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As survival improves in childhood cancer, prevention of late treatment-related toxicity in survivors
becomes increasingly relevant. Radiotherapy is an important contributor to late toxicity. Therefore, min-
imizing radiation exposure to normal tissues is an important step towards improving the long-term ther-
apeutic window of childhood cancer treatment. Since children are growing and developing, they are
particularly vulnerable to radiation exposure. This makes the ‘as low as reasonably achievable
(ALARA)’ principle even more important. In order to guide and achieve clinically meaningful dose reduc-
tions through advanced and emerging radiation techniques, it is important to investigate age-dependent
relationships between radiation exposure to healthy tissues and late radiation-induced toxicity. In this
review, we provide an overview of literature on the association between radiotherapy dose and late tox-
icity after abdominal and pelvic irradiation in childhood cancer. With this information, we aim to aid in
decision-making regarding radiotherapy for childhood cancer.
� 2022 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 170 (2022) 27–36 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Treatment for childhood cancer has evolved considerably over
the last decades, resulting in improved survival. Nowadays, 5-
year cancer survival rates in children exceed 80% [1].

Current childhood cancer survivors (CCS) have an increased risk
of late morbidity and mortality, not only related to the index can-
cer itself, but also from its treatment. The 20-year cumulative inci-
dence of grade 3–5 late toxicities in survivors treated between
1990 and 1999 was over 25%, compared to less than 5% in their sib-
lings [2].

Radiotherapy (RT) is an important factor contributing to late
toxicity. Its late effects include a wide spectrum of health prob-
lems. Examples include the development of second malignant neo-
plasms (SMNs), renal insufficiency and gonadal failure [3–4]. In a
substantial long-term cohort study, CCS who received RT had rela-
tive risks compared to siblings of 3.4 for developing grade 1–4
chronic conditions, 7.9 for developing grade 3–4 chronic condi-
tions, and 5.2 for developing multiple chronic conditions. Relative
risks were highest after RT to the chest, abdomen or pelvis [5]. In
another long-term follow-up cohort, abdominopelvic radiotherapy
was associated with an increased risk of hospitalization, among
other causes due to endocrine, nutritional and metabolic diseases
(relative hospitalization rate (RHR) 2.5), as well as subsequent neo-
plasms (RHR 1.7) [6].

In paediatric literature, associations between RT and late toxic-
ity have historically been based on prescribed dose to the target
volume. However, for adequate quantification of toxicity, normal
tissue complication probability (NTCP) data is required, describing
the relation between radiation dose to a tissue in relation to the
endpoint (toxicity) of interest. For such models, information on
the actual dose to healthy tissues is required, but often unavailable
in long-term cohorts of survivors treated with older RT techniques.
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Childhood radiotherapy, abdominopelvic toxicity
Examples of methods for tissue dose estimation include retrospec-
tive dose reconstruction using mathematical phantoms, radiobio-
logical dose metrics (i.e., estimation of biological effectiveness),
and prospective registration of RT planning system data. Toxicity
may be prevented or reduced by adapting treatment plans guided
by the dose parameters that are most relevant for the development
of late radiation-induced side effects or using more advanced tech-
niques like proton beam therapy (PBT) in order to reduce dose to
the organ at risk (primary prevention).

In the Quantitative Analysis of Normal Tissue Effects in the
Clinic (QUANTEC) review, RT dose, volume and outcome data were
summarized to provide tolerance guidelines for the clinic [7].
Unfortunately, these guidelines are mostly based on data from
adult patients, with limited generalizability to the more complex
and heterogeneous paediatric population. More recently, the Pae-
diatric Normal Tissue Effects in the Clinic (PENTEC) collaboration
has been launched, which aims to perform a systematic review
of dose/volume/outcome data in children and provide dose/volume
tolerance guidelines specifically for the paediatric population [8].

In this review, we provide an overview of current literature
about the association between RT to the abdomen or pelvis for
childhood cancer and late toxicity excluding secondary cancers
and bone growing defects. A special focus was placed on studies
investigating dose–effect relationships and studies developing nor-
mal tissue complication probability (NTCP) models of late toxicity
(i.e., prediction models describing the relationship between radia-
tion dose and other parameters and the risk on a given adverse
effect) investigating RT dose to the abdomen and/or pelvis as a pos-
sible predictor.
Materials and methods

Selection criteria

All study designs investigating the association between RT for
childhood cancer and late adverse effects to organs in the abdomen
and pelvis were eligible, except for case reports, case series (de-
scription of non-consecutive cases), and studies including fewer
than 20 patients. The studies had to include childhood cancer sur-
vivors diagnosed between the ages of 0 and 18 years, who were at
least one year after completion of their cancer treatment. Selected
papers needed to include treatment with RT involving the abdo-
men or pelvis, including total body irradiation (TBI). Combinations
with other treatment modalities, such as surgery and chemother-
apy, were allowed.

