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On Reachability and Null-Controllability of
Nonstrict Convex Processes

J. Eising and M. K. Camlibel , Member, IEEE

Abstract—This letter studies reachability and
null-controllability for difference inclusions involving
convex processes. Such difference inclusions arise, for
instance, in the study of linear discrete-time systems
whose inputs and/or states are constrained to lie within
a convex cone. After developing a geometric framework
for convex processes relying on invariance properties, we
provide necessary and sufficient conditions for both reach-
ability and null-controllability in terms of the spectrum of
dual processes.

Index Terms—Constrained control, linear systems,
algebraic/geometric methods.

I. INTRODUCTION

THE MOTIVATION behind this letter stems from the ques-
tion when a constrained linear discrete-time system of

the form

xk+1 = Axk + Buk (1a)

Cxk + Duk ∈ Y (1b)

is reachable or null-controllable. Although this is a natural
and fundamental question, it is still open in full generality.
Indeed, all existing results in the literature deal with particular
cases, which are summarized in Table I. The references cited in
Table I all provide necessary and sufficient spectral conditions
for the problems they study. Similar results were also provided
in continuous-time for which we refer the reader to [1]–[4].

In this letter, we focus on convex conic constraints, i.e., Y
is a convex cone. This means that we will work in the more
general framework of difference inclusions of the form

xk+1 ∈ H(xk) (2)

where H is a convex process, a set-valued map whose graph
is a convex cone (see Section III). The constrained system (1)
can be represented in the form (2) by taking H(x) = {Ax+Bu |
Cx + Du ∈ Y}.

Systems of the form (2) are encountered in various con-
texts. Examples include von Neumann-Gale economic growth
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TABLE I
RESULTS ON REACHABILITY (R) AND NULL-CONTROLLABILITY (N)

models [5], cable-suspended robots [6], [7] and chemical
reaction networks [8].

One of the advantages of this framework is the ease
of studying reachability and null-controllability problems by
employing invariance properties. The notions of reachability
and null-controllability are not only of interest from a theoret-
ical point of view, but are also fundamental prerequisites for
virtually any design problem. For instance, null-controllability
plays a role in constrained model predictive control schemes,
guaranteeing feasibility of optimal control in the presence of
endpoint constraints (see, e.g., [14]).

To the best of our knowledge, the earliest work studying
reachability and null-controllability of difference inclusions
is [15]. This letter provides necessary and sufficient condi-
tions for reachability when the convex process is strict, i.e.,
H(0) �= ∅ for all x. In the context of constrained systems,
strictness corresponds to the restricted case of constraints
involving only inputs but not states (see Section III for a
formal definition). As such, it is rather restrictive. This let-
ter [15] also provides necessary and sufficient conditions for
null-controllability under the assumption that both the under-
lying convex process and its inverse are strict. For nonstrict
processes, the null-controllability problem has not been stud-
ied in the literature yet whereas the only work dealing with

2475-1456 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the reachability problem is [6]. For the work on reachability
of convex processes in the continuous-time setup, we refer the
reader to the seminal paper of [16] for the strict case and this
letter [17] studying duality relations for the nonstrict case.

The contributions this letter brings about are three-fold.
Firstly, we develop a novel geometric framework, based on
invariance properties, for convex processes. This framework
not only paves the road to the study of reachability and null-
controllability problems for nonstrict convex processes but also
opens up the possibility of extending the geometric approach
to linear systems (see, e.g., [9], [18], [19]) towards convex
processes. Secondly, we provide necessary and sufficient spec-
tral conditions for reachability under weaker assumptions than
those employed in the literature. Thirdly, we provide neces-
sary and sufficient conditions for null-controllability problem
for nonstrict convex processes. To the best of our knowledge,
this problem has not been studied in the literature before.

The outline of this letter is as follows. In Section II, we
formulate the problems of reachability and null-controllability
for general difference inclusions. In Section III, we quickly
introduce convex process and related notions. Based on these
notions, we are able to provide the main results in Section IV.
The proofs of our results require the introduction of several
notions and auxiliary results that are presented in Section V.
Section VI gives the proofs of the main results. Finally, this
letter closes with conclusions in Section VII.

