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Data-driven output synchronization of heterogeneous leader-follower
multi-agent systems*

Junjie Jiao1, Henk J. van Waarde2, Harry L. Trentelman3, M. Kanat Camlibel3, and Sandra Hirche1

Abstract— This paper deals with data-driven output syn-
chronization for heterogeneous leader-follower linear multi-
agent systems. Given a multi-agent system that consists of one
autonomous leader and a number of heterogeneous followers
with external disturbances, we provide necessary and sufficient
data-based conditions for output synchronization. We also pro-
vide a design method for obtaining such output synchronizing
protocols directly from data. The results are then extended to
the special case that the followers are disturbance-free. Finally,
a simulation example is provided to illustrate our results.

I. INTRODUCTION

Over the last two decades, the design of distributed
protocols for multi-agent systems that achieve consensus or
synchronization has been an active research topic in the field
of systems and control, see e.g., [1]–[7]. Most of the existing
work is concerned with model-based approaches, i.e. they
assume that agent models are known. In particular, it is
shown in [2] that solvability of certain regulator equations
is a necessary condition for output synchronization, and
suitable protocols are proposed.

To remove the dependency on agent models in consensus
or synchronization problems, some existing papers propose
data-driven approaches based on reinforcement learning. In
[8], a data-based adaptive dynamic programming method
is proposed for computing optimal distributed control al-
gorithms for leader-follower multi-agent systems. In [9], a
synchronization problem is first interpreted as a multi-agent
discrete-time dynamic game, and then distributed protocols
are proposed based on reinforcement learning value iteration
algorithms. However, these data-driven methods require large
amounts of data and are computationally expensive.

Very recently, based on Willems’ fundamental lemma [10],
the problem of system analysis and control directly from
data has attracted much attention, see e.g. [11]–[14]. In [11],
several control problems are solved directly from data. Later
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on, several fundamental analysis and control problem are
addressed in [13], without the requirement of persistency of
excitation. A robust data-driven design is proposed in [15] for
computing feedback controllers directly using (noisy) data.
In [14], several versions of the S-Lemma are generalized
to matrix versions, which are then used to design feedback
controllers from noisy data. For more work on this topic, we
refer to [12], [16], [17] and the references therein.

While the majority of research on data-driven control
has focused on centralized settings for single systems, the
distributed setting for networked systems is relatively un-
explored. In [18], a distributed data-based predictive con-
trol method is proposed to stabilize networked systems.
In [19], the problem of synthesizing distributed data-based
controllers from noiseless data is considered. Using noisy
input-state data, guaranteed H∞ performance analysis and
controller synthesis are provided in [20] for interconnected
systems. For further related work, see also [21], [22].

Different from the above work [18]–[22], in the present
paper, we will deal with the data-driven output synchroniza-
tion problem for heterogeneous leader-follower multi-agent
systems. In particular, we will provide data-based conditions
under which the proposed distributed protocols achieve out-
put synchronization for multi-agent systems. We will also
provide a method for computing such output synchronizing
protocols directly from data.

This paper is organized as follows. In Section II we
introduce some notation and graph theory. In Section III we
formulate the data-driven output synchronization problem.
In order to solve the formulated problem, in Section IV
we review some relevant results on model-based output
synchronization and data informativity for stabilization by
state feedback. in Section V we solve the problems formu-
lated in Section III. To illustrate our proposed method, a
simulation example is given in Section VI. Finally, Section
VII concludes this paper.