The type of outcome measure included late adverse effects that
could be attributed to RT (present at least one year after RT) for
each organ in the abdomen and pelvis. Late toxicities related to
irradiation of the pancreas, liver, kidneys, spleen, intestines, blad-
der, testes, ovaries and vagina were included. Second malignant
neoplasms were not included as an outcome in this study, since
the broad spectrum of secondary tumours potentially arising from
radiotherapy to the abdomen and pelvis would warrant one or
more separate literature studies.
Search methods

A literature search was performed in the Cochrane Library and
MEDLINE (PubMed). The search terms used are summarized in
Tables S1-2. The flowchart of literature search steps in the
Cochrane library, International Guideline Harmonization Group
(IGHG) guidelines and PubMed (MEDLINE) is shown in Fig. 1. Only
articles written in English were reviewed.

If a Cochrane review existed for a relevant outcome, the results
from this Cochrane review were reported and a MEDLINE search
was performed only for studies published after its scope. Studies
28
included in the Cochrane reviews are not cited separately; we refer
to the relevant Cochrane publication.

The reference lists of all relevant articles and reviews were
screened for additional references which were not found in the ini-
tial search.
Data collection and analysis

After performing the search strategy described above, one
review author selected the studies meeting the inclusion criteria.
In case of doubt during the selection process, a second author
was asked to review the abstracts. For all studies possibly meeting
the inclusion criteria based on title and/or abstract, the full text
was reviewed. Special emphasis was placed on finding articles
reporting on dose–effect relations of RT with late toxicity.

Studies meeting the inclusion criteria were categorised accord-
ing to the evidence level regarding the relation between radiation
dose to the organ and the toxicity of interest. These evidence levels,
as formulated by the authors of this manuscript, are summarized
in Table 1. Category A is the highest; studies with this level
describe clear dose effect relations. Category D is the lowest and
is reserved for studies not describing a clear association between
radiotherapy and the outcome of interest.

If studies with different evidence categories were found for the
same outcome, only the studies with the highest evidence category
for that outcome were described in more detail (e.g., all category A
studies if available). Results for each study were reported based on
the information available in the articles and appendices. Study
characteristics were described for each study, including the num-
ber of participants, time period of treatment and RT dose used.
Results

Results of literature screening in CENTRAL, IGHG guidelines and
MEDLINE are shown separately and per organ in Table S3. Charac-
teristics of the studies included in this review are summarized in
Tables S4-5 for toxicities of abdominal organs, and in Tables S6-7
for toxicities of pelvic organs.
Late effects of RT to the abdomen

Pancreas
Diabetes mellitus (DM) is associated with an increased risk of

cardiovascular disease and subsequent mortality [9–10]. CCS are
at increased risk of developing DM. Exposure to abdominal irradi-
ation or TBI adds to this risk [11]. QUANTEC does not specify con-
straints for dose to the pancreas [7].

Out of 12 papers meeting inclusion criteria [12–23], two
reported on a category B dose–effect relation (Table 1) [15,18].

In both category B studies, RT dose delivered specifically to the
pancreas tail (�10 Gy) was associated with the risk of developing
DM [15,18]. This dose–effect relation was most pronounced in
young children (<2–10 years) and declinedwith higher age at treat-
ment [15,18]. No dose–response relation was found in children
�15 years at diagnosis [18]. Chemotherapy use was not associated
with risk of developing DM and did not influence the dose–
response relations [15,18]. One study analyzed the effect of the
number of fractions, which was not statistically significant [15].

Based on this information, in contrast to the QUANTEC recom-
mendations, the pancreas tail should be delineated as an organ at
risk for children � 10 years of age [15,18]. The dose delivered to
the pancreas tail should be � 10 Gy. Since the ERR per Gy increases
with lower age at diagnosis, constraints should be even stricter in
children who are younger (especially those <2 years) at time of
diagnosis.



Fig. 1. Flowchart of literature search steps. IGHG International Guideline Harmonization Group; MEDLINE Medical Literature Analysis and Retrieval System Online.

Table 1
Explanation of Evidence Categories.