II. PROBLEM FORMULATION

A set-valued map H : R
n ⇒ R

n is a map taking elements
of R

n to subsets of R
n. Consider a system described by a

difference inclusion of the form:

xk+1 ∈ H(xk) k ≥ 0 (3)

where H : R
n ⇒ R

n is a set-valued map. By a trajectory of (3),
we mean a sequence (xk)k∈N such that (3) holds for all k ≥ 0.

Next, we define a number of sets associated with the
system (3). The behavior (e.g., [20]) is the set of all
trajectories:

B(H) =
{
(xk) ∈ (Rn)N | (xk) is a trajectory of (3)

}
.

The feasible set is the set of states from which a trajectory
emanates:

F(H) = {ξ | ∃(xk) ∈ B(H) with x0 = ξ}.
We also define the set of q-step trajectories as

Bq(H) =
{
(xk)

q
k=0 ∈ (Rn)q+1 | (xk) satisfies (3)

}
.

In this letter, we are interested in reachability and null-
controllability of system (3). We define the set of all states
that can be reached in finite steps from the origin as the reach-
able set and the set of all states that can be steered in finite
steps to the origin as the null-controllable set. These sets are,
respectively, denoted by R(H) and N (H):

R(H) = {
ξ | ∃(xk)

q
k=0 ∈ Bq(H) s.t. x0 = 0, xq = ξ

}
(4a)

N (H) = {
ξ | ∃(xk)

q
k=0 ∈ Bq(H) s.t. x0 = ξ, xq = 0

}
(4b)

We say the system (3) is reachable (null-controllable) if every
feasible state is reachable (null-controllable), that is, F(H) ⊆
R(H)

(
F(H) ⊆ N (H)

)
.

In this letter, we will focus on a specific class of set-
valued maps, namely the so-called convex processes, and
derive necessary and sufficient conditions for both reachability
and null-controllability.

III. CONVEX PROCESSES

A convex cone is a nonempty convex set that is closed under
nonnegative scalar multiplication. For two nonempty convex
sets S, T ⊆ R

n and scalar ρ ∈ R, we define the (Minkowski)
sum and scalar product of sets as:

S + T = {s + t | s ∈ S, t ∈ T }, ρS = {ρs | s ∈ S}.
A set-valued map H : R

n ⇒ R
n is called a convex process,

a linear process, closed if its graph

gr(H) = {(x, y) ∈ R
n × R

n | y ∈ H(x)}
is a convex cone, a subspace, closed, respectively.

Example 1: Consider the following linear system with
constraints:

xk+1 = Axk + Buk, yk = Cxk + Duk ∈ Y (5)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and
Y ⊆ R

p. Consider in addition the set-valued map

H(x) = {Ax + Bu | Cx + Du ∈ Y}. (6)

It can be readily verified that H is a convex (linear) process
if Y is a convex cone (subspace). Clearly, there is one-to-one
correspondence between the state trajectories of (5) and those
of (3).

The domain and image of H are defined as dom(H) = {x ∈
R

n | H(x) �= ∅} and im(H) = {y ∈ R
n : ∃ x s.t. y ∈ H(x)}.

If dom(H) = R
n, we say H is strict. The inverse of H is

defined by:

(y, x) ∈ gr(H−1) ⇐⇒ (x, y) ∈ gr(H).

Clearly, one has dom(H−1) = im(H) and vice versa.
For a convex cone K ⊆ R

n, we define lin(K) = −K ∩ K
and Lin(K) = K−K. Note that lin(K) is the largest subspace
contained in K whereas Lin(K) is the smallest subspace that
contains K.