II. NOTATION AND GRAPH THEORY

A. Notation

We denote by R the field of real numbers, and by Rn

the n-dimensional real Euclidean space. We denote by Rn×m

the space of real n×m matrices. For a given matrix A,
its transpose is denoted by A>. By diag(a1,a2, . . . ,an), we
denote the n× n diagonal matrix with a1,a2, . . . ,an on the
diagonal. For a linear map A : X → Y , the image and
kernel of A are denoted by im(A) := {Ax | x ∈ X } and
ker(A) := {x ∈X | Ax = 0}.
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B. Graph theory

A weighted directed graph is denoted by G = (V ,E ,A ),
where V = {1,2, . . . ,N} is the finite nonempty node set, E ⊂
V ×V is the edge set of ordered pairs (i, j) and A = [ai j]
is the associated adjacency matrix with nonnegative entries.
The entry a ji of the adjacency matrix A is the weight
associated with the edge (i, j) and a ji is nonzero if and
only if (i, j) ∈ E . A graph is called simple if aii = 0, i.e.
the graph does not contain self-loops. A directed tree is a
directed graph in which one node (called the root node) has
its in-degree equal to zero and all other nodes have their in-
degree equal to one. A spanning tree of a directed graph G
is a directed tree that connects all nodes of the graph G .

Given a graph G , the degree matrix of G is denoted by
D = diag(d1,d2, . . . ,dN) with di = ∑

N
j=1 ai j. The Laplacian

matrix of G is defined as L := D −A . If G is a weighted
directed graph, its Laplacian matrix L has at least one
zero eigenvalue associated with the eigenvector 1N and all
nonzero eigenvalues have positive real parts. Furthermore,
zero is a simple eigenvalue of L if and only if G contains a
spanning tree.

III. PROBLEM FORMULATION

We consider a leader-follower multi-agent system that
consists of one leader and N heterogeneous followers. The
dynamics of the leader is represented by

xr(k+1) = Sxr(k), (1)

and is assumed to be known, where xr ∈Rr and S ∈Rr×r. It
is reasonable to assume that the leader dynamics is known,
since the followers need to know the dynamics they will
synchronize on. The dynamics of the ith follower (i =
1,2, . . . ,N) is described by

xi(k+1) = Āixi(k)+ B̄iui(k)+ Ēiwi(k), (2)

where xi ∈ Rni is the state of the ith follower, ui ∈ Rmi

is the associated control input, and wi ∈ Rqi the external
disturbance. The matrices Āi, B̄i and Ēi are of suitable
dimensions. We refer to (2) as the ‘true’ system of the ith
follower, denoted by (Āi, B̄i, Ēi). We consider the situation
that the matrices Āi, B̄i and Ēi of the true system are unknown
and we only have access to a finite set of data on the
finite time interval {0,1, . . . ,τ}, generated by the followers,
namely,

Ui− := [ui(0) ui(1) · · · ui(τ−1)],
Xi := [xi(0) xi(1) · · · xi(τ)],

(3)

as well as measurements of the disturbances

Wi− = [wi(0) wi(1) · · · wi(τ−1)]. (4)

By partitioning the state data as

Xi− = [xi(0) xi(1) · · · xi(τ−1)],
Xi+ = [xi(1) xi(2) · · · xi(τ)],

we can relate the data and the true system (Āi, B̄i, Ēi) of the
ith follower through

Xi+ =
[
Āi B̄i Ēi

]Xi−
Ui−
Wi−

 .
Note that the true system (Āi, B̄i, Ēi) may not be the only
system that explains the data (Ui−,Wi−,Xi) of the ith fol-
lower, see e.g., [13]. Therefore, we define the set of all
systems (Ai,Bi,Ei) that explain the data (Ui−,Wi−,Xi) of the
ith follower by

Σw,i :=

(Ai,Bi,Ei) | Xi+ =
[
Ai Bi Ei

]Xi−
Ui−
Wi−

 . (5)

Obviously, (Āi, B̄i, Ēi) ∈ Σw,i.
In this paper, we consider the output synchronization

problem [2], [23], [24]. To this end, we assign to the leader
(1) an output

yr(k) = Rxr(k), (6)

where yr ∈Rp, and R ∈Rp×r is a known matrix. We assume
that the pair (R,S) is observable. We also assign to each
follower (2) an output

yi(k) =Cixi(k)+Diui(k), (7)

where yi ∈Rp, and the matrices Ci and Di are known matrices
that specify the outputs to be synchronized.

