is no need to reach or control states that violate the constraints,
we say the system (1) is reachable or null-controllable if every
feasible state is reachable or null-controllable respectively. In
terms of the previously defined sets, these can be written as
F(H) ⊆ R(H) and F(H) ⊆ N (H) respectively.

It is important to note that, as is the case for discrete-
time linear systems, reachability and null-controllability are
not equivalent notions.

III. PROBLEM FORMULATION

In this letter we are interested in analyzing the properties
of an unknown system based on measurements performed on
it. We will assume that the system under consideration is
given by

xk+1 ∈ Hs(xk)

where Hs is an unknown convex process. However, we do
have access to a number of exact state measurements corre-
sponding to (q-step) trajectories of Hs. It is clear to see that
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we can view a single q-step trajectory as q separate 1−step
trajectories. Therefore, without loss of generality, we assume
that we measure single steps. That is, we are given a finite
number of pairs (xk, yk) ∈ gr Hs, with k = 0, . . . , T

Suppose that we are interested in characterizing reachability
of Hs. As Hs is unknown, it is indistinguishable from all other
convex processes that could have generated the measurements.
Therefore, we may only conclude that Hs is reachable if all
convex processes that are compatible with the data are reach-
able. This motivates the following definition. Let � denote the
set of all convex processes H : R

n ⇒ R
n and let D ⊆ R

n ×R
n

be a finite set of measurements. Define the set of all convex
processes compatible with these measurements by:

�D := {H ∈ � | D ⊆ gr H}. (3)

Recall that, in order to characterize whether Hs is reachable,
we require all convex processes compatible with the measure-
ments to be reachable. As such, we say that the data D are
informative for reachability if every H ∈ �D is reachable. In
a similar way we define informativity for null-controllability.

Note that informativity is fundamentally a property of the
data and the system class, but not of the system Hs. This leads
to the following problem formulation.

Problem 1: Provide necessary and sufficient conditions on
the data D under which the data are informative for reacha-
bility or null-controllability.

Remark 1: Following Example 1, it is clear that all convex
processes consistent with the data are reachable if and only
if all conically constrained linear systems consistent with the
data are reachable. As these problems are equivalent we will
only focus on formulations in terms of convex processes in
the remainder of this letter.

It should be noted that, in certain cases, the informativity
problem can be resolved trivially, as shown by the following
example.

Example 2: Let n = 1, and assume that we measure the
2-step trajectory given by x0 = 0, x1 = 1, and x2 = −1. Then
we have D = {(0, 1), (1,−1)}.

Note that nonnegative scalar multiples of these measure-
ments are also (finite step) trajectories of any convex process
in �D. As such, it is clear that for any α, β ≥ 0 we have 2-
step trajectories y0 = 0, y1 = α, y2 = −α and z0 = 0, z1 = 0,
z2 = β. Furthermore, the sum of two such 2-step trajectories
is one as well. Therefore (0, α, β − α) ∈ B2(H) for any H
consistent with the data. As such, R(H) = R for any H ∈ �D.

In general, however, resolving the problem is not this
straightforward. To be precise, it is made difficult by two
things. First of all, apart from trivial examples, the set �D
contains infinitely many convex processes. As such, it is usu-
ally not possible to take an approach based on identification.
In addition, there may not exist q for a convex process H such
that

R(H) := {
ξ | ∃(xk)

q
k=0 ∈ Bq(H) s.t. x0 = 0, xq = ξ

}
.

Therefore, testing whether a given convex process is reach-
able or null-controllable is a nontrivial problem in itself (see,
e.g., [14], [16]).

IV. ANALYSIS OF CONVEX PROCESSES

By definition a convex cone C is closed under conic
combinations: If c1, . . . , c� ∈ C then

�∑
i=1

αici ∈ C ∀αi ≥ 0.