Let H be a convex process. Associated with H, we define
two linear processes L− and L+ by

gr(L−) = lin
(

gr(H)
)

and gr(L+) = Lin
(

gr(H)
)
. (7)

By definition, we therefore have

gr(L−) ⊆ gr(H) ⊆ gr(L+). (8)

It is clear that L− and L+ are, respectively, the largest and the
smallest (with respect to the graph inclusion) linear processes
satisfying (8). We call L− and L+, respectively, the minimal
and maximal linear processes associated with H. If H is not
clear from context, we write L−(H) and L+(H) in order to
avoid confusion.

Example 2: Let H be of the form (6). It can be shown that
if the set {u | Bu = 0, Du ∈ Y} is a subspace, then

L− = {Ax + Bu | Cx + Du ∈ lin(Y)}.

Authorized licensed use limited to: University of Groningen. Downloaded on March 25,2022 at 11:52:04 UTC from IEEE Xplore.  Restrictions apply. 
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Furthermore, if im
[
C D

] + Y is a subspace, then

L+ = {Ax + Bu | Cx + Du ∈ Lin(Y)}.
For a nonempty set C ⊆ R

n, we define the negative and
positive polar cone, respectively,

C− = {y ∈ R
n | 〈x, y〉 ≤ 0 ∀x ∈ C},

C+ = {y ∈ R
n | 〈x, y〉 ≥ 0 ∀x ∈ C}.

Based on these, we define dual processes H− and H+ of H
as follows:

p ∈ H−(q) ⇐⇒ 〈p, x〉 ≥ 〈q, y〉 ∀ (x, y) ∈ gr(H) (9a)

p ∈ H+(q) ⇐⇒ 〈p, x〉 ≤ 〈q, y〉 ∀ (x, y) ∈ gr(H). (9b)

Example 3: Let H again be of the form (6). It can be shown
that if im

[
C D

] + Y is a subspace, then

H−(x) =
{

A�x + C�u | u ∈ Y+, B�x + D�u = 0
}

We close this section with the definition of eigenvalues. We
say λ ∈ R is an eigenvalue of H if there exists a nonzero
vector ξ ∈ R

n such that λξ ∈ H(ξ). Such a vector ξ will be
called an eigenvector corresponding to λ.

IV. MAIN RESULTS

In this section, we provide the main results of this letter
whose proofs can be found in Section VI. We begin with reach-
ability. For the sake of brevity, we define R− = R(L−) and
R+ = R(L+) in the sequel.

Theorem 1: Let H be a convex process such that dom H +
R− = R

n. Then, H is reachable if and only if R+ = R
n and

H− has no nonnegative eigenvalues.
The advantage of this result over the existing results of

[6, Th. 6.3] will be illustrated by an example.
Example 4: Consider a constrained linear system of the

form (5) where

A = 1, B = 1, C =
[

1
0

]
, D =

[
0
1

]
, and Y = R+ × R.

One can equivalently consider the difference inclusion (3)
where H is of the form (6). Note that L−(x) = {x + u |
x ∈ {0}, u ∈ R}. As such, it is immediate that R− = R

and thus dom(H) + R− = R. Applying Theorem 1, one can
verify that H is reachable. However, [6, Th. 6.3] cannot be
employed to infer reachability for this example. Indeed, the
assumption im D + CT ∗ + Y = R

2 where T ∗ is the smallest
conditioned invariant subspace (see, e.g., [9]) is not satisfied
since T ∗ = {0}.

Next, we will study null-controllability. Clearly, we have
N (H) = R(H−1) from (4). Based on this observation,
one could try to apply Theorem 1 to the convex process
H−1. However, reachability of H−1 means that F(H−1) ⊆
R(H−1) = N (H) whereas null-controllability of H amounts
to F(H) ⊆ N (H). Therefore, Theorem 1 cannot be employed
to test for null-controllability. For the sake of brevity, we define
N− = N (L−) in the sequel.

Theorem 2: Let H be a convex process such that dom H +
R− = R+ = im H + N− = R

n. Then, H is null-controllable
if and only if H− has no positive eigenvalues.

The following example illustrates the role played by the
assumption im H + N− = R

n.
Example 5: Let H : R ⇒ R be the convex process

defined by:

H(x) =
{

[0,∞) if x = 0,

(0,∞) if x �= 0.

