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a b s t r a c t

This paper addresses the problem of identifying the graph structure of a dynamical network using
measured input/output data. This problem is known as topology identification and has received
considerable attention in recent literature. Most existing literature focuses on topology identification
for networks with node dynamics modeled by single integrators or single-input single-output (SISO)
systems. The goal of the current paper is to identify the topology of a more general class of
heterogeneous networks, in which the dynamics of the nodes are modeled by general (possibly
distinct) linear systems. Our two main contributions are the following. First, we establish conditions
for topological identifiability, i.e., conditions under which the network topology can be uniquely
reconstructed from measured data. We also specialize our results to homogeneous networks of SISO
systems and we will see that such networks have quite particular identifiability properties. Secondly,
we develop a topology identification method that reconstructs the network topology from input/output
data. The solution of a generalized Sylvester equation will play an important role in our identification
scheme.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Graph structure plays an important role in the overall be-
avior of dynamical networks. Indeed, it is well-known that the
onvergence rate of consensus algorithms depends on the con-
ectivity of the network topology. In addition, many properties of
ynamical networks, like controllability, can be assessed on the
asis of the network graph (Chapman & Mesbahi, 2013; Jia et al.,
019; Liu et al., 2011). Unfortunately, the graph structure of dy-
amical networks is often unknown. This problem is particularly
pparent in biology, for example in neural networks and genetic
etworks (Julius et al., 2009), but also emerges in other areas such
s power grids (Cavraro & Kekatos, 2018).
To deal with this problem, several topology identification

ethods have been developed. Such methods aim at reconstruct-
ng the topology (and weights) of a dynamical network on the
asis of measured data obtained from the network.

✩ The material in this paper was presented at the 58th IEEE Conference
on Decision and Control, December 11–13, 2019, Nice, France. This paper was
recommended for publication in revised form by Associate Editor Julien M.
Hendrickx under the direction of Editor Christos G. Cassandras.

∗ Corresponding author at: Bernoulli Institute for Mathematics, Computer
cience and Artificial Intelligence, University of Groningen, 9747 AG Groningen,
he Netherlands.

E-mail addresses: h.j.van.waarde@rug.nl (H.J. van Waarde),
ietro.tesi@unifi.it (P. Tesi), m.k.camlibel@rug.nl (M. Kanat Camlibel).
ttps://doi.org/10.1016/j.automatica.2020.109331
005-1098/© 2020 The Authors. Published by Elsevier Ltd. This is an open access art
The paper (Gonçalves & Warnick, 2008) studies necessary and
sufficient conditions for dynamical structure reconstruction, see
also Yuan et al. (2011). A node-knockout scheme for topology
identification was introduced in Nabi-Abdolyousefi and Mesbahi
(2010) and further investigated in Suzuki et al. (2013). Moreover,
the paper (Sanandaji et al., 2011) studies topology identifica-
tion using compressed sensing, while Materassi and Salapaka
(2012) consider network reconstruction using Wiener filtering. A
distributed algorithm for network reconstruction has also been
studied (Morbidi & Kibangou, 2014). Shahrampour and Preciado
(2015) study topology identification using power spectral anal-
ysis. In van Waarde et al. (2019b), the network topology was
reconstructed by solving certain Lyapunov equations. A Bayesian
approach to the network identification problem was investigated
in Chiuso and Pillonetto (2012). The network topology was in-
ferred from multiple independent observations of consensus dy-
namics in Segarra et al. (2017). The paper (Coutino et al., 2020)
studies topology identification via subspace methods. There are
also several results for topology reconstruction of nonlinear sys-
tems, see e.g., Shen et al. (2017), Timme and Casadiego (2014),
Wang et al. (2011) albeit in this case few guarantees on the
accuracy of identification can be given. In addition, we remark
that the complementary problem of identifying the nodes dy-
namics assuming a known topology has also been studied, see
e.g. Cheng et al. (2019), Haber and Verhaegen (2014), Hendrickx
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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t al. (2019), Ramaswamy et al. (2018), Van den Hof et al. (2013),
an Waarde et al. (2018), van Waarde et al. (2018), along with the
oint topology and dynamics recovery problem (Ioannidis et al.,
019; Wai et al., 2019).
The goal of this paper is to provide a comprehensive treat-

ent of topology identification for linear MIMO heterogeneous
etworks, with no assumptions on the network structure such
s sparsity or regularity. Most existing work on topology iden-
ification emphasizes the role of the network topology by con-
idering relatively simple node dynamics. For example, networks
f single integrators have been studied in Hassan-Moghaddam
t al. (2016), Morbidi and Kibangou (2014), Nabi-Abdolyousefi
nd Mesbahi (2010), van Waarde et al. (2019b). In addition,
he papers (Suzuki et al., 2013) and Shahrampour and Preciado
2015) consider homogeneous networks comprised of identical
ingle-input single-output systems. Nonetheless, there are many
xamples of networks in which the subsystems are not necessar-
ly the same, for example, mass–spring-damper networks (Koerts
t al., 2017), where the masses at the nodes can be distinct.
eterogeneity in the node dynamics has also been studied in the
etail in synchronization problems, see e.g. Wieland et al. (2011),
ang et al. (2014).
We study topology identification for the general class of het-

rogeneous networks, where the node dynamics are modeled by
eneral, possibly distinct, MIMO linear systems. We divide our
nalysis in two parts, namely the study of identifiability and the
evelopment of identification algorithms. The study of identifia-
ility of the network topology deals with the question whether
here exists a data set from which the topology can be uniquely
dentified. Identifiability of the topology is hence a property of the
ode systems and the network graph, and is independent of any
ata. Topological identifiability is an important property. Indeed,
f it is not satisfied, then it is impossible to uniquely identify
he network topology, regardless of the amount and richness of
he data. After studying topological identifiability, we will turn
ur attention towards identification algorithms. Our two main
ontributions are hence the following:

(1) We provide conditions for topological identifiability of gen-
eral heterogeneous networks. Our results recover an iden-
tifiability result for the special case of networks of single
integrators (Paré et al., 2013; van Waarde et al., 2019b).
We will also see that homogeneous networks of single-
input single-output systems have quite special identifia-
bility properties that do not extend to the general case of
heterogeneous networks.

(2) We establish a topology identification scheme for hetero-
geneous networks. The idea of the method is to reconstruct
the interconnection matrix of the network by solving a gen-
eralized Sylvester equation involving the Markov parameters
of the network. We prove that the network topology can be
uniquely reconstructed in this way, under the assumptions
of topological identifiability and persistency of excitation
of the input data.

A preliminary version of our work was presented in van
aarde et al. (2019a). The contributions of the current paper are

ignificant in comparison to van Waarde et al. (2019a) for two
easons. First, the identifiability results presented here are more
eneral as they are applicable in situations when not all network
odes are excited. Also, the necessary conditions for identifiability
f single-integrator networks are shown to carry over to the more
eneral class of homogeneous networks of single-input single-
utput systems. Secondly, the topology identification approach
s new, and attractive in comparison to van Waarde et al. (2019a)
ince the network interconnection matrix is computed directly

nd without the use of auxiliary variables. Our approach is also

2

uitable for ‘‘parallelization’’ in the sense that each row block of
he interconnection matrix can be computed independently.