We also make the following standard assumption for
output synchronization [23], [25], [26]:

Assumption 1: We assume that all eigenvalues of S are
simple and lie on the unit circle.

Following [23], we consider the case that the followers (2)
will be interconnected by a distributed protocol of the form

vi(k+1) = Svi(k)+(1+di +gi)
−1F

×
( N

∑
j=1

ai j
(
v j(k)− vi(k)

)
+gi

(
xr(k)− vi(k)

))
,

ui(k) = Ki

(
xi(k)−Πivi(k)

)
+Γivi(k), i = 1,2, . . . ,N

(8)
where vi ∈Rr is the state of the ith local controller, F and Ki
are gain matrices to be designed, Πi and Γi are matrices to be
determined later. The coefficient ai j is the i jth entry of the
adjacency matrix A of the communication graph between
the followers, di is the node degree of the ith follower,
and gi represents the communication between the leader and
the followers. Strict inequality gi > 0 means that the leader
shares its state information with the ith follower, otherwise
gi = 0.

Definition 1: The protocol (8) is said to achieve output
synchronization for the multi-agent system (1) and (2) if
yi(k)− yr(k)→ 0, vi(k)− xr(k)→ 0 and xi(k)−Πivi(k)→ 0
as k→ ∞.

We make the following standing assumption regarding the
communication between the leader and followers [23], [27].

Assumption 2: We assume that the communication graph
between the followers is a simple directed graph that contains
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a spanning tree, and the leader shares its information with at
least one of the root nodes.

Recall that we only have access to a finite set of data
(Ui−,Wi−,Xi) of the followers. Since the data of each fol-
lower can be explained by a set of systems as defined in (5),
and it is not possible to distinguish the true system (2) from
other systems in this set. We then introduce the following
definition:

Definition 2: The data (Ui−,Wi−,Xi) are informative for
output synchronization if there exists a protocol (8) that
achieves output synchronization for the leader (1) and all
systems (Ai,Bi,Ei) ∈ Σw,i, for i = 1,2, . . . ,N.

The problem that we want to address is the following.
Problem 1: Find conditions under which the data

(Ui−,Wi−,Xi) are informative for output synchronization.
Also, provide a design method for computing a protocol (8)
that achieves output synchronization.

Before solving Problem 1, we will first review some
relevant results on model-based output synchronization and
data informativity for stabilization. These preliminary results
are necessary ingredients for addressing Problem 1.

IV. PRELIMINARY RESULTS

A. Model-based output synchronization of heterogeneous
leader-follower multi-agent systems

In this subsection, we will review some relevant results on
model-based output synchronization of heterogeneous leader-
follower linear multi-agent systems, see also [23].

Consider a multi-agent system that consists of one leader
and N heterogeneous followers. The dynamics of the leader
is represented by (1) with associated output (6). We assume
that Assumption 1 holds. The dynamics of the ith follower
is represented by

xi(k+1) = Aixi(k)+Biui(k), i = 1,2, . . . ,N (9)

with associated output (7). All system matrices are assumed
to be known. We also assume that the pairs (Ai,Bi) are
stabilizable and the pairs (Ci,Ai) are detectable.

Following [23], we consider the case that the followers (9)
are to be interconnected by a distributed protocol of the form
(8). We also assume that Assumption 2 holds. The aim is then
to design a protocol (8) such that the controlled multi-agent
system achieves output synchronization.

The following proposition provides necessary and suffi-
cient conditions under which protocols (8) achieve output
synchronization, see also [23].

Proposition 1: Let Assumptions 1 and 2 hold. Let F and
Ki be matrices such that S−λiF and Ai+BiKi, i = 1,2, . . . ,N
are stable, where λi are the eigenvalues of the matrix (IN +
D +G)−1(L+G) with G = diag(g1,g2, . . . ,gN). Then there
exists a protocol (8) that achieves output synchronization for
the multi-agent system (1) and (9) if and only if there exist
matrices Πi ∈ Rni×r and Γi ∈ Rmi×r satisfying the regulator
equations

AiΠi +BiΓi = ΠiS, (10)
CiΠi +DiΓi = R, i = 1,2, . . . ,N. (11)

The proof of Proposition 1 is similar to the results in
[23] and is omitted here. Note that the system equation (7)
representing the output of the ith follower is slightly more
general than that in [23]. Indeed, the output equations in our
followers contain a direct feed-through term.