Clearly, H is strict and R− = {0} and R+ = R. However,
H is not null controllable since N (H) = {0}.

Let H̄ be the closure of H, that is, H̄(x) = [0,∞) for
any x ∈ R. Then the process H̄ is also strict. Note that
R(L−(H̄)) = {0} and R(L+(H̄)) = R. Since 0 ∈ H̄(x) for
every x ∈ R, the convex process H̄ is null-controllable.

Even though H and H̄ have the same dual H−, the former
is not null-controllable whereas the latter is. This reveals the
role played by the assumption on the image. Indeed, we have
im H + N− = [0,∞) whereas im H̄ + N (L−(H̄)) = R.

An added benefit of this example is that H̄ also is a null-
controllable process, where im H̄ �= R. Therefore it is not
covered by the result of [11].

V. TOWARDS THE PROOFS

Before proving the main results, we need a bit of preparation
that will be presented in this section.

A. Convex Cones

Let C be a convex cone. Then, the negative polar C− is
always closed and moreover C− = (cl(C))− and (C−)− =
cl(C) where cl denotes the closure of a set. For the sums and
intersections of two convex cones C and S, it holds that:

(C + S)− = C− ∩ S−, (C ∩ S)− = cl(C− + S−). (10)

All the properties of negative polar we mentioned above also
hold for the positive polar.

Note that the sum of two closed convex sets is not necessar-
ily closed. As such, the cl operator cannot be dropped from the
second identity in (10) in general. The following result pro-
vides a sufficient condition for the sum of two closed convex
cones to be closed as well.

Lemma 1: Let K1,K2 be closed convex cones such that
K1 ∩ K2 is a subspace. Then K1 − K2 is closed.

Proof: Let A = [
I −I

]
and C = K1 × K2. As a con-

sequence of [21, Th. 9.1], if every z ∈ C such that Az = 0
belongs to lin C, then AC is closed. Note that z ∈ C with

Az = 0 if and only if z =
[

y
y

]
where y ∈ K1 ∩ K2, proving

the lemma.
We end this subsection with an observation on sequences

of nested convex cones.
Lemma 2: Let C� ⊆ R

n be a sequence of nested convex

cones, i.e., C� ⊆ C�+1 such that
∞⋃

�=1
C� = R

n. Then, there

exists an integer q such that Cq = R
n.

Proof: Let S be a basis of R
n, i.e., S ⊆ R

n is a finite set
with Lin(S) = R

n. Then, −S ∪ S is a finite set and hence

contained in Cq for some integer q since
∞⋃

�=1
C� = R

n. Since

the only convex cone containing −S ∪ S is R
n, this means

that Cq = R
n.

Authorized licensed use limited to: University of Groningen. Downloaded on March 25,2022 at 11:52:04 UTC from IEEE Xplore.  Restrictions apply. 
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B. Convex Processes

If H is a convex process, then the sets dom(H), im(H), and
H(0) are convex cones. In addition, we have

H(x) + H(y) ⊆ H(x + y) (11)

for all x, y ∈ dom(H). An immediate consequence of this
inclusion is that

H(x) = H(x) + H(0). (12)

Further, we define the image of a set S under H by:

H(S) =
⋃
x∈S

H(x). (13)

This means that for sets S, T , we have:

H(S ∩ T ) ⊆ H(S) ∩ H(T ), (14a)

H(S + T ) ⊆ H(S) + H(T ). (14b)

C. Strong and Weak Invariance

Next, we introduce two notions of invariance under convex
processes.

Definition 1: Let H : R
n ⇒ R

n be a convex process and
C ⊆ R

n be a convex cone. We say that C is
• weakly H invariant if H(x) ∩ C �= ∅ for all x ∈ C.
• strongly H invariant if H(x) ⊆ C for all x ∈ C.