The paper is organized as follows. In Section 2 we formulate
he problem. Section 3 contains our results on topological iden-
ifiability. Subsequently, we describe our topology identification
ethod in Section 4. Finally, we state our conclusions in Section 5.

otation

We denote the Kronecker product by ⊗. The direct sum of
atrices A1, A2, . . . , Ak is the block diagonal matrix defined by

k

i=1

Ai :=

⎛⎜⎜⎝
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

⎞⎟⎟⎠ .

Moreover, the concatenation of matrices A1, A2 . . . , Ak of compat-
ible dimensions is defined by

col(A1, A2, . . . , Ak) :=
(
A⊤

1 A⊤

2 · · · A⊤

k

)⊤
.

Finally, let A(z) be an n × m rational matrix. Then the constant
kernel of A(z) is cker A(z) := {w ∈ Rm

| A(z)w = 0}.

2. Problem formulation

We consider a network model similar to the one studied
by Fuhrmann and Helmke (Fuhrmann & Helmke, 2015, Ch. 9).
Specifically, we consider networks composed of N discrete-time
systems of the form

xi(t + 1) = Aixi(t) + Bivi(t)
wi(t) = Cixi(t),

(1)

where xi(t) ∈ Rni is the state of the ith node system, vi(t) ∈ Rmi

is its input and wi(t) ∈ Rpi is its output for i = 1, 2, . . . ,N .
The real matrices Ai, Bi and Ci are of appropriate dimensions. We
occasionally use the shorthand notation (Ai, Bi, Ci) to denote (1).
The coupling between nodes is realized by the inputs vi(t), which
are specified as

vi(t) =

N∑
j=1

Qijwj(t) + Riu(t),

where u(t) ∈ Rm is the external network input and Qij and Ri
are real matrices of appropriate dimensions. In addition, let Si be
a real p × pi matrix and consider the external network output
y(t) ∈ Rp, defined by

y(t) =

N∑
i=1

Siwi(t).

Then, by introducing the block diagonal matrices

A =

N⨁
i=1

Ai, B =

N⨁
i=1

Bi, and C =

N⨁
i=1

Ci, (2)

and the matrices

Q =

⎛⎜⎝Q11 · · · Q1N
...

. . .
...

QN1 · · · QNN

⎞⎟⎠ , R =

⎛⎜⎝R1
...

RN

⎞⎟⎠ , S⊤
=

⎛⎜⎝S⊤

1
...

S⊤

N

⎞⎟⎠ ,

we can represent the network dynamics compactly as

x(t + 1) = (A + BQC)x(t) + BRu(t)
(3)
y(t) = SCx(t).
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ere x(t) = col(x1(t), x2(t), . . . , xN (t)) ∈ Rn where n is defined
as n :=

∑N
i=1 ni. We emphasize that the coupling of the node

dynamics is induced by the matrix Q , which we will hence call
the interconnection matrix.

There are a few important special cases of node dynamics (1)
and resulting network dynamics (3). If Ai = A0, Bi = B0 and
i = C0 for all i = 1, 2, . . . ,N , the dynamics of all nodes in
he network are the same and the resulting dynamical network
s called homogeneous. The more general setting in which the
ode dynamics are not necessarily the same is referred to as a
eterogeneous network. Another special case of node dynamics
ccurs when mi = pi = 1 for all i = 1, 2, . . . ,N . In this case, the
ode systems are single-input single-output (SISO) systems, and
he resulting dynamical network is referred to as a SISO network.1
opology identification of homogeneous SISO networks has been
tudied in Suzuki et al. (2013) and Shahrampour and Preciado
2015). In addition, topology identification has been well-studied
see e.g (Gonçalves & Warnick, 2008; Hassan-Moghaddam et al.,
016; Nabi-Abdolyousefi & Mesbahi, 2010; van Waarde et al.,
019b)) for networks of so-called single-integrators, in which the
ode dynamics are described by ẋi(t) = vi(t). This type of node
ynamics can be seen continuous-time counterpart of (1) where
i = 0, Bi = 1 and Ci = 1 for i = 1, 2, . . . ,N .
The purpose of this paper is to study topology identification

or general, heterogeneous dynamical networks of the form (3).
lthough we focus on discrete-time systems, our results can be
tated for continuous-time systems as well. In order to make the
roblem more precise, we first explain what we mean by the
opology of (3). Let G = (V, E) be a weighted directed graph with
= {1, 2, . . . ,N} and E ⊆ V × V such that (j, i) ∈ E if and only

f Qij ̸= 0. Each edge (j, i) ∈ E is weighted by the nonzero matrix
ij. We refer to G as the topology of the dynamical network (3).
ith this in mind, the problem of topology identification concerns

inding G (equivalently, finding Q ) using measurements of the
nput u(t) and output y(t) of (3). We assume knowledge of the
ocal node dynamics (i.e., the matrices A, B and C) as well as the
xternal input/output matrices R and S.2
At this point, we may ask the following natural question:

s it possible to uniquely reconstruct the topology of (3) from
nput/output data? To formalize and answer this question, we
efine the notion of topological identifiability. Let yu,x0,Q (t) denote
he output of (3) at time t , where the subscript emphasizes
he dependence on the input u(·), the initial condition x0 =

(0) and interconnection matrix Q . The following definition is
nspired by Grewal and Glover (1976) and defines the notion of
istinguishability of interconnection matrices.

efinition 1. Let yu,x0,Q (·) and yu,x̄0,Q̄ (·) denote the output
rajectories of two systems of the form (3) with interconnection
atrices Q and Q̄ and initial conditions x0 and x̄0, respectively.
e say that Q and Q̄ are indistinguishable if there exist initial

onditions x0, x̄0 ∈ Rn such that

u,x0,Q (·) = yu,x̄0,Q̄ (·)

or all input functions u. Moreover, Q and Q̄ are said to be
istinguishable if they are not indistinguishable.

With this in mind, the topology of (3) is said to be identifiable
f Q is distinguishable from all other interconnection matrices.
ore formally, we have the following definition.

1 Here we emphasize that ‘SISO’ refers to the node systems of the network.
he overall network dynamics (3) can still have multiple external inputs and
utputs.
2 This assumption is standard in the literature on topology identification,

ee, e.g., Shahrampour and Preciado (2015) and Suzuki et al. (2013). Without
nowledge of the node dynamics, topology identification becomes a full system
dentification problem.
 C

3

Definition 2. Consider system (3) with interconnection matrix
Q . The topology of system (3) is said to be identifiable if Q and Q̄
are distinguishable for all real Q̄ ̸= Q .