Category Explanation

A RT as significant predictor in NTCP model predicting absolute risk
of an adverse effect

B RT dose significantly associated with occurrence of adverse effect,
but no prediction model for absolute risk of the outcome exists
that includes RT dose

C RT associated with outcome, but no dose–effect relation reported
in literature

D No clear association described between RT and outcome

NTCP normal tissue complication probability; RT radiotherapy.
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Liver
Late radiation-induced hepatobiliary complications, such as

hepatic fibrosis, cirrhosis, or cholelithiasis, are uncommon in
long-term CCS, but have been described in patients receiving
higher doses [24]. QUANTEC advises mean liver doses of <13–
20 Gy, depending on the primary cancer and fractionation, or
�15 Gy to �700 mL of normal liver [25].

A Cochrane review (updated 2019) [26] found that, based on
current evidence, radiotherapy involving the liver is suggested to
be a risk factor for cellular liver injury (i.e., elevated alanine amino-
transferase (ALT)) [27,28] and biliary tract injury (category C) [27].
Furthermore, the percentage of the liver volume irradiated (i.e., the
V10, V15 and V20) was suggested to be related to the risk of cellu-
lar liver injury (category B, see Table 1), independently of the
effects of busulfan and thioguanine use on this outcome. The effect
of age at diagnosis on this outcome was not reported [28]. The clin-
ical relevance of these laboratory abnormalities remains uncertain
[26]. One IGHG guideline on the topic has been published [29], ref-
erencing the same study [28]. A MEDLINE search for articles pub-
lished after the scope of the Cochrane review (January 2018) did
not yield additional relevant articles.

The limited available data summarized here are insufficient to
recommend different dose constraints from those of QUANTEC
when treating children with radiotherapy [25].
Kidneys
Nephrotoxicity after RT may become clinically apparent as

hypertension, a decline in GFR and proteinuria [30]. QUANTEC
advises bilateral mean kidney doses <10 Gy (TBI) or <18 Gy
(non-TBI) for a <5% toxicity risk. If one kidney receives >18 Gy,
<30% of the remaining kidney’s volume may receive >6 Gy. Age
<5 years has been associated with a higher risk of renal dysfunction
after RT [31].
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One Cochrane review was found on the topic (updated in 2019)
[32]. It identified several studies reporting on associations between
RT and kidney-related outcomes such as reduced eGFR [33–37],
proteinuria [33,34,38], and elevated blood pressure [12,34,39–
41]. Most studies did not find significant associations of RT with
renal outcomes (category D, see Table 1).

Seven additional MEDLINE articles published after the scope of
the Cochrane review (i.e., March 2017) were found [42–48]. Four
articles described category B dose–effect relations (Table 1)
[43,46–48].

The first study found significantly lower eGFR after abdominal
RT for Wilms’ tumour. In addition, cystatin-based eGFR showed a
significant moderate correlation with prescribed irradiation dose,
with a trend towards lower eGFR after prescribed doses �25 Gy.
No association with nephrotoxic chemotherapy was found in this
study. The effect of age at diagnosis was not reported [43]. The sec-
ond study, based on the Childhood Cancer Survivor Study (CCSS)
cohort, found in multivariable analysis that TBI (HR 6.9) and
non-TBI estimated mean kidney dose >15 Gy (>15–20 Gy: HR
3.6; >20 Gy: HR 4.6) were both associated with an increased risk
of requiring kidney transplantation later in life. Ifosfamide use
and nephrectomy, but not methotrexate use or age at primary can-
cer diagnosis, were also independently associated with this out-
come [46]. In the third study, based on the SJLIFE cohort, the
volumes of kidney receiving �5 Gy and �10 Gy were associated
with an increased risk of stages 3–5 chronic kidney disease in mul-
tivariable analysis. Ifosfamide, cis-Platinum and Carboplatinum
dose (mg per m2), as well as calcineurin inhibitere use, were inde-
pendently associated with increased risk. The effect of age at diag-
nosis was not reported [48]. Lastly, the fourth study, based on the
CCSS cohort, described an increased risk of late-onset kidney fail-
ure after kidney doses �15 Gy in multivariable analysis. Anthracy-
cline and ifosfamide dose (g/m2) were also associated with
increased risk, while age at diagnosis did not have a significant
effect [47].

Based on the presented data, there is no clear indication to devi-
ate from the current QUANTEC recommendations in radiotherapy
for children, nor to make a distinction between different age
groups.
Spleen
Asplenia, whether anatomic due to splenectomy or functional,

e.g., due to RT, is associated with an increased risk of severe infec-
tion by encapsulated bacteria such as streptococcus pneumoniae
[49]. No tolerance dose has been specified by QUANTEC. Previ-
ously, risk of impaired splenic function was mainly expected to
occur after treatment RT doses �40 Gy [50].