Using the notation from (13), we can conclude that:
Lemma 3: Let H : R

n ⇒ R
n be a convex process. A set W

is weakly H invariant if and only if W ⊆ H−1(W). A set S
is strongly H invariant if and only if H(S) ⊆ S.

These two invariance notions enjoy the following properties.
Lemma 4: Let H be a convex process. If W and S are,

respectively, weakly and strongly H invariant, then W ∩ S
and S−W are, respectively, weakly and strongly H invariant.

Proof: To prove the first part of the statement, let x ∈ W∩S.
Since W is weakly invariant, there exists y ∈ H(x)∩W �= ∅. In
view of strong invariance of S, we have H(x) ⊆ S. Therefore,
y ∈ H(x)∩S∩W �= ∅ and hence W∩S is weakly H invariant.

For the second part, let x ∈ S − W . Then, there exists
s ∈ S and w ∈ W such that x = s − w. If x �∈ dom(H),
we have H(x) = ∅ ⊆ S − W . Suppose that x ∈ dom(H).
Since W is weakly invariant, w ∈ dom(H). As dom(H) is a
convex cone, we see that s = x + w ∈ dom(H). Note that
H(x) + H(w) ⊆ H(s) ⊆ S since H is a convex process and S
is strongly invariant. Weak invariance of W implies that there
exists z ∈ H(w) ∩ W �= ∅. Then, we have H(x) + {z} ⊆ S
which implies that H(x) ⊆ S − {z} ⊆ S − W . Consequently,
S − W is strongly H invariant.

D. Feasible, Reachable, Null-Controllable Sets

If H is a convex process it is immediate that the feasible,
reachable and null-controllable set are all convex cones. By
inspection, it is immediate that N (H) is weakly H invariant,
F(H) is the largest weakly H invariant cone and R(H) is the
smallest strongly invariant cone.

In addition to their definitions in (4), it is easy to show that
the reachable and null-controllable sets are equal to

R(H) =
∞⋃

�=0

H�(0) and N (H) =
∞⋃

�=0

H−�(0).

This shows that R(H) = N (H−1) and vice-versa. As a conse-
quence, we see that R(H) is weakly H−1 invariant and N (H)

strongly H−1 invariant.
Lemma 5: Let H be a convex process and let R = R(H).

If dom(H) − R is a subspace, then R − R = R+.
Proof: It follows from (8) that H�(0) ⊆ L�+(0) for all � ∈ N.

Then, we get R − R ⊆ R+ − R+ = R+ where the last
equality follows from the fact that R+ is a subspace. As R+
is the smallest strongly L+ invariant cone, the reverse inclusion
R+ ⊆ R−R would follow if R−R is strongly L+ invariant.
Therefore, it suffices to show that L+(R − R) ⊆ R − R.
Let x ∈ R − R. Then, there exist r1, r2 ∈ R such that x =
r1 −r2. If x �∈ dom(L+) = dom(H)−dom(H), we readily have
L+(x) = ∅ ⊆ R−R. Suppose that x ∈ dom(H)−dom(H) and
y ∈ L+(x). From the definition of L+ (7), it follows that there
exist x1, x2 ∈ dom(H) such that x = r1 − r2 = x1 − x2 and
y ∈ H(x1)−H(x2). Note that r1 −x1 = r2 −x2 ∈ R−dom(H).
Since dom(H) − R is a subspace, we have R − dom(H) =
dom(H) − R. Therefore, there exist x̄ ∈ dom(H) and r̄ ∈ R
such that r1 − x1 = r2 − x2 = x̄ − r̄. Since H is a convex
process, we have H(x̄) + H(xi) ⊆ H(x̄ + xi) = H(ri + r̄) for
i = 1, 2. This leads to H(x1)−H(x2) ⊆ H(r1+ r̄)−H(r2+ r̄)+
H(x̄) − H(x̄) since x̄ ∈ dom(H). From H(R) ⊆ R, we know
that H(r1+ r̄)−H(r2+ r̄) ⊆ R−R since r1, r2, r̄ ∈ R. Thus, it
suffices to show that H(x̄)−H(x̄) ∈ R−R for all x̄ ∈ dom(H).
Let x̄ ∈ dom(H). As 0 ∈ R, we have x̄ ∈ dom(H) −R. Since
dom(H) − R is a subspace, −x̄ ∈ dom(H) − R and hence
there exist ξ ∈ dom(H) and η ∈ R such that −x̄ = ξ −η. This
means that H(x̄)+ H(ξ) ⊆ H(x̄ + ξ) = H(η) as H is a convex
process. Since ξ ∈ dom(H), we get −H(x̄) ⊆ H(ξ) − H(η).
Then, we obtain H(x̄)−H(x̄) ⊆ H(x̄)+H(ξ)−H(η) ⊆ H(x̄+
ξ) − H(η) = H(η) − H(η). As H(η) ⊆ R, we finally arrive at
H(x̄) − H(x̄) ⊆ R − R since η ∈ R.

