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Strong Structural Controllability of Systems
on Colored Graphs

Jiajia Jia , Harry L. Trentelman , Fellow, IEEE, Wouter Baar , and M. Kanat Camlibel , Member, IEEE

Abstract—This article deals with strong structural con-
trollability of leader–follower networks. The system matrix
defining the network dynamics is a pattern matrix, in which
a priori given entries are equal to zero, while the remaining
entries take nonzero values. These nonzero entries corre-
spond to edges in the network graph. The network is called
strongly structurally controllable if for all choices of real
values for the nonzero entries in the pattern matrix, the
system is controllable in the classical sense. The novelty
of this article is that we consider the situation that pre-
specified nonzero entries in the system’s pattern matrix are
constrained to take identical (nonzero) values. These con-
straints can be caused by symmetry properties or physical
constraints on the network. Restricting the system matrices
to those satisfying these constraints yields a new notion of
strong structural controllability. The aim of this article is to
establish graph-theoretic conditions for this more general
property of strong structural controllability.

Index Terms—Colored graphs, controllability, network
analysis, strong structural controllability, zero forcing set.

I. INTRODUCTION

THE past two decades have shown an increasing research
effort in networked dynamical systems. To a large extent,

this increase has been caused by technological developments,
such as the emergence of the Internet and the growing relevance
of smart power grids. The spreading interest in social networks
and biological systems has also contributed to this surge [1]–[4].

A fundamental issue in networked systems is that of con-
trollability. This issue deals with the question whether all parts
of the global network can be adequately influenced or manip-
ulated by applying control inputs only locally to the network.
A vast amount of literature has been devoted to several vari-
ations on this issue (see [5]–[10] and the references therein).
In most of the literature, a networked system is a collection
of input–state–output systems, called agents, together with an
interconnection structure between them. Some of these systems
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can also receive input from outside the network and are called
leaders. The remaining systems are called followers. At a higher
level of abstraction, a networked system can be described by
a directed graph, called the network graph, where the vertices
represent the input–state–output systems and the edges represent
the interactions between them. Controllability of the networked
system then deals with the question whether the states of all
agents can be steered from any initial state to any final state
in finite time by applying suitable input signals to the network
through the leaders.

Based on the observation that the underlying graph plays an
essential role in the controllability properties of the networked
system [9], an increasing amount of literature has been devoted
to uncovering this connection (see [11]–[13] and the references
therein). In order to allow zooming in on the role of the network
graph, it is common to proceed with the simplest possible
dynamics at the vertices of the graph, and to take the agents to
be single integrators, with a one-dimensional state space. These
single integrators are interconnected through the network graph,
and the interconnection strengths are given by the weights on
the edges. Based on this, the overall networked system can be
represented by a linear input–state–output system of the form

ẋ = Ax+Bu

where the system matrix A ∈ Rn×n represents the network
structure with the given edge weights, and the matrixB ∈ Rn×m

encodes which m vertices are the leaders. The n-dimensional
state vector x consists of the states of the n agents, and the
m-dimensional vectoru collects the input signals to them leader
vertices.

Roughly speaking, the research on network controllability
based on the above model can be subdivided into three direc-
tions. The first direction deals with the situation that the values of
the edge weights in the network are known exactly. In this case,
the matrix A is a given constant matrix, and specific dynamics
are considered for the network. For example, the system matrix
can be defined as the adjacency matrix of the graph [14] or the
graph Laplacian matrix [5], [7], [9], [15]–[17]. Furthermore,
a framework for controllability was also introduced in [18],
offering tools to treat controllability of complex networks with
arbitrary structure and edge weights. Related results can be
found in [19] and [20]. We also refer to [21] and [22].

A second research direction deals with the situation, where the
exact values of the edge weights are not known, but only infor-
mation on whether these weights are zero or nonzero is available.
In this case, the system matrix is not a known, given, matrix, but
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rather a matrix with a certain zero/nonzero pattern: some of
the entries are known to be equal to zero; the other entries are
unknown. This framework deals with the concept of structural
controllability. Up to now, two types of structural controllability
have been studied, namely weak structural controllability and
strong structural controllability. A networked system of the form
above is called weakly structurally controllable if there exists
at least one choice of values for the nonzero unknown entries
in the system matrices such that the corresponding matrix pair
(A,B) is controllable. The networked system is called strongly
structurally controllable if, roughly speaking, for all choices of
nonzero values for the unknown entries, the matrix pair (A,B) is
controllable. Conditions for weak and strong structural control-
lability have been expressed entirely in terms of the underlying
network graph, using concepts like cactus graphs, maximal
matchings, and zero forcing sets (see [8] and [23]–[28]).