Childhood radiotherapy, abdominopelvic toxicity
Out of 2 articles meeting inclusion criteria one was assigned as
category B (Table 1) [51].

In a large cohort study, the risk of late infection-related mortal-
ity increased with radiation dose to the spleen (reconstructed aver-
age dose to the left upper quadrant of the abdomen was used as a
surrogate) from a 2-fold increase in doses <10 Gy (P = 0.08) to a
5.5-fold increase in doses �10 Gy (P = 0.001) in multivariable anal-
ysis (translating to a cumulative incidence at 35 years of 0.4% (95%
CI, 0.2–0.6%), 1.1% (95% CI, 0.2–2%), and 1.3% (95% CVI 0.2–2.4%)
after 0.1–9.9 Gy, 10.0–19.9 Gy, and �20 Gy to the spleen, respec-
tively). A cyclophosphamide equivalent dose of chemotherapy
�8000 mg/m2 was independently associated with late infection-
related mortality. Age at diagnosis did not affect the outcome [51].

Based on the aforementioned study, in contrast to the current
QUANTEC recommendations in adults, we would recommend
including the spleen as an organ at risk in children and striving
for a mean dose to the spleen <10 Gy in all age groups to minimize
the risk of late infection-related mortality. Since this is a single
study, independent confirmation of the findings is warranted.
Late effects of RT to the pelvis

Intestines
Irradiation to the intestines can lead to several types of toxicity,

such as enteritis, adhesions and fibrosis. The QUANTEC guidelines
recommend keeping the volume of delineated bowel loops receiv-
ing �15 Gy under 120 cc, or keeping the volume of peritoneal cav-
ity receiving �45 Gy under 195 cc. Both surgery and chemotherapy
increase the risk of radiation induced bowel toxicity [52].

After literature screening 2 category B articles were deemed rel-
evant for this review (Table 1) [53,54].

In multivariable analysis of a large study of CCS, increasing
abdominopelvic prescribed dose (�20 Gy) in patients with abdo-
minopelvic tumours was associated with an increased risk of
intestinal obstruction requiring surgery. Chemotherapy use and
age at diagnosis did not show an independent association with this
outcome [53]. In a more recent study from the same group, pelvic
RT (prescribed dose �30 Gy) was associated with an increased risk
of late anorectal disease (combined outcome including fistula and
stricture), translating to a cumulative incidence 40 years after diag-
nosis of 2.7% (95% CI 2.4–3.1%), 3.9% (2.5–5.2%), and 9.7%
(4.8–14.7%), in all survivors and dose with pelvic prescribed dose
30–49.9 and �50 Gy, respectively. Platinum dose was not associ-
ated with this outcome. The effect of age at diagnosis was not
reported [54].

Since the aforementioned studies only report prescribed dose to
abdomen and/or pelvis, these data are insufficient to deviate from
current OAR constraints as advised by QUANTEC or to recommend
different constraints based on age group.

Bladder
Haemorrhagic cystitis, fibrosis or hypoplasia are the most fre-

quently reported radiation-induced bladder complications. Symp-
toms of haemorrhagic cystitis include urgency, frequency,
dysuria, stranguria and haematuria [55]. Treatment may involve
antispasmodic drugs, saline bladder irrigation, or in severe cases
cystoscopy with clot evacuation or even cystectomy [56]. Accord-
ing to the QUANTEC guidelines, no reliable literature-based con-
straints are currently available [57].

Four studies provided useful information on the association
between pelvic RT and haemorrhagic cystitis [56,58–60].

In two studies, pelvic RT (for various malignancies, presumably
excluding TBI, dose not reported) was associated with a higher
incidence of haemorrhagic cystitis, occurring in 30–60% of irradi-
ated patients versus 1–6% of non-irradiated patients (category C,
see Table 1) [58,60]. In another study, pelvic RT (for various malig-
30
nancies, dose not reported) was associated with more severe
(grade III or IV) haemorrhagic cystitis and more frequent need of
invasive management such as continuous bladder irrigation or
operative intervention (category C) [56]. In contrast, one older
study (n = 977), including patients undergoing bone marrow trans-
plantation for various diseases (presumably after TBI), did not find
an association between use of RT and incidence of haemorrhagic
cystitis (category D, see Table 1) [59].

The aforementioned data, like the adult data available to QUAN-
TEC, are insufficient to recommend specific dose constraints to the
bladder for radiotherapy in children.

Female gonads (ovaries and uterus)
Ovarian failure is a common late effect of RT, occurring in 30–

40% of patients receiving RT or chemoradiotherapy for pelvic
tumours. Ovarian failure may result in a myriad of health problems
including premature menopause and infertility [61]. QUANTEC
does not specify a maximum dose for the ovaries [7].