E. Dual Processes

In terms of the graph, we can write definition (9a) of the
negative dual as:

gr(H−) =
[

0 I
−I 0

](
gr(H)

)− (15)

and similar for the positive dual H+.
Lemma 6: Let H be a convex process, then the following

hold:
1) gr(H−) = − gr(H+).
2) (H−1)− = (H+)−1.
3) (dom H)− = −H−(0) = H+(0).
Proof: Statements (1) and (2) follow immediately from (15)

and the fact that

gr(H−1) =
[

0 I
I 0

]
gr(H).

Lastly, (3) is immediate from (9a) by taking q = 0.
The image of a convex cone under a convex process enjoys

the following duality relation which is slight generalization of
[22, Th. 2.5.7].

Proposition 1: Let H : R
n ⇒ R

n be a convex process and
K be a convex cone such that dom(H)−K is a subspace. Then,

(
H(K)

)− = (H−)−1(K−).
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Proof: We can write the left-hand side in terms of the
graph by:

(H(K))− =([
0 I

](
gr(H) ∩ K × R

n))−
.

Using [21, Corollary 16.3.2], this means that:

(H(K))− =
[

0
I

]−1(
gr(H) ∩ K × R

n)−

=
[

0
I

]−1

cl
(
gr(H)− + K− × {0})

=
[

0
I

]−1[
0 I
−I 0

]−1

cl
(
gr(H−) + {0} × K+)

By Lemma 6 we have

[ dom(H) − K]+ = H−(0) ∩ K−

Therefore, from our assumption follows that gr(H−)∩{0}×K−
is a subspace, which allows us to use Lemma 1 to reveal that
gr(H−)+{0}×K+ is closed. Therefore we can drop the closure
from our derivation, and find:

(H(K))− =
[

I
0

]−1(
gr(H−) + {0} × K+)=(H−)−1(K−).

Thus proving the lemma.
The previous result allows us to reveal a relation between

duality and invariance.
Theorem 3: Let H : R

n ⇒ R
n be a convex process and

K be a convex cone such that K − dom(H) is a subspace.
Then, K− is weakly H− invariant if K is strongly H invariant.
Conversely, K is strongly H invariant if K is closed and K−
is weakly H− invariant.

Proof: Suppose that K is strongly H invariant. Then,
H(K) ⊆ K in view of Lemma 3. Hence, K− ⊆ [H(K)]−.
From Proposition 1, we have K− ⊆ (H−)−1(K−). Therefore,
K− is weakly H− invariant due to Lemma 3.

Now suppose that K is closed and K− is weakly H− invari-
ant. Then, K− ⊆ (H−)−1(K−). Proposition 1 implies that(
[H(K)]−

)− ⊆ (K−)−. This means that cl(H(K)) ⊆ K since
K is closed. Hence, H(K) ⊆ K. In other words, K is strongly
H invariant due to Lemma 3.

There is a link between weakly H invariant cones and
eigenvalues of the dual of H, given in [6, Th. 3.2].