A third, more recent, research direction again deals with
weak and strong structural controllability. However, the nonzero
entries in the pattern matrices defining the networked system can
no longer take arbitrary nonzero real values, independently of
each other. Instead, this framework considers the situation that
there are certain constraints on some of the nonzero entries.
These constraints can require that some of the nonzero entries
have given values (see, e.g., [29]), or that there are given linear
dependencies between some of the nonzero entries (see [30]). In
both cases, these constraints lead to a subclass of the family of
systems dealt with in the second research direction mentioned
above. A networked system with such constraints is called
weakly (strongly) structurally controllable if almost all (all)
members in the corresponding subclass are controllable. In [30],
necessary and sufficient conditions for weak structural control-
lability were established in terms of multicolored subgraphs.
Later on, Mousavi et al. [29] studied weak and strong structural
controllability of undirected networks. In addition, Menara et al.
[31] studied weak structural controllability of networks with
symmetric weights. In the present article, we will focus on
a special constraint, in which the values of certain a priori
specified nonzero entries in the system matrix are constrained
to be identical. In order to formalize this, the corresponding
network structure is represented by so-called colored graphs,
where edges with identical weights have identical colors.

Indeed, it is a typical situation that certain edge weights are
equal, either by symmetry considerations or by the physics of
the underlying problem. One application domain is provided
by real-world networks modeled as homogeneous multiagent
systems, such as those used in formation control. In such net-
works, agents can be considered as identical subnetworks of
smaller order, which lead to identical edge weights in the overall
network. Such a situation can be considered as a so-called net-
work of networks [32], which is obtained by taking the Cartesian
product of smaller factor networks. For each factor network, the
internal edge weights are independent. However, by applying
the Cartesian product, some edge weights in the overall network
will become identical.

Another application domain consists of physical networks,
such as power grids, traffic networks, and water distribution
networks. For example, in power networks, certain physical

components typically appear multiple times, leading to identical
edge weights in the network models. The same holds for water
distribution networks. As for traffic networks, two-directional
traffic flow sharing the same channel leads to symmetry prop-
erties of the network models. An example is also provided by
real-world networks modeled as undirected networks [29]–[31],
in which the network graph has to be symmetric.

In this article, strong structural controllability of networked
systems defined on such colored graphs will be called colored
strong structural controllability. This version of strong structural
controllability has not been studied in the literature before. The
aim of this article is to establish graph-theoretic tests for this
property of networked systems.

The main contributions of this article are the following.
1) We introduce a new color change rule and define the

corresponding notion of a zero forcing set. To do this, we
consider colored bipartite graphs and establish a neces-
sary and sufficient graph-theoretic condition for nonsin-
gularity of the pattern class associated with this bipartite
graph.

2) We provide a sufficient graph-theoretic condition for our
new notion of strong structural controllability in terms of
zero forcing sets.

3) We introduce so-called elementary edge operations that
can be applied to the original network graph and that
preserve the property of strong structural controllability.

4) A sufficient graph-theoretic condition for strong struc-
tural controllability is developed based on the notion
of edge-operations-color-change derived set, which is
obtained by applying elementary edge operations and the
color change rule iteratively.

The organization of this article is as follows. In Section II,
some preliminaries are presented. In Section III, we give a
formal definition of the main problem treated in this article in
terms of systems defined on colored graphs. In Section IV, we
establish our main result, which gives a sufficient graph-theoretic
condition for strong structural controllability of systems defined
on colored graphs. Section V provides two additional sufficient
graph-theoretic conditions. For this, we introduce the concept
of elementary edge operations and the associated notion of
edge-operations-color-change derived set. This set is obtained
from the initial coloring set by successively applying elementary
edge operations and the color change rule. Finally, Section VI
formulates the conclusions of this article. We note that a prelim-
inary version [33] of this article has appeared in the proceedings
of NecSys 2018. In that note, the condition for strong structural
controllability in terms of our new concept of zero forcing set
was stated without giving proofs. The present article provides
these proofs and, in addition, provides new conditions for strong
structural controllability in terms of elementary edge operations
and the concept of edge-operations-color-change derived set that
were not yet given in [33].