Like the ovaries, the uterus serves an important function in
female fertility. Radiation toxicity to the uterus may therefore have
profound consequences for female childhood cancer survivors.
QUANTEC does not mention specific dose constraints for the ovar-
ies or uterus [7].

One article with category A evidence [62], and nine articles with
category B evidence were found on ovarian failure (Table 1)
[11,63–70]. The former article will be described in more detail
[62]. Also, two IGHG guidelines [71,72] and 13 category B MEDLINE
articles [69–70,73–83] on different adverse outcomes after ovarian
and uterine irradiation met inclusion criteria. Lastly, a relevant
review on the topic will be discussed [84].

In the aforementioned category A study, a prediction model was
developed combining the cohorts from the CCSS (n = 5886) and the
St. Jude Lifetime Cohort (SJLIFE) study (n = 875). A linear dose–re-
sponse relationship was found between the minimum ovarian dose
(i.e., lowest of the average doses to the left and right ovaries) and
the risk of acute ovarian failure. In a prescribed dose model, a
linear dose–response relation was found between the prescribed
abdominal and pelvic dose, and the risk of acute ovarian failure
[62]. An online calculator has been published on the CCSS
website (https://ccss.stjude.org/tools-documents/calculators-
other-tools/ccss-ovarian-risk-calculator.html) to predict absolute
risk of acute ovarian failure based on ovarian or prescribed RT dose,
also taking into account other predictors, such as the cyclophos-
phamide equivalent dose (mg/m2 of chemotherapy (increasing risk
after higher dose) and age at cancer diagnosis (increasing risk with
higher age; i.e., lower risk at prepubertal age) [62].

An IGHG guideline on premature ovarian insufficiency reports
on four studies describing dose–response relations with premature
menopause [65,85–87]. The guideline authors concluded that
radiotherapy to the ovaries was associated with an increased risk
of premature menopause, especially for women who were treated
with higher doses, although definition of a clear threshold for a safe
RT dose could not be given [71]. In other studies found through
MEDLINE, doses >0–5 Gy absorbed by the ovaries have been asso-
ciated with premature menopause. Higher chemotherapy dose
[74,76,82], and higher age at treatment were also associated with
premature menopause in all studies [74,76,82]. A review concludes
that high-quality evidence exists for the relation between ovarian
dose and the risk of premature ovarian insufficiency, and
moderate-quality evidence for further increase in risk when ovar-
ian radiotherapy is combined with alkylating agents [84].

Dose-effect relationships (category B) have also been described
between lower abdominal/pelvic RT and hormonal markers of low
ovarian reserve (prescribed dose >0 Gy). In multivariable analysis,
procarbazine dose was also an independent risk factor. Age at diag-
nosis was not included in the analysis [69]. Radiotherapy doses

https://ccss.stjude.org/tools-documents/calculators-other-tools/ccss-ovarian-risk-calculator.html
https://ccss.stjude.org/tools-documents/calculators-other-tools/ccss-ovarian-risk-calculator.html
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�4–5 Gy received by ovaries or uterus were associated with sub-
fertility [70,73,77–79]. In addition, higher chemotherapy dose
increased this risk [70,77,79], with combined chemoradiotherapy
as an independent risk factor [78]. In some studies no effect of
age was identified [70,78], while in others a younger age at diagno-
sis (<10 years) was associated with a lower risk of subfertility
[77,79].

The aforementioned review concludes that moderate quality
evidence exists for the relation between ovarian RT dose and the
likelihood of pregnancy and livebirths, as well as low-quality evi-
dence for decreasing likelihood of this outcome after increasing
doses of cyclophosphamide, busulfan and lomustine [84].

An IGHG guideline was published on obstetric outcomes in CCS
[72]. It concludes that very low level evidence exists for dose–re-
sponse relations of radiotherapy with gestational hypertension
and malposition [88], low level evidence for miscarriage [80,89],
premature birth (>5–15 Gy received by ovary and uterus)
[81,88], and small size/stature for gestational age [81,89], and
moderate level evidence for low birthweight (>2.5/25 Gy)
[78,81,89]. Several MEDLINE articles also described dose–effect
relations with obstetric outcomes (category B). Doses of >1–
10 Gy to these organs were associated with stillbirth and neonatal
death [80,83]. Chemotherapy with alkylating drugs was not associ-
ated with this outcome [83]. Age at diagnosis did not affect the risk
in one study [80], while irradiation before menarche was a risk fac-
tor for stillbirth and neonatal death in the other [83]. Doses of
>5 Gy to the uterus and >0.5–2.5 Gy to the ovaries, as well as treat-
ment with higher doses of alkylating chemotherapy, have been
associated with preterm delivery, low birth weight and small sta-
ture of children born form female CCS [73,81]. These risks
increased in patients diagnosed before 10 years [73]. Radiation
doses received by the uterus as low as �2.5 Gy during childhood
were associated with miscarriage in one study, especially in
women with a smoking history of >5 pack years (P interaction = 0.01).
The study did not report on the effects of chemotherapy and age at
diagnosis on this outcome [75].