Remark 1: We note that there exist methods to compute
a simultaneously stabilizing gain matrix F in the sense that
S− λiF is stable for i = 1,2, . . . ,N. For instance, in [27],
such a gain matrix F is computed by solving discrete-time
Riccati inequalities.

B. Data-driven stabilization by state feedback for linear
systems

In this subsection, we will review some results from [28]
and [13] on data-driven stabilization by state feedback for
linear systems.

Consider the linear system

x(k+1) = Āx(k)+ B̄u(k)+ Ēw(k), (12)

where x ∈ Rn is the state, u ∈ Rm the input and w ∈ Rq the
external disturbance. The matrices Ā, B̄ and Ē are of suitable
dimensions. We consider the case that the dynamics of the
system (12) is unknown, i.e., the matrices Ā, B̄ and Ē are
unknown. However, similar to (3) and (4), we assume that
we have access to a finite set of data of system (12), namely,
(U−,W−,X).

We refer to (12) as the ‘true’ system, denoted by (Ā, B̄, Ē).
Note that the true system (Ā, B̄, Ē) may not be the only
system that explains the data (U−,W−,X), see e.g. [13], [28].
To this end, we define the set of all systems (A,B,E) that
explain the data (U−,W−,X) by

Σw :=

(A,B,E) | X+ =
[
A B E

]X−
U−
W−

 . (13)

Clearly, (Ā, B̄, Ē) ∈ Σw.
In what follows, we will consider the problem of finding

a stabilizing controller for the system (12), using only and
directly the data (U−,W−,X). For this, we introduce the
following notion of informativity for stabilization by state
feedback.

Definition 3: We say that the data (U−,W−,X) are infor-
mative for stabilization by state feedback if there exists a
gain K such that A+BK is stable, for all (A,B,E) ∈ Σw.

The follow proposition provides necessary and sufficient
conditions for informativity for stabilization by state feed-
back, see also [28, Lemma 12].

Proposition 2: The data (U−,W−,X) are informative for
stabilization by state feedback if and only if the matrix X−
has full row rank and there exists a right inverse X†

− of X−
such that X+X†

− is stable and W−X†
− = 0. Moreover, K is

such that A+BK is stable for all (A,B,E) ∈ Σw if and only
if K =U−X†

−, where X†
− satisfies the above properties.

Similar results can also be obtained for the special case
that in (12) the external disturbance w = 0, i.e. the system
(12) is disturbance-free [13, Theorem 16].
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V. DATA-DRIVEN OUTPUT SYNCHRONIZATION FOR
MULTI-AGENT SYSTEMS

In this section, we will address Problem 1. More specif-
ically, we will provide necessary and sufficient conditions
under which the data (Ui−,Wi−,Xi) of the followers (2) are
informative for output synchronization, and we will also
provide a design method for computing protocols (8) directly
from data that achieve output synchronization.

Before proceeding, we first introduce the following notion
of data informativity.

Definition 4: The data (Ui−,Wi−,Xi) are informative for
output regulation if there exist common solutions Πi and Γi
to (10) and (11) for all (Ai,Bi,Ei) ∈ Σw,i, i = 1,2, . . . ,N.

In the following lemma, we provide necessary and suf-
ficient conditions under which the data (Ui−,Wi−,Xi) are
informative for output regulation.