II. PRELIMINARIES

In this article, we will use standard notation. We denote by
C and R the fields of complex and real numbers, respectively.
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The vector spaces of n-dimensional real and complex vectors
are denoted by Rn and Cn, respectively. Likewise, the spaces
of n×m real and complex matrices are denoted by Rn×m and
Cn×m, respectively. For a given n×m matrix A, the entry
in the ith row and jth column is denoted by Aij . For a given
m× n matrix A and for given subsets S = {s1, s2, . . . , sk} ⊆
{1, 2, . . . ,m} and T = {t1, t2, . . . , tl} ⊆ {1, 2, . . . , n}, we de-
fine the k × l submatrix of A associated with S and T by AS,T ,
with (AS,T )ij := Asitj . Similarly, for a given n-dimensional
vector x, we denote by xT the subvector of x consisting of the
entries of x corresponding to T . For a given square matrix A, we
denote its determinant bydet(A). Finally, I and0will denote the
identity and zero matrix of appropriate dimensions, respectively.

A. Elements of Graph Theory

Let G = (V,E) be a directed graph, with vertex set V =
{1, 2, . . ., n}, and the edge set E a subset of V × V . In this
article, we will only consider simple graphs, that is, the edge
set E does not contain edges of the form (i, i). In our arti-
cle, the phrase “directed graph” will always refer to a simple
directed graph. We call vertex j an out-neighbor of vertex i
if (i, j) ∈ E. We denote the set of all out-neighbors of i by
N(i) := {j ∈ V | (i, j) ∈ E}. Given a subset S of the vertex
set V and a subset X ⊆ S, we denote by

NV \S(X) = {j ∈ V \ S | ∃ i ∈ X such that (i, j) ∈ E}

the set of all vertices outside S, but an out-neighbor of some
vertex inX . A directed graphG1 = (V1, E1) is called a subgraph
of G if V1 ⊆ V and E1 ⊆ E.

Associated with a given directed graph G = (V,E), we con-
sider the set of matrices

W(G) := {W ∈ Rn×n | Wij �= 0 iff (j, i) ∈ E}.

For any suchW and (j, i) ∈ E, the entryWij is called the weight
of the edge (j, i) andW is called a weighted adjacency matrix of
the graph. For a given directed graph G = (V,E), we denote the
associated graph with weighted adjacency matrixW byG(W ) =
(V,E,W ). This is then called the weighted graph associated
with the graph G = (V,E) and weighted adjacency matrix W .
Finally, we define the graph G = (V,E) to be an undirected
graph if (i, j) ∈ E whenever (j, i) ∈ E. In that case, the order
of i and j in (i, j) does not matter, and we interpret the edge set
E as the set of unordered pairs {i, j}, where (i, j) ∈ E.

An undirected graph G = (V,E) is called bipartite if there
exist nonempty disjoint subsets X and Y of V such that X ∪
Y = V and {i, j} ∈ E only if i ∈ X and j ∈ Y . Such a bipartite
graph is denoted by G = (X,Y,EXY ), where we denote the
edge set by EXY to stress that it contains edges {i, j} with
i ∈ X and j ∈ Y . In this article, we will use the symbol G for
arbitrary directed graphs and G for bipartite graphs.

A set of t edges m ⊆ EXY is called a t-matching in G, if no
two distinct edges in m share a vertex. In the special case that
|X| = |Y | = t, such a t-matching is called a perfect matching.

For a bipartite graph G=(X,Y,EXY ), with vertex sets X
and Y given by X={x1, x2, . . . , xs} and Y ={y1, y2, . . . , yt},

we define the pattern class of G by

P(G) = {M ∈ Ct×s | Mji �= 0 iff {xi, yj} ∈ EXY }.
Note that, in the context of pattern classes for undirected bipartite
graphs, we allow complex matrices.

B. Controllability of Systems Defined on Graphs

For a directed graph G = (V,E) with vertex set V =
{1, 2, . . . , n}, the qualitative class of G is defined as the family
of matrices

Q(G) = {A ∈ Rn×n | for i �= j : Aij �= 0 iff (j, i) ∈ E}.
Note that the diagonal entries of A ∈ Q(G) do not depend on
the structure of G and can take arbitrary real values.