Based on the collection of data summarized above, every
achievable dose avoidance to the gonads is warranted in radiother-
apy for childhood cancer. If total avoidance is impossible, at most
<5 Gy to ovaries or uterus should be strived for. The risk of late
complications is even higher when alkylating chemotherapy is
used. While the risk of premature menopause and subfertility
tends to be lower in patients younger than 10 years, the risk of
later pregnancy and obstetric complications tends to increase in
younger patients. Therefore, we recommend the same constraints
for all female pediatric patients.
Vaginal toxicity and sexual functioning
Vaginal RT has been associated with decreased vaginal length as

well as increased dyspareunia, resulting in pain and decreased sex-
ual satisfaction [90]. QUANTEC does not report constraints for vagi-
nal RT dose [7].

The literature review resulted in one category C article meeting
inclusion criteria for the present review (Table 1) [91].

In the aforementioned study, young adult female CCS who had
received TBI (dose not reported) before hematopoietic stem cell
transplantation during childhood, reported lower Female Sexual
Function Index score, indicating issues in sexual functioning, and
showed a trend towards shorter vaginal length compared to sur-
vivors in the chemotherapy and RT (chest or abdominopelvic, dose
not reported) group [91].

The aforementioned study provides insufficient information to
recommend specific dose constraints for the vaginal wall.
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Testicular irradiation: fertility
The testes consist of two main cell types, including the sper-

matogonia and Leydig cells. The spermatogonia, which are respon-
sible for spermatogenesis, are the most sensitive to RT. Though
QUANTEC does not report specific constraints [7], permanent
impairment of spermatogenesis has been reported even after a
radiation dose of <2–3 Gy [92].

One IGHG guideline [92] and three MEDLINE studies reporting
on a dose–effect relationship (category B, see Table 1) between
RT and either fertility [93,94], or azoospermia [95], were found in
the literature review. In addition, a relevant review on the topic
will be discussed [96].

The IGHG guideline describes no studies on dose–effect rela-
tions for impaired spermatogenesis [92]. In the first MEDLINE
study, testicular radiation dose �4 Gy was associated with an
increased risk of infertility compared to lower doses or no RT. Alky-
lating agent dose and bleomycin exposure were also independent
risk factors. Age at diagnosis was not included in multivariable
analysis [93]. In the second study, testicular radiation dose
�7.5 Gy was associated with a lower probability of siring a preg-
nancy �5 years after diagnosis, while no effect was found for lower
doses. In multivariable cox regression, older children (15–20 years)
were more at risk for radiation-induced infertility than children
irradiated at a young age (0–4 years), as were patients receiving
higher cumulative alkylating agent dose or treatment with
cyclophosphamide or procarbazine [94]. The third study reported
that participants with azoospermia had received higher gonadal
RT doses (median 0.3 Gy), and were more frequently treated with
alkylating agents, compared to patients who retained sperm pro-
duction after gonadal irradiation (median 0.03 Gy). The influence
of age at diagnosis was not reported [95]. A review on the topic
describes that high-quality evidence exists for an increased risk
of impaired spermatogenesis and testosterone deficiency after tes-
ticular RT as well as after higher doses of alkylating agents. The
authors concluded that conflicting evidence existed regarding the
role of age at diagnosis in the risk of impaired spermatogenesis,
with one study providing low-quality evidence for a higher risk
with older age at diagnosis, while two other studies did not repro-
duce this association [96].

Based on the aforementioned studies, dose on the male gonads
in childhood radiotherapy should be kept as low as possible,
preferably 0 Gy but at most <7.5 Gy. While evidence is inconclusive
about the influence of age, the risk seems to be highest for
teenagers.
Testicular failure
Leydig cells, responsible for testosterone production, are less

radiosensitive than spermatogonia and can tolerate doses up to
12 Gy without increased risk of testosterone deficiency [92].

The literature search (Table S3) resulted in one IGHG guideline
[92], as well as two MEDLINE articles of category B evidence
(Table 1) [11,97].