Lemma 3: Suppose that the data (Ui−,Wi−,Xi) of the fol-
lowers (2) are informative for stabilization by state feedback,
respectively. Then the data (Ui−,Wi−,Xi) are informative
for output regulation if and only if there exist matrices Mi
satisfying the linear equations

Xi+Mi−Xi−MiS = 0, (14)
Wi−Mi = 0, (15)

CiXi−Mi +DiUi−Mi = R, i = 1,2, . . . ,N. (16)
Proof: Suppose that the data (Ui−,Wi−,Xi) are infor-

mative for stabilization by state feedback, and let Ki be a
feedback gain such that Ai+BiKi is stable for all (Ai,Bi,Ei)∈
Σw,i. Then it follows from Proposition 2 that the feedback
gain Ki can be taken as Ki = Ui−X†

i−, where X†
i− is a right

inverse of Xi− such that Xi+X†
i− is stable and Wi−X†

i− = 0.
Note that

Ai +BiKi = Xi+X†
i−. (17)

(⇐) Suppose that there exist solutions Mi to the equations
(14), (15) and (16). Define Πi = Xi−Mi and Γi = Ui−Mi,
and take Ki = Ui−X†

i−. Recall that the matrices Ai, Bi and
Ei satisfy the condition (5) for all (Ai,Bi,Ei) ∈ Σw,i, the
equations (14) can then be written as

(AiXi−+BiUi−+EiWi−)Mi−Xi−MiS = 0
⇔ AiXi−Mi +BiUi−Mi−Xi−MiS = 0

⇒ AiΠi +BiΓi−ΠiS = 0,

where we have used (15). It follows that (10) has common
solutions Πi and Γi for all (Ai,Bi,Ei) ∈ Σw,i.

For equations (16), use again Πi = Xi−Mi, Γi =Ui−Mi and
Ki =Ui−X†

i−, it follows that Πi and Γi are also solutions of
(11) for all (Ai,Bi,Ei) ∈ Σw,i.
(⇒) Suppose that the data (Ui−,Wi−,Xi) are informative

for output regulation, then according to Definition 4, there
exist common solutions Πi and Γi to (10) and (11) for all
(Ai,Bi,Ei) ∈ Σw,i, i = 1,2, . . . ,N.

Define

Σ
0
w,i =

(Ai0,Bi0,Ei0) | 0 =
[
Ai0 Bi0 Ei0

]Xi−
Ui−
Wi−

 .

It has been shown in the proof of [28, Lemma 12] that
Ai0 + Bi0Ki = 0 for all (Ai0,Bi0,Ei0) ∈ Σ0

w,i. Subsequently,
according to the definitions of Σw,i and Σ0

w,i, we have (Ai +
Ai0,Bi +Bi0,Ei) ∈ Σw,i. Since (10) and (11) have common
solutions for all (Ai,Bi,Ei)∈ Σw,i, then (Ai+Ai0,Bi+Bi0,Ei)
also satisfies (10) and (11). This implies that

(Ai +Ai0)Πi +(Bi +Bi0)Γi = ΠiS.

Since also (10) holds, it follows that

[
Ai0 Bi0 Ei0

]Πi
Γi
0

= 0,

for all (Ai0,Bi0,Ei0) ∈ Σ0
w,i. This implies that

ker
[
X>i− U>i− W>i−

]
⊆ ker

[
Π>i Γ>i 0

]
,

which is equivalent to

im

Πi
Γi
0

⊆ im

Xi−
Ui−
Wi−

 .
As a consequence, there exists matrices Mi such thatΠi

Γi
0

=

Xi−
Ui−
Wi−

Mi, i = 1,2, . . . ,N. (18)

By substituting (18), (17) and (5) into (10) and (11), we
obtain (14), (15) and (16). This completes the proof.

Remark 2: Note that Lemma 3 considers a version of the
output regulation problem with known disturbances, which
is slightly different from the results in [29, Theorem 8].
Although the proof of Lemma 3 is similar to that of [29,
Theorem 8], we include a proof to make this paper self-
contained.