Proposition 2: Let H : R
n ⇒ R

n be a closed convex process
and K �= {0} be a closed convex cone in R

n. Suppose that K
does not contain a line, H(0) ∩ K = {0}, and K is weakly H
invariant. Then, K contains an eigenvector of H corresponding
to a nonnegative eigenvalue.

VI. PROOFS

A. Proof of Theorem 4

We begin with an alternative characterization of reachability.
Lemma 7: Let H be a convex process such that dom H +

R− = R
n. Then, H is reachable if and only if R(H) = R

n.
Proof: To prove sufficiency, we assume that F(H) ⊆ R(H).

By [6, Lemma 4.3] we know that if dom H +R− = R
n, then

F(H) + R− = R
n. By our assumption, we therefore know

that R
n = F(H)+R− ⊆ R(H)+R− = R(H). For necessity,

suppose that R(H) = R
n. Then, clearly F(H) ⊆ R(H).

Next, we relate the eigenvectors of the dual process H− to
the reachable set R(H).

Lemma 8: Let H be a convex process. If ξ is an eigen-
vector of H− corresponding to a nonnegative eigenvalue,
then ξ ∈ R(H)−.

Proof: Let λξ ∈ H−(ξ) for some λ ≥ 0. Note that
(λ�ξ, λ�+1ξ) ∈ gr H− for any � ≥ 0. Now take η ∈ R(H).
Then, η ∈ Hq(0) for some q. Hence, there exists a finite
sequence (xk)

q
k=0 such that x0 = 0, xq = η, and (xk, xk+1) ∈

gr H for k = 0, . . . , q−1. By the definition of the dual process
in (9a), we know that 〈λ�+1ξ, xk〉 ≥ 〈λ�ξ, xk+1〉 for any � ≥ 0
and k = 0, . . . , q − 1. In particular we can conclude that

0 = 〈λqξ, x0〉 ≥ · · · ≥ 〈λξ, xq−1〉 ≥ 〈ξ, η〉.
This shows that ξ ∈ R(H)−.

Based on these result, we can prove Theorem 1 as fol-
lows. For the necessity, suppose that H is reachable. Then,
it follows from Lemma 7 that R(H) = R

n. Hence, we see
that R+ = R

n since R(H) ⊆ R+. In addition, we have
R(H)− = {0}. Therefore, Lemma 8 implies that H− has no
nonnegative eigenvalues.

For the sufficiency, suppose that R+ = R
n and H− has no

nonnegative eigenvalues. Suppose, on the contrary, that H is
not reachable. Then, Lemma 7 implies that R(H) �= R

n. Since
Lin(R(H)) = R+ = R

n due to Lemma 5 and the hypothesis,
we see that R(H) does not contain a line. From the hypothesis
dom H +R− = R

n and the fact that R− ⊆ R(H), we see that
dom H − R(H) = R

n. Then, Theorem 3 implies that R(H)−
is weakly H− invariant since R(H) is strongly H invariant.
Using the properties of the dual from (10) and Lemma 6 we
see that

H−(0) ∩ R(H)− = (dom H − R(H))+ = {0}
Now, Proposition 2 applied to the convex process H− and the
cone R(H)− implies that there exists an eigenvector in R(H)−
corresponding to a nonnegative eigenvalue of H−. This is a
contradiction, proving that R(H) = R

n.

B. Proof of Theorem 2

Similar to the proof of the reachability theorem, we begin
with an alternative characterization of null-controllability.

Lemma 9: Let H be a convex process such that dom H +
R− = R

n. Then, H is null-controllable if and only if N (H)−
R(H) = R

n.
Proof: To prove necessity, suppose that H is null control-

lable, that is F(H) = N (H). By [6, Lemma 4.3] we know
that if dom H + R− = R

n, then F(H) + R− = R
n. By the

hypothesis, we therefore get

R
n = F(H) + R− = N (H) + R− ⊆ N (H) − R(H).

Hence, we see that N (H) − R(H) = R
n.