The set of all conic combinations of a set S is called the conic
hull and is denoted by coneS. If there exists a finite set S such
that C = coneS we say that C is finitely generated or polyhe-
dral. We denote the set of vectors of length � with nonnegative
and nonpositive elements by R

�+ and R
�− respectively. Then,

if M ∈ R
k×� and S is the set of columns of M, we have that

coneS = MR
�+. (4)

For a nonempty set C ⊆ R
n, we define the negative and

positive polar cone, respectively,

C− := {y ∈ R
n | 〈x, y〉 ≤ 0 ∀x ∈ C},

C+ := {y ∈ R
n | 〈x, y〉 ≥ 0 ∀x ∈ C}.

Given sets C and S, we have that (C−)− = cl(cone C), and:

(C + S)− = C− ∩ S−, (C ∩ S)− = cl(C− + S−). (5)

Let A be a linear map and let •−1 denotes the inverse image,
that is, A−1C− = {x | Ax ∈ C−}. Then if C is a convex cone
we have that (see, e.g., [26, Th. 2.4.3]):

(A�C)− = A−1C−. (6)

The aforementioned properties also hold for the positive polar
cone.

Let H : R
n ⇒ R

n be a convex process. We define negative
and positive dual processes H− and H+ of H as follows:

p ∈ H−(q) ⇐⇒ 〈p, x〉 ≥ 〈q, y〉 ∀ (x, y) ∈ gr(H), (7a)

p ∈ H+(q) ⇐⇒ 〈p, x〉 ≤ 〈q, y〉 ∀ (x, y) ∈ gr(H). (7b)

Note that H+(q) = −H−(−q) for all q. If H is a closed
convex process, we know that (H+)− = H and

H(0) = (dom H+)+ = (dom H−)−. (8)

It is straightforward to check that

gr(H−) =
[

0 In
−In 0

]
(gr H)−, gr(H+) =

[
0 In

−In 0

]
(gr H)+.

(9)

For a convex cone C ⊆ R
n, we define lin(C) = −C ∩ C and

Lin(C) = C − C. We can now define two linear processes L−
and L+ associated with H by

gr(L−) := lin(gr(H)) and gr(L+) := Lin(gr(H)). (10)

By definition, we therefore have

gr(L−) ⊆ gr(H) ⊆ gr(L+). (11)

It is clear that L− and L+ are, respectively, the largest and the
smallest (with respect to the graph inclusion) linear processes
satisfying (11). We call L− and L+, respectively, the minimal
and maximal linear processes associated with H. If H is not
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clear from context, we write L−(H) and L+(H) in order to
avoid confusion.

If L is a linear process it is clear that the negative and
positive dual processes are equal, which allows us to denote
it by L⊥ := L− = L+. In fact, the minimal and maximal
linear processes associated with a convex process enjoy the
following additional properties:

L−(H−) = L−(H+) = L⊥+, (12a)

L+(H−) = L+(H+) = L⊥−. (12b)

For the reachable and null-controllable sets of L− and L+ we
use the following shorthand notation:

R− := R(L−),R+ := R(L+).

N− := N (L−),N+ := N (L+).

We denote the image of a set S under a convex process
H by H(S) := {y ∈ R

n | ∃x ∈ S s.t. y ∈ H(x)}. A direct
consequence of this definition is that

H(S) = [
0 In

](
gr(H) ∩ (

S × R
n)). (13)

We can define powers of convex processes, by taking H0 equal
to the identity map, and letting for q ≥ 0:

Hq+1(x) := H(Hq(x)) ∀x ∈ R
n.

We can define the inverse of a convex process by H−1(y) =
{x | y ∈ H(x)}. Note that this is always defined as a set-valued
map. For higher negative powers of H we use the shorthand:
H−n(x) = (H−1)n(x).

Let L : R
n ⇒ R

n be a linear process, then we know that
F(L) = L−n(Rn) and R(L) = Ln(0). In addition

F(L⊥) = R(L)⊥, (14a)

R(L⊥) = F(L)⊥. (14b)

We will characterize reachability in terms of spectral condi-
tions. For this we require one more definition: A real number
λ and vector ξ ∈ R

n\{0} form an eigenpair of H if λξ ∈ H(ξ).
In this case λ is called an eigenvalue and ξ is called an
eigenvector of H.