Based on Lemma 3, we obtain the following main result.
Theorem 4: Let Assumptions 1 and 2 hold. Then the data

(Ui−,Wi−,Xi) are informative for output synchronization if
and only if, for i = 1,2, . . . ,N, the following two statements
hold:

1) There exists a right-inverse X†
i− of Xi− such that Xi+X†

i−
is stable and Wi−X†

i− = 0;
2) there exist matrices Mi satisfying the linear equations

(14), (15) and (16).
In this case, a protocol (8) can be found as follows: take F

such that S−λiF are stable, where λi are the eigenvalues of
(IN +D +G)−1(L+G), and define Ki =Ui−X†

i−, Πi = Xi−Mi
and Γi =Ui−Mi.

Proof: Suppose Assumption 2 hold. It then follows
directly from Lemma 3, Proposition 2 and Definition 2 that
the data (Ui−,Wi−,Xi) are informative for output synchro-
nization if and only if the data (Ui−,Wi−,Xi) are informative
for stabilization by state feedback and informative for output
regulation. Recalling Definitions 3 and 4, the first part of this
theorem is then proven.

Next, it follows from Lemma 3, Proposition 2 and Proposi-
tion 1 that an output synchronizing protocol (8) can be found
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by taking Ki =Ui−X†
i−, Πi = Xi−Mi, Γi =Ui−Mi, and taking

F such that S−λiF are stable, where λi are the eigenvalues
of (IN +D +G)−1(L+G).

Again, we note that there exist methods to compute F
such that S−λiF is stable for i = 1,2, . . . ,N. For instance, in
[27] such a simultaneous stabilizing gain F is obtained by
solving discrete-time Riccati inequalities.

In the sequel, we turn our attention to the special case
that in (2) the external disturbance wi = 0, i.e., the multi-
agent system is disturbance-free. We say that data (Ui−,Xi)
are informative for output regulation if there exist common
solutions Πi and Γi to (10) and (11) for all (Ai,Bi) ∈ Σi,
i= 1,2, . . . ,N. We will again provide necessary and sufficient
conditions under which the data (Ui−,Xi) are informative for
output synchronization, and we will also provide a design
method for computing protocols (8) directly from data that
achieve output synchronization.

The following lemma states under what conditions the data
(Ui−,Xi) are informative for output regulation.

Lemma 5: Suppose that the data (Ui−,Xi) are informative
for stabilization by state feedback. Then the data are infor-
mative for output regulation if and only if there exist matrices
Mi satisfying the linear equations

Xi+Mi−Xi−MiS = 0, (19)
CiXi−Mi +DiUi−Mi = R, i = 1,2, . . . ,N. (20)

Lemma 5 is a direct consequence of Lemma 3 by letting
Wi− = 0. Based on Lemma 5, we have the following result.

Proposition 6: Let Assumptions 1 and 2 hold. The data
(Ui−,Xi) are informative for output synchronization if and
only if, for i = 1,2, . . . ,N, there exists a right-inverse X†

i− of
Xi− such that Xi+X†

i− is stable, and, in addition, there exist
matrices Mi satisfying the linear equations (19) and (20).

In this case, a protocol (8) can be found as follows: take F
such that S−λiF are stable, where λi are the eigenvalues of
(IN +D +G)−1(L+G), and define Ki =Ui−X†

i−, Πi = Xi−Mi
and Γi =Ui−Mi.

The proof of Proposition 6 follows directly from Theorem
4 and is omitted here.

VI. ILLUSTRATIVE EXAMPLE

In this section, we will use a simulation example to
illustrate our protocols proposed in Proposition 6. Consider
a disturbance-free leader-follower multi-agent system, con-
sisting of one leader and nine followers. The dynamic of the
leader is given by (1) and (6), where

S =

[
0 1
1 0

]
, R =

[
1 0

]
.