The IGHG guideline describes no studies on dose–effect rela-
tions with testosterone deficiency [92]. In a study from the CCSS,
testicular irradiation �20 Gy or cyclophosphamide equivalent dose
�20 g/m2 was associated with an increased prevalence of need for
testosterone replacement. The study did not report the relation of
age at diagnosis to this outcome [11]. In another large cohort study
of CCS (n = 1516), testicular RT at any dose and alkylating agents at
cyclophosphamide equivalent doses of �4000 mg/m2 were risk
factors for Leydig cell failure (LCF; testosterone <250 ng/l and LH
>9.85 IU/l), while doses �12 Gy were significantly associated with
Leydig cell dysfunction (LCD; testosterone �250 ng/l and LH
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>9.85 IU/l). Both outcomes occurred more frequently and earlier in
higher testicular dose categories, with 95% of participants receiving
testicular doses �20 Gy reporting either LCD or LCF. Age at diagno-
sis was not included in the study [97].

Based on the data presented above, the recommendations men-
tioned under ‘‘testicular irradiation: fertility” (i.e., preferably 0 Gy,
but at most <7.5 Gy average dose), should be sufficient to limit the
risk of Leydig Cell dysfunction and failure as well.

Discussion

Because of the limited generalizability of the QUANTEC data to
the growing and developing paediatric population [7], the paedi-
atric dose/volume guidelines from the PENTEC collaboration are
eagerly awaited [8]. Until then, in this review we have aimed to
provide a brief but comprehensive overview of literature on
dose/volume – effect relations for RT to normal tissue in abdomen
and pelvis in children.
Findings and implications

The evidence on late toxicity after abdominal and pelvic RT is
summarized in Table 2 and Table 3. Based on the study results pre-
Table 2
Conclusions of evidence for late toxicity after abdominal irradiation for childhood
cancer.

Toxicities Category Recommended
dose

Pancreas �10 Gy to tail
(stricter if <2y)Diabetes mellitus

Increased risk after higher dose to pancreas
tail vs lower
dose (�10 Gy)

B [20]

Liver QUANTEC

Cellular liver injury
Increased risk after irradiation of a larger
liver volume vs lower volume (V10, V15,
V20)

B
[26,28]

Biliary tract injury
Increased risk after irradiation involving the
liver vs no radiotherapy

C
[26,27]

Kidneys QUANTEC

Proteinuria
Increased risk after radiotherapy potentially
involving kidneys

D [32]

Elevated blood pressure
Increased risk after radiotherapy potentially
involving kidneys

D [32]

Reduced estimated glomerular filtration rate (eGFR)
Lower eGFR after higher prescribed dose vs
lower dose (�25 Gy)

B [43]

Lower eGFR after higher irradiated volume (V5, V10)
End-stage renal disease (e.g., dialysis,

transplantation)
B [48]

Higher risk after higher mean kidney dose vs
lower dose
(�15 Gy)

B
[46,47]

Spleen
Late infection-related mortality <10 Gy(all ages)
Increased risk after higher dose to spleen vs
lower dose
(�10 Gy)

B [51]

Categories: A dose–response relation quantified in model; B dose–response rela-
tion, not directly quantified; C association with radiotherapy, no dose–response
relation; D equivocal results (no consistent evidence towards an effect of
radiotherapy).
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sented in this review, RT doses as low as 4 Gy to testes in male and
ovaries or uterus in female CCS, especially after onset of puberty,
already may have detrimental effects on fertility
[69,73–83,85,93,94]. This stresses the importance of reducing RT
dose to these organs as much as possible.

Interestingly, several studies describe dose–effect relations
between RT to the pancreas tail and the development of DM at con-
siderably lower doses than in adults, especially when RT occurs in
the first 2–10 years of life [15,18]. Considering the long-term
health consequences of DM, this stresses the importance of sparing
the pancreas tail in young children.

The association of even low radiotherapy doses to the spleen
with late infection-related mortality [51], in contrast to �40 Gy
as reported earlier [50], suggests adjustment to follow-up of CCS
and to dose constraints for RT planning should be made according
to the more recent SIOP -Europe Radiation Oncology Working
Group recommendation [98].

Dose-effect relations have also been described for elevated ALT
after liver irradiation [28], renal failure after kidney irradiation
[43,46,47], as well as anorectal disease and intestinal obstruction
after abdominopelvic irradiation [53,54]. The clinical relevance in
these cases is less clear, since the clinical consequences of an
asymptomatic elevated ALT are unclear [28], and the majority of
late toxicity were only significantly elevated after high radiation
doses (>15–25 Gy renal dose or �20–30 Gy prescribed
(abdomino-) pelvic dose) [43,46,47,53,54].