In the following, we will need the assumption:

dom H + R− = R
n. (15)

As proven in [16, Th. 1, Lemma 7], we can characterize
reachability in terms of eigenvalues of the dual process.

Theorem 1: Let H be a convex process such that (15) holds.
Then, the following are equivalent:

1) H is reachable.
2) R(H) = R

n.
3) R+ = R

n and H− has no nonnegative eigenvalues.
We now move towards null-controllability. It is tempting to

think that null-controllability of H is equivalent to reachabil-
ity of H−1. However, while indeed it is true that R(H−1) =
N (H), we do not necessarily have that F(H−1) = F(H).

As such, we require a characterization of null-
controllability. This will be done under slightly more
restrictive assumptions than Theorem 1. To be precise, we
will assume both (15) and

R+ = im H + N− = R
n. (16)

The following was proven in [16, Th. 2, Lemma 9].

Theorem 2: Let H be a convex process such that (15)
and (16) hold. Then, the following are equivalent:

1) H is null-controllable.
2) N (H) − R(H) = R

n.
3) H− has no positive eigenvalues.
The following shows why we require separate tests for these

two properties.
Example 3: Recall that, as is the case for discrete time lin-

ear systems, a convex process can be null-controllable without
being reachable. As a simple example consider the convex
process given by:

gr H := R × {0}.
On the other hand, we know that reachability implies null-
controllability for discrete time linear systems. For general
convex processes this is not the case. As an example, let:

gr G := {(x, y) | 0 ≤ x ≤ y}.
Note that R(G) = R+ = F(G), and therefore G is reachable.
As any trajectory of G is a non-decreasing sequence, G is
clearly not null-controllable. This means that in general tests
for reachability can not be employed to obtain results for null-
controllability.

These two theorems allow us to check for reachability and
null-controllability without explicitly determining R(H) or
N (H). This will be central in resolving Problem 1 in the next
section.

V. INFORMATIVITY FOR CONVEX PROCESSES

We turn our attention to the context of informativity. Let
D ⊆ R

n × R
n be a finite set of measurements. We define the

most powerful unfalsified process, HD, by:

gr HD := coneD.

By definition we see that HD ∈ �D and gr HD ⊆ gr H if and
only if H ∈ �D. Our goal is to find conditions on D under
which every H ∈ �D is reachable or null-controllable. we
start with the following theorem.

Theorem 3: Suppose that (15) holds for HD. Then HD is
reachable if and only if every H ∈ �D is reachable.

Proof: Note that HD ∈ �D. Therefore the ‘if’ part is imme-
diate. For the ‘only if’ part, assume that HD is reachable. By
Theorem 1, we have that R(HD) = R

n. Now let H be a con-
vex process such that gr HD ⊆ gr H. As any q−step trajectory
of HD is one of H, it is immediate that R(HD) ⊆ R(H).
Therefore R(H) = R

n. This implies that H is reachable.
Remark 2: It is important to stress that a convex process

H is defined to be reachable if F(H) ⊆ R(H). Therefore a
nonstrict convex process H can be reachable whilst R(H) �=
R

n. Now let gr H ⊆ gr G. Note that we may not conclude
reachability of G from reachability of H in general. As an
example, let gr H = {0}. This convex process is reachable,
and its graph is contained in the graph of any other convex
process, which are not necessarily reachable.

Next, we study null-controllability. It is clear that the rea-
soning of Remark 2 also applies to null-controllability. This
leads to an important point of contrast between Theorem 1
and Theorem 2: Under the conditions of the latter the convex
process H can be null-controllable even if N (H) �= R

n.

Authorized licensed use limited to: University of Groningen. Downloaded on March 25,2022 at 11:06:06 UTC from IEEE Xplore.  Restrictions apply. 