The pair (R,S) is observable. By letting the initial state xr0 =
[1 1]>, the output of the leader is a constant yr = 1. The
‘true’ dynamics of the nine followers are unknown but are

r

1

2 3 4 5

9 8 7 6

Fig. 1. The underlying graph of the communication between the leader
and the followers.

represented by (2) with Ēi = 0 and (7) with

Ā1 = Ā4 = Ā7 =

[
0 1
1 1

]
, B̄1 = B̄4 = B̄7 =

[
1
0

]
,

C1 =C4 =C7 =
[
1 1

]
, D1 = D4 = D7 = 2,

Ā2 = Ā5 = Ā8 =

[
0 1
1 −1

]
, B̄2 = B̄5 = B̄8 =

[
1
0

]
,

C2 =C5 =C8 =
[
−1 1

]
, D2 = D5 = D8 = 2,

Ā3 = Ā6 = Ā9 =

[
0 −1
1 0

]
, B̄3 = B̄6 = B̄9 =

[
1
0

]
,

C3 =C6 =C9 =
[
0 1

]
, D3 = D6 = D9 = 0.5.

It is easy to check that the regulator equations (10) and
(11) have solutions for the matrices Āi, B̄i, Ci and Di for
i = 1,2, . . . ,9. The multi-agent system will be interconnected
by a protocol of the form (8). We assume that the commu-
nication graph between the agents is given as in Figure 1.
The underlying graph between the leader and the followers
satisfies Assumption 2.

For each follower, we collect four sets of state data and
three sets of input data as follows

X1 = X4 = X7 =

[
1 0 1 1
−1 0 0 1

]
,

U1− =U4− =U7− =
[
1 1 1

]
,

X2 = X5 = X8 =

[
1 0 3 −1
−1 2 −2 5

]
,

U2− =U5− =U8− =
[
1 1 1

]
,

X3 = X6 = X9 =

[
1 2 0 −1
−1 1 2 0

]
,

U3− =U6− =U9− =
[
1 1 1

]
.

It is easy to verify that the data are informative for stabi-
lization by state feedback, and, using directly these data, we
compute feedback gains

K1 = K4 = K7 =
[
−0.3677 −1.3560

]
,

K2 = K5 = K8 =
[
0.4183 −1.4385

]
,

K3 = K6 = K9 =
[
0.0017 1.0008

]
.

Similarly, we compute solutions Mi to the linear equations
(19) and (20), and obtain

M1 = M4 = M7 =

 0 1
2 −1
−1 0

 , M2 = M5 = M8 =

0.4 −1.4
0.4 0.6
0.2 0.8

 ,
M3 = M6 = M9 =

 0.6 −0.1
−0.3 0.3
0.7 −0.2

 .
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Fig. 2. Plots of the output trajectories yr , y1, y2, . . . ,y9.

According to Proposition 6, since the data (Ui−,Xi) are in-
formative for stabilization by state feedback and informative
for output regulation, the data are also informative for output
synchronization. Subsequently, we compute gain matrices F ,
Πi and Γi. It is shown in Figure 2 that the associated protocol
indeed achieves output synchronization.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered an informativity ap-
proach to data-driven output synchronization for leader-
follower multi-agent systems. We have provided necessary
and sufficient data-based conditions for output synchroniza-
tion. We have provided a design method for computing such
distributed output synchronizing protocols directly from data.
We have also extended the results to the special case that the
followers are disturbance-free.

As a possibility for future research, we mention the
more practical and challenging situation that the external
disturbance is unknown [14]. It would also be interesting
to extend the results in this paper to the case that only input
and output data of the followers are available [13].
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verification of dissipativity properties from input–output data,” IEEE
Control Systems Letters, vol. 3, no. 3, pp. 709–714, 2019.

[13] H. J. van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel,
“Data informativity: a new perspective on data-driven analysis and
control,” IEEE Transactions on Automatic Control, vol. 65, no. 11,
pp. 4753–4768, 2020.

[14] H. J. van Waarde, M. K. Camlibel, and M. Mesbahi, “From noisy
data to feedback controllers: non-conservative design via a matrix S-
Lemma,” IEEE Transactions on Automatic Control, pp. 1–1, 2020.

[15] J. Berberich, A. Koch, C. W. Scherer, and F. Allgöwer, “Robust data-
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