The importance of topological identifiability lies in the fact
that unique reconstruction of Q from input/output data is only
possible if the topology of (3) is identifiable. Indeed, if this is
not the case, there exists some Q̄ ̸= Q that is indistinguishable
from Q , meaning that both Q and Q̄ explain any input/output
trajectory of (3). Topological identifiability is hence a structural
property of the system (3) that is independent of a particular data
sequence and that is necessary for the unique reconstruction of Q
from data.

Following Grewal and Glover (1976), it is straightforward to
characterize topological identifiability in terms of the transfer
matrix from u to y. This transfer function will be denoted by

FQ (z) := SC(zI − A − BQC)−1BR. (4)

Proposition 1. The topology of the networked system (3) is
identifiable if and only if the following implication holds:

FQ (z) = FQ̄ (z) for real Q̄ H⇒ Q = Q̄ .

Although Proposition 1 provides a necessary and sufficient
condition for topological identifiability, the condition involves
the arbitrary matrix Q̄ . Hence, it is not clear how to verify the
condition of Proposition 1. Instead, in this paper we want to
establish conditions for topological identifiability in terms of the
local system matrices A, B and C and the matrices Q , R and S. This
is formalized in the following problem.

Problem 1. Find necessary and sufficient conditions on the node
dynamics A, B, C , the external input/output matrices R, S and
the interconnection matrix Q under which the topology of (3) is
identifiable.

Our second goal is to identify Q from input/output data.

Problem 2. Develop a methodology to identify the interconnec-
tion matrix Q from measurements of the input u(t) and output
y(t) of system (3).

3. Conditions for topological identifiability

In this section we state our solution to Problem 1 by providing
necessary and sufficient conditions for topological identifiability.
We start by providing an overview of the results that are proven
in this section. In the following table, ‘‘N’’ denotes necessary and
‘‘S’’ denotes sufficient.

Theorem 2 General N-S conditions
Theorem 3 N condition; also S if R has full rank
Theorem 5 N condition for homogeneous SISO networks
Theorem 7 N-S conditions for homog. SISO networks

For analysis purposes, we first rewrite the network transfer
matrix FQ (z). Note that

zI − A = (zI − A − BQC) + BQC .

remultiplication by (zI − A)−1 and postmultiplication by the
atrix (zI − A − BQC)−1 yields

zI − A − BQC)−1
=

zI − A)−1
+ (zI − A)−1BQC(zI − A − BQC)−1.

his means that

(zI − A − BQC)−1B =
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Fig. 1. Block diagram of the networked system (3).

(z) + G(z)QC(zI − A − BQC)−1B,

where G(z) = C(zI − A)−1B is a block diagonal matrix containing
the transfer matrices of all node systems. Finally, by rearranging
terms we obtain

C(zI − A − BQC)−1B = (I − G(z)Q )−1 G(z). (5)

Note that the inverse of I − G(z)Q exists as a rational matrix.
Indeed, since (zI − A)−1 is strictly proper we see that limz→∞(I −
(z)Q ) = I . Therefore, we conclude by (5) that the transfer matrix
Q (z) equals

Q (z) = S (I − G(z)Q )−1 G(z)R. (6)

We remark that (6) is an attractive representation of the network
transfer matrix, since the matrices A, B and C describing the
local system dynamics are grouped and contained in the transfer
matrix G(z).

Remark 1. By (6), we see that the networked system (3) can be
represented by the block diagram in Fig. 1. Hence, the problem of
topology identification can be viewed as the identification of the
static output feedback gain Q , assuming knowledge of the system
G(z) and the external input/output matrices R and S.

The following theorem gives necessary and sufficient con-
ditions for topological identifiability. We will use the notation
Gi(z) := Ci(zI − Ai)−1Bi to denote the transfer matrix from vi to

i of node system i ∈ V .

heorem 2. Consider the networked system (3) and assume that
he matrix S has full column rank. The topology of (3) is identifiable
f and only if

cker
(
Gi(z) ⊗ H⊤

Q (z)
)

= {0} for all i ∈ V, (7)

here HQ (z) := (I − G(z)Q )−1 G(z)R.

roof. Suppose that FQ (z) = FQ̄ (z), where Q̄ is real. Then, from
6) we have

(I − G(z)Q )−1 G(z)R = S
(
I − G(z)Q̄

)−1
G(z)R.

y hypothesis, S has full column rank and hence

(I − G(z)Q )−1 G(z)R =
(
I − G(z)Q̄

)−1
G(z)R. (8)

We define ∆ := Q − Q̄ . Then, (8) is equivalent to each of the
ollowing statements:(

I − G(z)Q̄
)
(I − G(z)Q )−1 G(z)R = G(z)R

(I − G(z)(Q − ∆)) (I − G(z)Q )−1 G(z)R = G(z)R

G(z)∆ (I − G(z)Q )−1 G(z)R = 0
G(z)∆HQ (z) = 0.

Equivalently,

H⊤(z)∆⊤G⊤(z) = 0. (9)
Q

4

Next, let vec(M) denote the vectorization of a matrix M . Then (9)
is equivalent to

(G(z) ⊗ H⊤

Q (z)) vec(∆⊤) = 0. (10)

y (10) it is clear that the topology of (3) is identifiable if and only
f the constant kernel of G(z)⊗H⊤

Q (z) is zero. Finally, by the block
iagonal structure of G(z), this is equivalent to (7) which proves
he theorem. □

By Theorem 2, topological identifiability is equivalent to the
atrices Gi(z)⊗H⊤

Q (z) having zero constant kernel. Note that this
ondition generally depends on the – a priori unknown – matrix
. Notably, identifiability is independent of the particular matrix
whenever all node inputs are excited and all node outputs are
easured, as stated in the following theorem.

heorem 3. Consider the networked system (3). If the topology of
(3) is identifiable then

cker
(
G⊤

i (z) ⊗ Gj(z)
)

= {0} (11)

for all i, j ∈ V . In addition, suppose that S has full column rank and
R has full row rank. Then the topology of (3) is identifiable if and
only if (11) holds.

The importance of Theorem 3 lies in the fact that the iden-
tifiability condition (11) can be verified without knowledge of Q .
This means that, whenever the rank conditions on S and R hold,
one can check for topological identifiability before collecting data
from the system.

Remark 2. A proper transfer matrix T (z) has constant kernel {0}
if and only if the matrix col(M0,M1, . . . ,Mr ) has full column rank.
Here M0,M1, . . . ,Mr are the Markov parameters of T (z) and r is
greater than or equal to the order of T (z). As such, the conditions
of Theorems 2 and 3 can be verified by computing the rank of the
Markov parameter matrices associated to the transfer matrices in
(7) and (11).

Proof. We first prove the second statement. Suppose that S has
full column rank and R has full row rank. Then FQ (z) = FQ̄ (z) is
equivalent to

(I − G(z)Q )−1 G(z) =
(
I − G(z)Q̄

)−1
G(z).