In general, international paediatric treatment protocols give
recommendations on tolerance doses to organs at risk. Most of
these recommendations are based on the Emami paper [99]. Since
radiation oncologists will avoid exceeding these constraints for
most treatments, it is not possible to evaluate late toxicity of doses
above these constraints.
Strengths and limitations

This study provides a broad overview of known associations
between RT dose and late toxicities of abdomen and pelvis in chil-
dren. Its main strengths are its broad scope and concise reporting,
focusing on relevance for clinical practice.

The study also has several limitations. First, in order to provide
focus in discussion of a wide range of toxicities, only studies with
the strongest evidence category per outcome were discussed,
meaning many studies remain unmentioned. This study is there-
fore intended to give a broad overview of current evidence, rather
than as a replacement for systematic reviews performed per toxi-
city, such as those being performed by the PENTEC collaboration
[8]. Second, the review was limited to published English articles
that were available full-text. In other words, the study is likely to
suffer from reporting bias. Furthermore, the strength of recom-
mendations from this review was dependent on the evidence avail-
able per outcome discussed. Information on the number and size of
radiotherapy fractions was not provided in most studies, preclud-
ing comparisons using equivalent dose in 2 Gy fractions (EQD2).
Also, while most studies had information on chemotherapy use
and age at diagnosis, this was not always incorporated into multi-
variable analysis or tested for interactions with radiotherapy dose.
Finally, the definition of outcomes across studies is heterogeneous,
making interpretation and pooling of results more difficult [100].
Most reported outcomes are based on either prescribed or recon-
structed dose and most studies do not provide a detailed descrip-
tion of dose-volume parameters [101].

In order to have better models for predicting radiation induced
toxicity in the future, it is important to prospectively and system-
atically collect toxicity data in combination with 3D-dose-volume
parameters to the organs of interest.



Table 3
Conclusions of evidence for late toxicity after pelvic irradiation for childhood cancer.

Toxicities Category Recommended dose

Intestines QUANTEC

Intestinal obstruction requiring surgery
Increased risk after higher prescribed abdominopelvic
dose vs lower dose (�20 Gy)

B [53] Anorectal disease
(fistula, stricture,
second malignant
neoplasms)

Increased risk after higher prescribed pelvic dose vs
lower dose (�30 Gy)

B [54]

Bladder Insufficient
dataHaemorrhagic cystitis

Increased risk after pelvic radiotherapy C [58,60]
Increased severity after pelvic radiotherapy C [56]

Ovaries, uterus 0–<5 Gy to ovaries or uterus(all
ages:
fertility >10y,
obstetric <10y)

Acute ovarian failure
Increased risk after a higher ovarian irradiation dose
(>0 Gy)

A [62]

Premature menopause
Increased risk after higher radiotherapy dose to
ovaries (>0–5 Gy)

B [65,74,77,79,85–
87]

Markers of low ovarian reserve
Increased risk after higher prescribed abdominopelvic
dose (>0 Gy)

B [69]

Subfertility
Increased risk after higher ovarian and/or uterine dose
(�4-5 Gy)

B [70,76,80–82]

Stillbirth, neonatal death
Increased risk after higher ovarian and/or uterine dose
(>1–10 Gy)

B [75,83]

Preterm delivery, low birth weight and small stature
Increased risk after higher ovarian and/or uterine dose
(>0.5–25 Gy)

B [73,76,81,88,89]

Miscarriage
Increased risk after higher uterine dose (�2.5 Gy) B [78,83,89]

Gestational hypertension, malposition
Increased risk after higher prescribed flank dose
(>0 Gy)

B [88]

Vagina Insufficient data

Female sexual function, vaginal length
Lower sexual function score and shorter vaginal length after total body
irradiation

C [91]

Testes 0–<7.5 Gy(strict �10y)

Sub-/infertility
Increased risk after higher testicular dose (�4-7.5 Gy) B [93,94]

Azoospermia
Increased risk after higher testicular dose
(median 0.3 Gy)

B [95], D [92]

Reduced testosterone production
Increased risk after higher testicular dose (>0–20 Gy) B [11,97], D [92]

Categories: A dose–response relation quantified in model; B dose–response relation, not directly quantified; C association with radiotherapy, no dose–response relation; D
equivocal results (no consistent evidence towards an effect of radiotherapy).
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Conclusions

This review provides an overview of available evidence regard-
ing normal tissue effects of RT in childhood cancer. In particular,
we found that significant long-term consequences occur after rel-
atively low irradiation doses to gonads, pancreas tail and spleen
compared to adults. This information may help inform clinicians
when making decisions on RT planning and long-term follow-up.
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