EISING AND CAMLIBEL: DATA INFORMATIVITY FOR ANALYSIS OF LINEAR SYSTEMS WITH CONVEX CONIC CONSTRAINTS 395

Theorem 4: Suppose that (15) and (16) hold for HD. Then,
HD is null-controllable if and only if every H ∈ �D is null-
controllable.

Proof: Again the ‘if’ part is immediate. For the ‘only if’
part, assume that HD is null-controllable. Let H be a convex
process such that gr HD ⊆ gr H. As in the proof of Theorem 3,
we see that R(HD) ⊆ R(H) and N (HD) ⊆ N (H). This
implies that

R
n = N (HD) − R(HD) ⊆ N (H) − R(H).

Note that we also have gr L−(HD) ⊆ gr L−(H) and
gr L+(HD) ⊆ gr L+(H). Therefore, it is clear that (15) and (16)
hold for H. This implies that H is null-controllable.

The question rests whether we can provide simple tests for
reachability and null-controllability of HD in terms of the
data D. In order to resolve this, we will begin by giving two
equivalent representations of HD.

Denote T = |D| and D = {(xt, yt : t = 1, . . . , T}. We define
the matrices X, Y ∈ R

n×T by taking:

X := [
x1 x2 · · · xT

]
, Y := [

y1 y2 · · · yT
]
.

Since coneD is a convex cone, we have that D+ = (coneD)+.
As D is a finite set, we have that coneD and D+ are polyhedral
cones. This means that there exists � ∈ N and η1, . . . , η� ∈
R

2n, such that D+ = cone{η1, . . . , η�}. We can now define
matrices Z, W ∈ R

�×n by the following partition:[
Z −W

]
:= [

η1 . . . η�

]�
.

As coneD is closed, it is equal to (D+)+. Recall that gr HD =
coneD. Therefore, we can use (4) to represent HD in the
following ways:

gr HD =
[

X
Y

]
R

T+ =
{
(x, y) | [

Z −W
][x

y

]
∈ R

�+
}
. (17)

Immediately, we see that

dom HD = XR
T+ and im HD = YR

T+.

Using (17) we can express the minimal and maximal linear
processes of HD as follows:

gr L−(HD) = ker
[
Z −W

]
,

gr L+(HD) = im

[
X
Y

]
.

For the characterizations of reachability and null-
controllability in Theorem 1 and Theorem 2 respectively, we
need the reachable and null-controllable sets of L+ and L−.
In order to characterize these in terms of the data D, we first
look at the image of a set under these linear processes. For a
given set S ⊆ R

n we can apply (13) to verify that:

L−(HD)(S) = W−1ZS,

L+(HD)(S) = YX−1S.

Recall that for a linear process L the reachable set is finitely
determined and R(L) = Ln(0). Combining the above with
some slight abuse of notation, we can write:

R(L−(HD)) = (W−1Z)n{0},
R(L+(HD)) = (YX−1)n{0}.

This characterizes the reachable sets of L−(HD) and L+(HD)

using subspace algorithms with at most n steps. Following the
same reasoning with negative powers, we obtain that:

N (L−(HD)) = (Z−1W)n{0},
N (L+(HD)) = (XY−1)n{0}.

We now shift our focus to the negative dual of HD, and
show that it can be represented in terms of X and Y or Z and
W as well.

By (9) and the first representation of (17) we have that:

gr(H−
D) =

[
0 In

−In 0

]([
X
Y

]
R

T+
)−

.

By (6) this implies that:

gr(H−
D) =

[
0 In

−In 0

][
X� Y�]−1

R
T− = [

Y� − X�]−1
R

T−.

Similarly, we can begin from (9) and the second representation
in (17) instead. As such, we can conclude that the negative
dual of HD satisfies:

gr(H−
D) =

[
W�
Z�

]
R

�+ =
{
(x, y) | [

Y� −X�][x
y

]
∈ R

T−
}
.