We define ∆ := Q − Q̄ . Then, FQ (z) = FQ̄ (z) is equivalent to

G(z)∆(I − G(z)Q )−1G(z) = 0,

In other words, G(z)∆G(z)(I−QG(z))−1
= 0. This in turn is equiva-

lent to G(z)∆G(z) = 0. In other words,
(
G⊤(z) ⊗ G(z)

)
vec(∆) = 0.

Exploiting the block diagonal structure of G(z), we conclude that
the topology of (3) is identifiable if and only if (11) holds. □

A consequence of Theorem 3 is that identifiability of the
topology of (3) implies that the constant kernel of both G⊤

i (z) and
Gi(z) is zero for all i ∈ V . Based on this fact, we relate topological
identifiability and output controllability of the node systems.

Definition 3. Consider the system

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t),

(12)

where x ∈ Rn, u ∈ Rm and y ∈ Rp, and let yu,x0 (·) denote the
output trajectory of (12) for a given initial condition x0 and input
u(·). System (12) is called output controllable if for every x0 ∈ Rn

and y1 ∈ Rp there exists an input u(·) and time instant T ∈ N
such that yx0,u(T ) = y1.
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orollary 4. If the topology of (3) is identifiable then the systems
Ai, Bi, Ci) and (A⊤

i , C⊤

i , B⊤

i ) are output controllable for all i ∈ V .

Proof. By Theorem 3, identifiability of the topology of (3) implies
that the constant kernel of G⊤

i (z) is zero for all i ∈ V . Now, for
∈ Rpi we have w⊤Gi(z) = 0 if and only if w⊤CiAk

i Bi = 0
for all k = 0, 1, . . . , equivalently, w⊤CiAk

i Bi = 0 for all k =

0, 1, . . . , ni − 1. Hence,

w⊤
(
CiBi CiAiBi · · · CiAn−1

i Bi
)

= 0 H⇒ w = 0.

The latter implication holds if and only if the output controllabil-
ity matrix of (Ai, Bi, Ci) has full row rank, equivalently (Ai, Bi, Ci)
is output controllable (Trentelman et al., 2001, Ex. 3.22). The
proof for the necessity of output controllability of (A⊤

i , C⊤

i , B⊤

i )
is analogous and hence omitted. □

Remark 3. Output controllability of (Ai, Bi, Ci) can be interpreted
as an ‘excitability’ condition. Indeed, it guarantees that we have
enough freedom in steering the output wi(t) of each node i ∈ V .

Example 1. We will now illustrate Theorems 2 and 3. Consider
a network of N = 10 oscillators of the form

xi(t + 1) =

(
cos θi sin θi

− sin θi cos θi

)
xi(t) +

(
1
0

)
vi(t)

wi(t) =
(
1 0

)
xi(t),

where θi ∈ R is a constant, given by θi = (0.2 + 0.01i)π for
i = 1, 2, . . . ,N . The network topology is a cycle graph G = (V, E)
(with self-loops), defined by V := {1, 2, . . . ,N} and E := {(i, j) |

i−j ≡ −1, 0, 1(modN)}. Here mod denotes the modulo operation
and ≡ denotes congruence. The network nodes are diffusively
coupled, and an external input is applied to node 1, that is,

vi(t) =

{
1
2

∑
j∈Ni

(wj(t) − wi(t)) + u(t) if i = 1
1
2

∑
j∈Ni

(wj(t) − wi(t)) otherwise,

where Ni := {j | (j, i) ∈ E}. This means that the interconnection
matrix Q is defined element-wise as

Qij =

⎧⎨⎩
1 if i = j
−

1
2 if i ̸= j and (j, i) ∈ E

0 otherwise.

ince we only externally influence the first node system, the
orresponding matrix R is given by the first column of I . We
assume that we externally measure all node outputs, meaning
that S = I .

Using Theorem 2, we want to show that the topology of (3)
is identifiable. First, note that the transfer function Gi(z) of node
system i is given by

Gi(z) =
z − cos θi

z2 − 2z cos θi + 1
,

which is nonzero for all i ∈ V . Since Gi(z) is scalar, Theorem 2
mplies that the topology of (3) is identifiable if and only if
kerH⊤

Q (z) = {0}. This is equivalent to the output controllability
of the system (A + BQC, BR, C). It can be easily verified that the
output controllability matrix(
CBR C(A + BQC)BR · · · C(A + BQC)N−1BR

)
has full row rank. We therefore conclude by Theorem 2 that the
topology of (3) is identifiable. Note that the rank of the output
controllability matrix (and hence, identifiability) depends on the
interconnection matrix Q .

Next, we discuss the scenario in which R = I . In this case,
we can externally influence all nodes. Now, identifiability can
5

be checked without knowledge of Q . In fact, by Theorem 3, the
topology of (3) is identifiable if and only if cker

(
G⊤

i (z) ⊗ Gj(z)
)

=

{0}. This condition is satisfied, since all local transfer functions are
nonzero scalars.

So far, we have provided a general condition for identifiability
in Theorem 2, and we have discussed some of the implications
of this result in Theorem 3 and Corollary 4. However, possible
criticism of the results may arise from the full rank condition on
S in Theorem 2, which, until now, has been left rather unjustified.

It turns out that full column rank of S (or the dual, full row
rank of R) is necessary for topological identifiability in case the
networked system is homogeneous and SISO. For this important
class of networked systems, the rank condition on S in Theorem 2
is hence not restrictive.

Theorem 5. Consider a homogeneous SISO network, that is, a
system of the form (3) with mi = pi = 1 and Ai = A0, Bi = B0
and Ci = C0 for all i ∈ V . If the topology of (3) is identifiable then
rank S = N or rank R = N.

Remark 4. Theorem 5 generalizes several known results (see
Paré et al. (2013), van Waarde et al. (2019a, 2019b)) for networks
of single-integrators. Indeed, in the special case that A0 = 0, B0 =

0 = 1, the node output wi(t) equals the node state xi(t) for all
∈ V , and Theorem 5 asserts that either full state measurement
r full state excitation is necessary for identifiability. This fact has
een observed in different setups in Paré et al. (2013, Thm. 1), van
aarde et al. (2019b, Rem. 2), and van Waarde et al. (2019a, Thm.
).

Before proving Theorem 5, we state the following lemma.

emma 6. Suppose that mi = pi = 1 and Ai = A0, Bi = B0 and
i = C0 for all i ∈ V . If the topology of (3) is identifiable then (Q , R)

is controllable and (S,Q ) is observable.

Proof. Suppose on the contrary that (S,Q ) is unobservable. Let
v ∈ RN be a nonzero vector in the unobservable subspace of
(S,Q ), i.e.,

SQ kv = 0 for all k ∈ N.