Next, we specify a subset VL = {v1, v2, . . . , vm} of V , called
the leader set, and consider the following family of leader–
follower systems defined on the graph G with dynamics:

ẋ = Ax+Bu (1)

where x ∈ Rn is the state and u ∈ Rm is the input. The systems
(1) have the distinguishing feature that the matrix A belongs to
Q(G) and B = B(V ;VL) is defined as the n×m matrix given
by

Bij =

{
1, if i = vj

0, otherwise.
(2)

An important notion associated with systems defined on a
graph G as in (1) is the notion of strong structural controllability.

Definition 1: Let Q′ ⊆ Q(G). The system defined on the
directed graph G = (V,E) with dynamics (1) and leader set
VL ⊆ V is called strongly structurally controllable with respect
toQ′ if the pair (A,B) is controllable for allA ∈ Q′. In that case,
we will simply say that (G;VL) is controllable with respect toQ′.

One special case of the above notion is that (G;VL) is con-
trollable with respect to Q(G). In that case, we will simply
say that (G;VL) is controllable. Another special case is that
(G;VL) is controllable with respect to Q′, where, for a given
weighted adjacency matrix W ∈ W(G), Q′ is the subclass of
Q(G) defined by

QW (G) = {A ∈ Q(G) | for i �= j : Aij = Wij}.
This subclass is called the weighted qualitative class associated
with W . Note that the off-diagonal elements of A ∈ QW (G) are
fixed by those of the given adjacency matrix, while, again, the
diagonal entries of A ∈ QW (G) can take arbitrary real values.
Obviously

Q(G) =
⋃

W∈W(G)
QW (G).

Since there is a unique weighted graph G(W ) = (V,E,W )
associated with the graph G = (V,E) and weighted adjacency
matrix W , we will simply say that (G(W );VL) is controllable
if (G;VL) is controllable with respect to QW (G).
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C. Zero Forcing Set and Controllability of (G;VL)

Let G = (V,E) be a directed graph with vertices colored
either black or white. We now review the concept of color change
rule [34]: if v is a black vertex in G with exactly one white
out-neighbor u, then we change the color of u to black and write
v

c−→ u. Such a color change is called a force. A subset C of V is
called a coloring set if the vertices inC are initially colored black
and those in V \ C initially colored white. Given a coloring set
C ⊆ V , the derived setD(C) is the set of black vertices obtained
after repeated application of the color change rule, until no more
changes are possible. It was shown in [34] that the derived set is
indeed uniquely defined, in the sense that it does not depend on
the order in which the color changes are applied to the original
coloring set C. A coloring set C ⊆ V is called a zero forcing set
for G if D(C) = V .

It was shown in [26] that controllability of (G;VL) can be
characterized in terms of zero forcing sets.

Proposition 2: Let G = (V,E) be a directed graph and VL ⊆
V be the leader set. Then, (G;VL) is controllable if and only if
VL is a zero forcing set.

D. Balancing Set and Controllability of (G(W );VL)

Consider the weighted graph G(W ) = (V,E,W ) associated
with the directed graph G = (V,E) and the weighted adjacency
matrix W ∈ W(G). For i = 1, . . . , n, let xi be a variable as-
signed to vertex i. For a given subset of vertices C ⊆ V , we put
xj = 0 for all j ∈ C. We call C the set of zero vertices. The
values of the other vertices of G(W ) are initially undetermined.
To every vertex j ∈ C, we assign a so-called balance equation∑

k∈NV \C({j})
xkWkj = 0. (3)

Note that for weighted undirected graphs, in which case W =
WT , the balance equation (3) coincides with the one introduced
in [29]. If for a given subset X of the set of zero vertices C, the
system of |X| balance equations corresponding to the vertices
in X implies that xk = 0 for all k ∈ Y with C ∩ Y = ∅, we say
that zeros extend from X to Y . We denote this by X

z−→ Y . The
updated set of zero vertices is now defined as C ′ = C ∪ Y .

This one-step procedure of making the values of possibly
additional vertices equal to zero is called the zero extension rule.
We define the derived set Dz(C) to be the set of zero vertices
obtained after repeated application of the zero extension rule
until no more zero vertices appear. Although not explicitly stated
in [29], it can be shown that the derived set is uniquely defined, in
the sense that it does not depend on the particular zero extensions
that are applied to the original set of zero vertices C. An initial
zero vertex set C ⊆ V is called a balancing set if the derived set
Dz(C) is V .

A necessary and sufficient condition for strong structural
controllability with respect to QW (G) for the special case that
W = WT was given in [29].

Proposition 3: Let G be a simple undirected graph, VL ⊆ V
be the leader set, and W ∈ W(G) be a weighted adjacency
matrix with W = WT . Then, (G(W );VL) is controllable if and
only if VL is a balancing set.