Then, we have that λ and ξ form an eigenpair of H−
D if and

only if ξ �= 0 and ξ�(Y − λX) ≤ 0.
We can now combine the previous discussion with

Theorem 1 and Theorem 3 to obtain the following charac-
terization of informativity for reachability in terms of data:

Theorem 5: Let D ⊆ R
n × R

n be a finite set. Suppose that

XR
T+ + (W−1Z)n{0} = R

n.

Then, D is informative for reachability if and only if
(YX−1)n{0} = R

n and for all λ ≥ 0:

ξ�(Y − λX) ≤ 0 =⇒ ξ = 0.

Remark 3: Note that (YX−1)n{0} = R
n implies that R(L) =

R
n for all linear processes L such that D ⊆ gr L. That is, all

such linear processes are reachable.
Example 4: Let n = 2 and suppose that we measure the

following 4−step trajectory:

x0 =
[

0
0

]
, x1 =

[
1
0

]
, x2 =

[
0
1

]
, x3 =

[
0

−1

]
, x4 =

[−1
0

]
.

If we define X and Y as before, we get

X =
[

0 1 0 0
0 0 1 −1

]
, Y =

[
1 0 0 −1
0 1 −1 0

]
.

We can use these to find Z and W:
[
Z −W

] =
[

1 0 0 0
1 0 0 −1

]
.

First, note that XR
4+ = R+ × R and (W−1Z)2{0} = R ×

{0}. Therefore, we can now use Theorem 5 to check for
informativity.

Now, it is straightforward to verify that (YX−1)2{0} = R
2.

Lastly, let λ ≥ 0 and

[
ξ1 ξ2

][1 −λ 0 −1
0 1 −1 − λ λ

]
≤ 0.
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By direct inspection, it is clear that this implies that

ξ1 ≤ 0, ξ2 ≤ λξ1, 0 ≤ (1 + λ)ξ2, λξ2 ≤ ξ1.

These inequalities show that for any λ ≥ 0 we have that ξ1 =
ξ2 = 0. This proves that D is informative for reachability.

In a similar fashion we can apply our discussion to
Theorem 2 and Theorem 4 to obtain a characterization of
informativity for null-controllability.

Theorem 6: Let D ⊆ R
n × R

n be a finite set. Suppose that

XR
T+ + (W−1Z)n{0} = R

n

and

(YX−1)n{0} = YR
T+ + (Z−1W)n{0} = R

n.

Then D is informative for null-controllability if and only if
for all λ > 0:

ξ�(Y − λX) ≤ 0 =⇒ ξ = 0.

Remark 4: If H is a convex process whose graph is poly-
hedral, we can always find a finite set D such that H = HD.
This means that the results of Theorem 5 and Theorem 6 can
be applied to any polyhedral convex process without loss of
generality.

VI. CONCLUSION

In this letter, we have resolved a number of informativity
problems for conically constrained linear systems. This means
that we have formulated conditions on finite, exact, state mea-
surements under which we can test whether the measured
system is reachable or null-controllable. The resulting tests
take the convenient form of subspace inclusions and spectral
conditions.

Future work includes extending the ideas in this letter
towards the more general class of linear systems with convex
constraints. It is easy to see that these systems can be viewed
as difference inclusions of convex set-valued maps. Similar to
the approach in this letter, we can define the smallest set-
valued map consistent with the data by taking the convex
hull instead of the conic hull. As such, a characterization
of reachability for such systems will lead to informativ-
ity results for this class of systems. Another direction of
future work is investigating informativity for the analysis
of other properties and for control. Interesting problems are
for example dissipativity or feedback stabilization. Resolving
such a problem would require formulating characterizations
for a given convex process to have the aforementioned
properties. Lastly, this letter considers only exact mea-
surements of the state. However, many realistic scenarios
will involve noisy measurements. Incorporating noisy data
within this framework will lead to interesting informativity
problems.
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