This implies that SQ k
= S(Q + vv⊤)k for all k ∈ N. By (6), the

network transfer matrix is given by

FQ (z) = S(I − G0(z)Q )−1G0(z)R,

where G0(z) := C0(zI −A0)−1B0 is a scalar transfer function. Next,
by expanding FQ (z) as a formal series

Q (z) = S

(
∞∑
k=0

(QG0(z))k
)
G0(z)R,

t is clear that FQ (z) = FQ̄ (z), where the matrix Q̄ is defined
s Q̄ := Q + vv⊤. Since v ̸= 0, the matrices Q and Q̄ are
istinct. Hence, the topology of (3) is not identifiable. The proof
or necessity of controllability of (Q , R) is analogous and therefore
mitted. □

roof of Theorem 5. Suppose on the contrary that rank R < N
nd rank S < N . Then there exist nonzero vectors v1, v2 ∈ RN

uch that Sv1 = 0 and v⊤

2 R = 0. We assume without loss
f generality that v2 is such that v⊤

2 v1 ̸= −1. Next, we define
:= I + v1v

⊤

2 . By the Sherman–Morrison formula, T is invertible
f and only if 1 + v⊤

2 v1 ̸= 0, equivalently, v⊤

2 v1 ̸= −1. By our
ssumption on v2, the matrix T is hence invertible, and

−1
= I −

v1v
⊤

2
⊤

.

1 + v2 v1
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e define the matrix

¯ := T−1QT =

(
I −

v1v
⊤

2

1 + v⊤

2 v1

)
Q (I + v1v

⊤

2 ). (13)

ow, we distinguish two cases: Q ̸= Q̄ and Q = Q̄ . First suppose
hat Q ̸= Q̄ . Since we have Q̄ = T−1QT , TR = R and ST−1

= S,
e obtain

(I ⊗ A0 + Q ⊗ B0C0)T −1
= I ⊗ A0 + Q̄ ⊗ B0C0

T (I ⊗ B0)R = (I ⊗ B0)R

S(I ⊗ C0)T −1
= S(I ⊗ C0),

where T := T ⊗ I . Here we have used the fact that pi = mi = 1
for all i ∈ V , as well as the property (X1 ⊗Y1)(X2 ⊗Y2) = (X1X2)⊗
(Y1Y2) for matrices X1, X2, Y1, Y2 of compatible dimensions. We
onclude that FQ (z) = FQ̄ (z), i.e., the topology of (3) is not
dentifiable.

Secondly, suppose that Q = Q̄ . It follows from (13) that

v1v
⊤

2 −
v1v

⊤

2

1 + v⊤

2 v1
Q −

v1v
⊤

2

1 + v⊤

2 v1
Qv1v

⊤

2 = 0,

equivalently,

(1 + v⊤

2 v1)Qv1v
⊤

2 − v1v
⊤

2 Q − v1v
⊤

2 Qv1v
⊤

2 = 0.

Multiply from right by v2 and rearrange terms to obtain

(1 + v⊤

2 v1)v⊤

2 v2Qv1 = (v⊤

2 Qv2 + v⊤

2 Qv1v
⊤

2 v2)v1.

This means that v1 is an eigenvector of Q contained in the kernel
of S. Therefore, (S,Q ) is unobservable (cf. Trentelman et al. (2001,
Ch. 3)). By the previous lemma, this implies that the topology of
(3) is not identifiable. □

Theorem 5 is interesting because it shows that the ability to
measure all node outputs or to excite all node inputs is necessary
for identifiability in the case of homogeneous SISO networks. This
result allows us to sharpen Theorem 2 for this particular class of
networks.

Theorem 7. Consider a homogeneous SISO network, that is, a
system of the form (3) with mi = pi = 1 and Ai = A0, Bi = B0
and Ci = C0 for all i ∈ V . The topology of (3) is identifiable if and
only if G0(z) := C0(zI−A0)−1B0 ̸= 0 and at least one of the following
two conditions holds:

(i) rank S = N and (Q , R) is controllable
(ii) rank R = N and (S,Q ) is observable.

Proof. To prove the ‘if’-statement, we first assume that G0(z) is
nonzero, rank S = N and (Q , R) is controllable. By Theorem 2,
the topology of (3) is identifiable if and only if ckerH⊤

Q (z) = {0},
where HQ (z) is given by HQ (z) = (I−G0(z)Q )−1G0(z)R. We expand
the latter matrix as a formal series as

(I − G0(z)Q )−1G0(z)R =

(
∞∑
k=0

(G0(z)Q )k
)
G0(z)R. (14)

We claim that by strict properness of G0(z), the powers Gk
0(z)

(k = 0, 1, 2, . . . ) are linearly independent over the reals. Indeed,
suppose α1G

k1
0 (z) + · · · + αrG

kr
0 (z) = 0 for α1, . . . , αr ∈ R and

k1 < · · · < kr . Let G0(z) =
p0(z)
q0(z)

where p0 and q0 are polynomials.
f α1 ̸= 0 then

pk10 (z)qkr−k1
0 (z)

qkr0 (z)
= −

1
α1

r∑
i=2

αi
pki0 (z)q

kr−ki
0 (z)

qkr0 (z)
. (15)

By strict properness of G0(z), this is a contradiction since every
numerator on the right hand side of (15) has degree less than
6

pk10 (z)qkr−k1
0 (z). Thus α1 = 0. In fact, we can repeat the same

argument to show α1 = · · · = αr = 0, proving the claim
of independence. It follows from (14) that v ∈ RN satisfies

⊤HQ (z) = 0 if and only if
∞

k=0

Gk
0(z)v

⊤Q kR = 0,

here we leveraged the hypothesis that G0(z) is nonzero. Now,
using the fact that Gk

0(z) (k = 0, 1, 2, . . . ) are linearly indepen-
dent, we obtain v⊤Q kR = 0 for all k ∈ N. We conclude by
controllability of the pair (Q , R) that v = 0, hence ckerH⊤

Q (z) =

{0}. In other words, the topology of (3) is identifiable. The suffi-
ciency of the three conditions G0(z) ̸= 0, rank R = N and (S,Q )
is observable is proven in a similar fashion and thus omitted.

To prove the ‘only if’-statement, suppose that the topology of
(3) is identifiable. Clearly, this implies that G0(z) ̸= 0. Indeed,
if G0(z) = 0 then FQ (z) = 0 and any Q̄ satisfies FQ (z) =

Q̄ (z). By Lemma 6, (Q , R) is controllable and (S,Q ) is observable.
Furthermore, by Theorem 5, either S or R has full rank. □

It is noteworthy that full rank of either R or S is not neces-
ary for topological identifiability of heterogeneous networks, as
emonstrated next.

xample 2. Consider a networked system (3) consisting of two
odes A1 = 0, B1 = 1, and C1 = 1, and

A2 =

(
0 1
0 0

)
, B2 =

(
0
1

)
, C2 =

(
1 0

)
.

In addition, assume that R =
(
1 0

)⊤ and S =
(
0 1

)
. It can be

easily verified that

FQ (z) =
Q21

z3 − Q11z2 − Q22z + Q11Q22 − Q12Q21
,

here Q11, Q12, Q21 and Q22 are the entries of the interconnection
matrix

Q =

(
Q11 Q12
Q21 Q22

)
.