III. PROBLEM FORMULATION

In this section, we will introduce the main problem to be
considered in this article. At the end of the section, we will
also formulate two preliminary results that will be needed in
the following. In order to proceed, we will now first formalize
the constraint that the weights of a priori given edges in the
network graph are equal. This is equivalent to saying that given
off-diagonal entries in the matrices belonging to the qualitative
class Q(G) are equal. To do this, we introduce a partition

π = {E1, E2, . . . , Ek}
of the edge set E into disjoint subsets Er whose union is the
entire edge set E. The edges in a given cell Er are constrained
to have identical weights. We then define the colored qualitative
class associated with π by

Qπ(G) = {A ∈ Q(G) | Aij = Akl

if (j, i), (l, k) ∈ Er for some r}.
In order to visualize the partitionπ of the edge set in the graph,

two edges in the same cell Er are said to have the same color.
The colors will be denoted by the symbols c1, c2, . . . , ck, and
the edges in cell Er are said to have color cr. This leads to the
notion of colored graph. A colored graph is a directed graph
together with a partition π of the edge set, which is denoted by
G(π) = (V,E, π).

In the following, sometimes, the symbols ci will also be used
to denote independent nonzero variables. A set of real values
obtained by assigning to each of these variables ci a particular
real value is called a realization of the color set.

Example 4: Consider the colored graph G(π) = (V,E, π)
associated with the directed graph G = (V,E) and edge par-
tition π = {E1, E2, E3}, where E1 = {(1, 4), (1, 6)}, E2 =
{(2, 4), (2, 5)} and E3 = {(3, 5), (3, 6)}, as depicted in Fig. 1.
Edges having the same color mean that the weight of these edges
are constrained to be equal. In this example, the edges inE1 have
color c1 (blue), those in E2 have color c2 (green), and those in
E3 have color c3 (red). The corresponding colored qualitative
class consists of all matrices of the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0 0 0

0 λ2 0 0 0 0

0 0 λ3 0 0 0

c1 c2 0 λ4 0 0

0 c2 c3 c1 λ5 c3

c1 0 c3 0 0 λ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where λi is an arbitrary real number for i = 1, 2, . . . , 6 and ci is
an arbitrary nonzero real number for i = 1, 2, 3.

Given a colored directed graph G(π) = (V,E, π) with edge
partition π = {E1, E2, . . . , Ek}, we define the corresponding
family of weighted adjacency matrices

Wπ(G) := {W ∈ W(G) | Wij = Wkl

if (j, i), (l, k) ∈ Er for some r}.
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Fig. 1. Colored directed graph with leader set {1, 2, 3}.

Note that any weighted adjacency matrix W ∈ Wπ(G) is asso-
ciated with a unique realization of the color set. Obviously, the
colored qualitative class Qπ(G) is equal to the union of all the
subclasses QW (G) with W ∈ Wπ(G), i.e.,

Qπ(G) =
⋃

W∈Wπ(G)
QW (G). (4)

If (G;VL) is controllable with respect to Q′ = Qπ(G) (see
Definition 1), we will simply say that (G(π);VL) is controllable.
In that case, we call the system colored strongly structurally
controllable. For example, the system with graph depicted in
Fig. 1 is colored strongly structurally controllable, as will be
shown later in this article.

The aim of this article is to establish graph-theoretic tests
for colored strong structural controllability of a given graph. In
order to obtain these, we now first make the observation that
conditions for strong structural controllability can be expressed
in terms of balancing sets. Generalizing Proposition 3 to the case
of weighted directed graphs, we have the following lemma.

Lemma 5: Let G = (V,E) be a directed graph with leader
set VL and let W ∈ W(G). Then, (G(W );VL) is controllable if
and only if VL is a balancing set.

The proof can be found in Appendix I.
The following lemma follows immediately from Lemma 5 by

noting that (4) holds.
Lemma 6: LetG = (V,E) be a directed graph with leader set

VL and let π be a partition of the edge set. Then, (G(π);VL) is
controllable if and only if VL is a balancing set for all weighted
graphs G(W ) = (V,E,W ) with W ∈ Wπ(G).

Obviously, the necessary and sufficient conditions presented
in Lemma 6 cannot be verified easily, as the set Wπ(G) con-
tains infinitely many elements. Therefore, we aim at estab-
lishing graph-theoretic conditions, under which (G(π);VL) is
controllable.