For sufficiency, suppose that N (H)−R(H) = R
n. By taking

C� = N (H) − H�(0) and applying Lemma 2, we see that
there exists an integer q such that N (H)− Hq(0) = R

n. Now,
let x ∈ F(H). Then, there exists y ∈ Hq(x). Since N (H) −
R(H) = R

n, y = w − z where w ∈ N (H) and z ∈ Hq(0).
From (12), we see that w ∈ Hq(x). As N (H) is strongly H−1

invariant, we can conclude that x ∈ N (H). Consequently, we
obtain F(H) ⊆ N (H) and hence H is null-controllable.
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We proceed with the proof of Theorem 2 as follows. For
necessity, suppose that H is null-controllable. Therefore, we
have N (H) − R(H) = R

n due to Lemma 9. Let λξ ∈ H−(ξ)

for some λ > 0 and ξ ∈ R
n. We already know from Lemma 8

that

ξ ∈ R(H)−. (16)

From Lemma 6 we know that (H−1)− = (H+)−1. Since
λ > 0, we have λ−1(−ξ) ∈ (H−1)−(−ξ) due to Lemma 6.
Therefore, Lemma 8 implies that

− ξ ∈ R(H−1)− = N (H)−. (17)

This, together with (16), results in ξ ∈ R(H)− ∩ N (H)+.
Note that R(H)− ∩ N (H)+ = (R(H) − N (H))− = (Rn)− =
{0}. Therefore, we can conclude that H− has no positive
eigenvalues.

For sufficiency, suppose that H− has no positive eigenvalues
but H is not null-controllable. Then, we know from Lemma 9
that R(H) − N (H) �= R

n. Also, we know from Lemma 4
that R(H) − N (H) is strongly H invariant since R(H) and
N (H) are, respectively, strongly and weakly invariant. Note
that the hypothesis dom H − R− = R

n implies that dom H −
(R(H) − N (H)) = R

n since R− ⊆ R(H) and 0 ∈ N (H).
As such, we can apply Theorem 3 to conclude that (R(H) −
N (H))− is weakly H− invariant. From Lemma 5, we see that
Lin(R(H)) = R

n. This means that R(H)− does not contain a
line. Since the cone (R(H)−N (H))− is contained in R(H)−,
it cannot contain a line either. Now, observe that

H−(0) ∩ (R(H) − N (H))− ⊆ (dom H − R(H))+

⊆ (dom H + R−)+ = (Rn)+ = {0}.
This means we can apply Proposition 2 to the convex pro-
cess H− and the cone (R(H) − N (H))− to conclude that
there exists an eigenvector ξ ∈ (R(H) − N (H))− corre-
sponding to a nonnegative eigenvalue λ of H−. Since H−
has no positive eigenvalues, λ must be zero. Therefore, we
have 0 ∈ H−(ξ), or equivalently ξ ∈ (H−)−1(0). By not-
ing that im H = dom H−1 and using Lemma 6, we can get
(im H)− = (H−)−1(0). Hence, we see that ξ ∈ (im H)−.
Recall that ξ ∈ (R(H) − N (H))− = R(H)− ∩ N (H)+. This
means that

ξ ∈ (im H)− ∩ N (H)+ = (im H − N (H))−

⊆ (im H + N−)− = (Rn)− = {0}.
This clearly contradicts with the fact that ξ is an eigenvector.
Therefore, we must have R(H) − N (H) = R

n.

VII. CONCLUSION

We have studied reachability and null-controllability for
a class of discrete-time systems that are given in the form
of difference inclusions with convex processes. Under mild
conditions on the domain of a given convex process, we estab-
lished necessary and sufficient conditions for reachability. For
null-controllability, we provided also necessary and sufficient
conditions under mild assumptions on both domains and the

images. The results on reachability generalize all existing sim-
ilar results whereas the results on null-controllability appear
for the first time, to the best of our knowledge, in the literature.
Moreover, all assumptions we made as well as the conditions
we presented can be verified in finite steps.

Future work consists of extending the results from the
conic case to the more general case of convex constraints.
Also, the framework presented may lead to a similar spectral
characterization of the stabilizability problem.
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