We assume that Q21 ̸= 0 such that FQ (z) is nonzero. Suppose that
FQ (z) = FQ̄ (z) for some interconnection matrix Q̄ . By comparing
the numerators of FQ and FQ̄ we see that Q21 = Q̄21. Moreover,
by comparing the coefficients corresponding to z2 and z in the
denominator, we obtain Q11 = Q̄11 and Q22 = Q̄22. Finally,
by comparing constant terms in the denominator, we see that
Q12 = Q̄12. Hence, Q = Q̄ and we conclude that the topology
of (3) is identifiable. However, S does not have full column rank
and R does not have full row rank.

4. Topology identification approach

In this section, we focus on the problem of topology iden-
tification, as formulated in Problem 2. The proposed solution
consists of two steps: first identify the Markov parameters of the
networked system (3), and then extract the matrix Q . There are
several ways of computing the Markov parameters on the basis of
input/output data, we will summarize some of them in the next
section.

4.1. Identification of Markov parameters

Consider a general linear system of the form

x(t + 1) = Ax(t) + Bu(t) (16)

y(t) = Cx(t) + Du(t), (17)
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here x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rp the
utput. In this section we recap how one can identify the Markov
arameters D, CB, CAB, . . . , CArB for r ∈ N, using measurements
f the input and output of (16)–(17). For a given signal f (t) with
= 0, . . . , T − 1, we define the Hankel matrix of depth k as

k(f ) :=

⎛⎜⎜⎝
f (0) f (1) · · · f (T − k)
f (1) f (2) · · · f (T − k + 1)

...
...

...

f (k − 1) f (k) · · · f (T − 1)

⎞⎟⎟⎠ .

The signal f (0), f (1), . . . , f (T −1) is said to be persistently exciting
of order k if Hk(f ) has full row rank. Now suppose that we
measure T samples of the input u(t) and output y(t) of (16)–(17)
for t = 0, 1, . . . , T − 1. We rearrange these measurements in
Hankel matrices of depth n + r + 1. Moreover, we partition

Hn+r+1(u) =

(
Up
Uf

)
, Hn+r+1(y) =

(
Yp
Yf

)
,

where Up and Yp contain the first n row blocks of Hn+r+1(u) and
n+r+1(y), respectively. The following result from Markovsky and
apisarda (2008, Prop. 4) shows how the Markov parameters can
e obtained from data.

heorem 8. Let (16) be controllable and assume that u(0), . . . ,
(T − 1) is persistently exciting of order 2n + r + 1. There exists a
atrix G ∈ R(T−n−r)×m such that
Up
Yp
Uf

)
G =

( 0
0

col(I, 0)

)
.

oreover, the Markov parameters can be obtained as Yf G = col(D,
B, CAB, . . . , CArB).

Theorem 8 shows how the Markov parameters of the system
an be obtained from measured input/output data. The input
hould be designed in such a way that it is persistently exciting,
pecial cases of such inputs have been discussed in Verhaegen
nd Dewilde (1992). For u(0), . . . , u(T − 1) to be persistently
xciting of order 2n + r + 1 a number of samples T ≥ (m +

)(2n + r + 1) − 1 is necessary. In fact, there are input functions
hat achieve persistency of excitation of this order exactly for

= (m + 1)(2n + r + 1) − 1. A refinement of Theorem 8
s possible using the notion of weaving trajectories (Markovsky
t al., 2005), which reduces the order of excitation to 2n+1. More
enerally, one can extend the notion of persistency of excitation
o an arbitrary concatenation of multiple trajectories (van Waarde
t al., 2020). This is useful in situations where single experiments
re individually not sufficiently informative.

emark 5. In addition to the deterministic setting of Theo-
em 8, there are approaches to identify the Markov parameters
f systems with disturbances, i.e., systems of the form

(t + 1) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + Du(t) + v(t),

here v and w are zero mean, white vector sequences. In particu-
ar, the paper (Oymak & Ozay, 2018) studies the identification of
he system’s Markov parameters from finite data, and provides
tatistical guarantees for the quality of estimation.

.2. Topology identification

Subsequently, we will turn to the problem of identifying the
opology of (3) from the network’s Markov parameters. As in
heorem 2, we will assume that S has full column rank. In fact, to
ighten the notation, we will simply assume S = I , even though
7

ll results can be stated for general matrices S having full column
ank. Under the latter assumption, the Markov parameters of (3)
re given by

ℓ(Q ) := C(A + BQC)ℓBR.

henever the dependence of Mℓ(Q ) on Q is clear, we simply
rite Mℓ. It is not immediately clear how to obtain Q from the
arkov parameters since Mℓ depends on the ℓth power of A +

QC . The following lemma will be helpful since it implies that Mℓ

an essentially be viewed as an affine function in Q and lower
rder Markov parameters.

emma 9. We have that

ℓ = CAℓBR +

ℓ−1∑
i=0

CAiBQMℓ−i−1.

roof. First, we claim that for square matrices D1 and D2 of the
ame dimensions, we have

D1 + D2)ℓ = Dℓ
1 +

ℓ−1∑
i=0

Di
1D2(D1 + D2)ℓ−i−1 (18)

or all ℓ = 1, 2, . . . . It is straightforward to prove this claim by
nduction. Indeed, for ℓ = 1, (18) holds. If (18) holds for ℓ ≥ 1
hen

D1 + D2)ℓ+1
= Dℓ

1(D1 + D2) +

ℓ−1∑
i=0

Di
1D2(D1 + D2)ℓ−i

= Dℓ+1
1 +

ℓ∑
i=0

Di
1D2(D1 + D2)ℓ−i,

roving the claim. Subsequently, by substitution of D1 = A and
2 = BQC into (18), we obtain

A + BQC)ℓ = Aℓ
+

ℓ−1∑
i=0

AiBQC(A + BQC)ℓ−i−1.

inally, the lemma follows by pre- and postmultiplication by C
nd BR, respectively. □

Using Lemma 9, we can come up with a system of linear
quations in the unknown interconnection matrix Q . To see this,
et us denote Kℓ := Mℓ − CAℓBR. Moreover, define the Toeplitz
atrix L by

:=

⎛⎜⎜⎝
CB 0 · · · 0
CAB CB · · · 0
...

...
. . .

...

CAr−1B CAr−2B · · · CB

⎞⎟⎟⎠ ,

where r ≥ 2n− 1. We apply Lemma 9 for ℓ = 1, . . . , r to obtain⎛⎜⎜⎝
K1
K2
...

Kr

⎞⎟⎟⎠ = L(I ⊗ Q )

⎛⎜⎜⎝
M0
M1
...

Mr−1

⎞⎟⎟⎠ . (19)

Next, let Li denote the (i + 1)th column block of L and define the
matrix K := col(K1, K2, . . . , Kr ). We can then write (19) in a more
compact form as

K =

r−1∑
i=0

LiQMi, (20)

which reveals that Q is a solution to a generalized Sylvester equa-

tion. Topology identification thus boils down to (i) identifying the
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etwork’s Markov parameters, (ii) constructing the matrices K , Li
nd Mi for i = 0, . . . , r−1 and (iii) solving the Sylvester equation.
e summarize this procedure in the following theorem.

heorem 10. Consider the networked system (3) with S = I . Let
he Markov parameters of (3) be Mi for i = 0, 1, . . . , r ≥ 2n − 1.
et the matrices K and Li be as before. If the topology of (3) is
dentifiable then the interconnection matrix Q is the unique solution
o the generalized Sylvester equation

=

r−1∑
i=0

LiQMi (21)

n the unknown Q.

roof. Note that the interconnection matrix Q is a solution to
21) by construction. Suppose that Q̄ is also a solution to (21).
e want to prove that Q = Q̄ . Since Q and Q̄ are both solutions

o (21), we have
ℓ−1∑
i=0

CAiBQMℓ−i−1(Q ) =

ℓ−1∑
i=0

CAiBQ̄Mℓ−i−1(Q ) (22)

or ℓ = 1, 2, . . . , r . Here we have written the dependence of
ℓ−i−1 on Q explicitly, to distinguish between Q and Q̄ . By
emma 9 we have

ℓ(Q ) = CAℓBR +

ℓ−1∑
i=0

CAiBQMℓ−i−1(Q ) (23)

ℓ(Q̄ ) = CAℓBR +

ℓ−1∑
i=0

CAiBQ̄Mℓ−i−1(Q̄ ). (24)

learly, M0(Q ) = CBR = M0(Q̄ ). In fact, we claim that Mk(Q ) =

k(Q̄ ) for all k = 0, 1, . . . , r . Suppose on the contrary that there
xists an integer s such that 0 < s ≤ r and Ms(Q ) ̸= Ms(Q̄ ). We

assume without loss of generality that s is the smallest integer
for which this is the case. Then Mk(Q ) = Mk(Q̄ ) for all k =

, 1, . . . , s − 1. By combining (22) and (23) we obtain

s(Q ) = CAsBR +

s−1∑
i=0

CAiBQ̄Ms−i−1(Q ). (25)

y hypothesis Mk(Q ) = Mk(Q̄ ) for all k = 0, 1, . . . , s − 1, which
ields

s(Q ) = CAsBR +

s−1∑
i=0

CAiBQ̄Ms−i−1(Q̄ ) = Ms(Q̄ ),

using (24). This is a contradiction and we conclude that Mk(Q ) =

Mk(Q̄ ) for all k = 0, 1, . . . , r . Since r ≥ 2n − 1 it follows from
the Cayley–Hamilton theorem that Mk(Q ) = Mk(Q̄ ) for all k ∈ N.
Thus, FQ (z) = FQ̄ (z). Finally, as the topology of (3) is identifiable,
we conclude that Q = Q̄ . This completes the proof. □

4.3. Solving the generalized Sylvester equation

In the previous section, we saw that the generalized Sylvester
equation (21) plays a central role in our topology identification
approach. In this section, we discuss methods to solve this equa-
tion. One simple approach to the problem is to vectorize Q and
write (21) as the system of linear equations
r−1∑(

M⊤

i ⊗ Li
)
vec(Q) = vec(K ) (26)
i=0

8

in the unknown vec(Q) of dimension(
N∑
i=1

mi

)(
N∑
i=1

pi

)
.

However, a drawback of this approach is that the dimension of
vec(Q) is quadratic in the number of nodes N . This means that
for large networks, solving (26) is costly from a computational
point of view.

For the ‘ordinary’ Sylvester equation of the form

L0Q + QM1 = K ,

there are well-known solution methods that avoid vectoriza-
tion.3 The general idea is to transform the matrices L0 and M1
to a suitable form so that the Sylvester equation is easier to
solve. A classic approach is the Bartels–Stewart method (Bartels
& Stewart, 1972) that transforms L0 and M1 to real Schur form by
means of two orthogonal similarity transformations. The resulting
equivalent Sylvester equation is then simply solved by backward
substitution. A Hessenberg–Schur variant of this algorithm was
proposed in Golub et al. (1979). The approach was also extended
to be able to deal with the more general equation

L0QM0 + L1QM1 = K ,

using QZ-decompositions (Golub et al., 1979, Sec. 7). The problem
with all of these transformation methods is that they rely on
the fact that the Sylvester equation consists of exactly two Q-
dependent terms, i.e., r = 1. Therefore, it does not seem possible
to extend such methods to solve generalized Sylvester equations
of the form (21) for r > 1, see also the discussion in Van Loan
(2000, Sec. 2).

Nonetheless, we can improve upon the basic approach of
vectorization (26) by noting that the matrices A, B and C have
a special structure. Indeed, recall from (2) that these matrices are
block diagonal. This allows us to write down a Sylvester equation
for each row block of Q. Let Q(j) denote the jth block row of Q for
j ∈ V . Then it is straightforward to show that (21) is equivalent
to

K (j)
=

r−1∑
i=0

L(j)i Q(j)Mi (27)

for all j ∈ V , where L(j)i is the (i+1)th column block of the matrix
L(j), given by

L(j) :=

⎛⎜⎜⎜⎝
CjBj 0 · · · 0
CjAjBj CjBj · · · 0

...
...

. . .
...

CjAr−1
j Bj CjAr−2

j Bj · · · CjBj

⎞⎟⎟⎟⎠ ,

and K (j)
:= col(K (j)

1 , K (j)
2 , . . . , K (j)

r ) with K (j)
ℓ the jth row block of

Kℓ. The importance of (27) lies in the fact that each row block of
Q can be obtained independently, which significantly reduces the
dimensions of the involved matrices. In fact, (27) is equivalent to
the linear system of equations
r−1∑
i=0

(
M⊤

i ⊗ L(j)i
)
vec

(
Q(j))

= vec
(
K (j)) (28)

in the unknown vec
(
Q(j)
)
of dimension mj

(∑N
i=1 pi

)
. Note that

the unknown is linear in the number of nodes, assuming that mj
and pi are small in comparison to N .

3 It is typically assumed that the matrices L0 and M1 are square (Bartels &
Stewart, 1972; Golub et al., 1979).
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.4. Robustness analysis

In the case that the Markov parameters M0,M1, . . . ,Mr are
identified exactly, we can reconstruct the topology by solving the
generalized Sylvester equation (21), or equivalently, the system of
linear Eqs. (26). Now suppose that our estimates of the Markov
parameters are inexact, and we have access to

M̂ℓ := Mℓ + ∆ℓ, ℓ = 1, 2, . . . , r (29)

where the real matrices ∆ℓ represent the perturbations. Accord-
ingly, we define K̂ℓ := M̂ℓ − CAℓBR = Kℓ + ∆ℓ. Let ∆ :=

col(∆1, ∆2, . . . , ∆r ). In this case it is natural to look for an ap-
proximate (least squares) solution vec(Q̂ ) that solves

min
vec(Q̂)


r−1∑
i=0

(
M̂⊤

i ⊗ Li
)
vec(Q̂) − vec(K̂ )

 . (30)

An obvious question is how the solution Q̂ is related to the true
interconnection matrix Q . The following lemma provides a bound
on the infinity norm of vec(Q̂ )− vec(Q ). In what follows, we will
make use of the constant

α :=


(

r−1∑
i=0

(
M̂⊤

i ⊗ Li
))†


∞

,

where X† denotes the Moore–Penrose inverse of X .

Lemma 11. Consider the network (3) with S = I and suppose that
its topology be identifiable. Assume that the solution Q̂ to (30) is
unique. Then we have thatvec(Q̂ ) − vec(Q )


∞

is upper bounded by

α

(
∥vec(∆)∥∞ +


r−1∑
i=0

(∆⊤

i ⊗ Li)


∞

∥vec(Q )∥∞

)
. (31)

Note that the bound (31) tends to zero as ∆0, ∆1, . . . , ∆r tend
to zero, so Q̂ is a good approximation of Q for small perturbations.
An overestimate of (31) can be obtained if some prior knowledge
is available. In particular, note that α is readily computable from
the estimated Markov parameters (29). The first two norms in
(31) can be upper bounded if a bound on ∥∆i∥∞ is given. Iden-
tification error bounds on the Markov parameters are derived,
e.g., in Oymak and Ozay (2018). Finally, to estimate ∥vec(Q )∥∞

one requires a bound on the largest network weight, i.e., an upper
bound on the largest (in magnitude) entry of Q . The upper bound
(31) is useful in the case that the nonzero weights of the network
are lower bounded in magnitude by some known positive scalar
γ , an assumption that is common in the literature on consensus
networks, cf. LeBlanc et al. (2013, Sec. 3). Indeed, in this case
we can exactly identify the graph structure G from noisy Markov
parameters if

α

(
∥vec(∆)∥∞ +


r−1∑
i=0

(∆⊤

i ⊗ Li)


∞

∥vec(Q )∥∞

)
<

1
2
γ ,

since identified entries smaller than 1
2γ are necessarily zero. We

ill further illustrate this point in Example 3.

roof. We make use of the shorthand notation

:=

r−1∑(
∆⊤

i ⊗ Li
)
, AE :=

r−1∑(
M̂⊤

i ⊗ Li
)

.

i=0 i=0

9

Fig. 2. Ĝ for ∥∆i∥∞ ≤ 10−5 .

he hypothesis that Q̂ is unique is equivalent to AE having full
olumn rank. By using (26) and the relation M̂i = Mi +∆i, we get

A⊤

E AE vec(Q ) = A⊤

E (vec(K ) + E vec(Q )).

Therefore, vec(Q ) = A†
E(vec(K ) + E vec(Q )). Further, vec(Q̂ ) =

A†
E vec(K̂ ) = A†

E vec(K + ∆). This yields

vec(Q̂ ) − vec(Q ) = A†
E(vec(∆) − E vec(Q )).

Finally, taking infinity norms yields the upper bound (31). This
completes the proof. □

Example 3. Consider the networked system in Example 1. We
consider the situation in which only the first node of the network
is externally excited. We already know by the discussion in Exam-
ple 1 that the topology of the system is identifiable. Here, our aim
is to reconstruct the topology on the basis of the noisy Markov
parameters (29), where r = 40. The perturbations are drawn
randomly from a normal distribution using the Matlab command
randn, and scaled such that

∆⊤

i


∞

≤ 10−5 for all i. Since ∆i is
a vector, this also implies that ∥∆i∥∞ ≤ 10−5. In this example,
we assume that the weights of the network (i.e., the entries of Q )
have magnitudes between 1

2 and 1.
We identify the matrix Q̂ by solving (30). To get an idea of the

quality of estimation, we want to find a bound on (31). First, we
compute α = 464.7040. By the assumptions on the perturbations
and network weights, we obtain the bounds ∥∆∥∞ ≤ 10−5 and
∥vec(Q )∥∞ ≤ 1. Moreover,

r−1∑
i=0

(∆⊤

i ⊗ Li)


∞

≤

r−1∑
i=0

∆⊤

i


∞

∥Li∥∞

≤ 4.0000 × 10−4,

here we have used (Lancaster & Farahat, 1972, Thm. 8 & p.
13) to bound the Kronecker product. Combining the previous
ounds, we conclude that (31) is less than or equal to 0.1883.
ince 0.1883 ≤ 0.25 we can round all entries of Q̂ that are

less than 0.25 to zero, since the corresponding entries in Q are
necessarily zero. The resulting zero/nonzero structure of Q̂ can
be captured by a graph Ĝ that we display in Fig. 2. Clearly, the
structure of Ĝ is identical to the graph defined in Example 1,
and the weights of Ĝ are close to the weights of G. Next, we
repeat the experiment for larger perturbations, i.e., for ∥∆i∥∞

and
∆⊤

i


∞

bounded by 0.01. We identify Q̂ and use the same
rounding strategy as before to obtain a graph Ĝ in Fig. 3. Note that
ˆ resembles the original network structure G. In fact, all links are
dentified correctly, except for (7, 8) and the spurious link (4, 8).
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Fig. 3. Ĝ for ∥∆i∥∞ ≤ 10−2 .

n this case, the bound (31) equals 49.9997, illustrating the fact
hat (31) can be conservative.

. Conclusions

In this paper we have studied the problem of topology iden-
ification of heterogeneous networks of linear systems. First, we
ave provided necessary and sufficient conditions for topologi-
al identifiability. These conditions were stated in terms of the
onstant kernel of certain network-related transfer matrices. We
ave also seen that homogeneous SISO networks enjoy quite
pecial identifiability properties that do not extend to the het-
rogeneous case. Subsequently, we have turned our attention to
he topology identification problem. The idea of the identification
pproach was to solve a generalized Sylvester equation involv-
ng the network’s Markov parameters to obtain the network
opology. One of the attractive features of the approach is that
he structure of the networked system can be exploited so that
ach row block of the interconnection matrix can be obtained
ndividually.

The generalized Sylvester equation (21) plays an important
ole in our identification approach. Numerical solution meth-
ds are less well-developed for this equation than they are for
he standard Sylvester equation (Bartels & Stewart, 1972; Golub
t al., 1979). Hence, it would be of interest to further develop
umerical methods for Sylvester equations of the form (21). We
ote that a Krylov subspace method has already been developed
n Bouhamidi and Jbilou (2008). Another direction for future work
s to study topological identifiability with prior information on
he interconnection matrix. For example, from physical principles
t may be known that Q is Laplacian. Such prior knowledge
ould be exploited to weaken the conditions for identifiability in
heorems 2, 3 and 7.
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