IV. ZERO FORCING SETS FOR COLORED GRAPHS

In order to provide a graph-theoretic condition for colored
strong structural controllability, in this section, we introduce a
new color change rule and define the corresponding notion of
zero forcing set. To do this, we first consider colored bipartite
graphs and establish a necessary and sufficient graph-theoretic
condition for nonsingularity of the associated pattern class.

A. Colored Bipartite Graphs

Consider the bipartite graph G = (X,Y,EXY ), where the
vertex sets X and Y are given by X = {x1, x2, . . . , xs} and
Y = {y1, y2, . . . , yt}. We will now introduce the notion of
colored bipartite graph. Let πXY = {E1

XY , E
2
XY , . . . , E

�
XY }

be a partition of the edge set EXY with associated colors
c1, c2, . . . , c�. This partition is used to formalize that certain
entries in the pattern classP(G) are constrained to take identical
values. Again, the edges in a given cell Er

XY are said to have
the same color. The pattern class of the colored bipartite graph
G(π) = (X,Y,EXY , πXY ) is then defined as the following set
of complex t× s matrices:

Pπ(G) =
{
M ∈ P(G) | Mji = Mhg

if {xi, yj}, {xg, yh} ∈ Er
XY for some r

}
.

Assume now that |X| = |Y | and let t = |X|. Suppose that p
is a perfect matching of G(π). The spectrum of p is defined
to be the set of colors (counting multiplicity) of the edges in
p. More specifically, if the perfect matching p is given by p ={{x1, yγ(1)}, . . . , {xt, yγ(t)}

}
, where γ denotes a permutation

of (1, 2, . . . , t), and ci1 , ci2 , . . . , cit are the respective colors of
the edges in p, then the spectrum of p is {ci1 , ci2 , . . . , cit}, where
the same color can appear multiple times.

In addition, we define the sign of the perfect matching p
as sign(p) = (−1)m, where m is the number of swaps needed
to obtain (γ(1), γ(2), . . . , γ(t)) from (1, 2, . . . , t). Since every
perfect matching is associated with a unique permutation, with a
slight abuse of notation, we sometimes use the perfect matching
p to represent its corresponding permutation.

Two perfect matchings are called equivalent if they have
the same spectrum. Obviously, this yields a partition of the
set of all perfect matchings of G(π) into equivalence classes
of perfect matchings. We denote these equivalence classes of
perfect matchings by P1,P2, . . . ,Pl, where perfect matchings in
the same class Pi are equivalent. Clearly, Pi ∩ Pj = ∅ for i �= j.
Correspondingly, we then define the spectrum of the equivalence
class Pi to be the (common) spectrum of the perfect matchings
in this class and denote it by spec(Pi). Finally, we define the
signature of the equivalence class Pi to be the sum of the signs
of all perfect matchings in this class, which is given by

sgn(Pi) =
∑
p∈Pi

sign(p).

Example 7: Consider the colored bipartite graph G(π) de-
picted in Fig. 2(a). It contains three perfect matchings, p1, p2,
and p3, respectively, depicted in Fig. 2(b)–(d). Clearly, p1 and p3
are equivalent. The equivalence classes of perfect matchings are
then P1 = {p1, p3} and P2 = {p2}. Clearly, sgn(P1) = 0 and
sgn(P2) = −1.

We are now ready to state a necessary and sufficient condition
for nonsingularity of all matrices in the colored pattern class
Pπ(G).

Theorem 8: Let G(π) = (X,Y,EXY , πXY ) be a colored
bipartite graph and |X| = |Y |. Then, all matrices in Pπ(G)
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Fig. 2. Example of a colored bipartite graph and its perfect match-
ings. (a) Colored bipartite graph G(π). (b) Perfect matching p1 with
sign(p1) = 1. (c) Perfect matching p2 with sign(p2) = −1. (d) Perfect
matching p3 with sign(p3) = −1.

are nonsingular if and only if there exists at least one perfect
matching and exactly one equivalence class of perfect matchings
has nonzero signature.

Proof: Denote the cardinality of X and Y by t. Let A ∈
Pπ(G). By the Leibniz formula for the determinant, we have

det(A) =
∑
γ

sign(γ)
t∏

i=1

Aiγ(i)

where the sum ranges over all permutations γ of (1, 2, . . . , t) and
where sign(γ) = (−1)m, with m being the number of swaps
needed to obtain (γ(1), γ(2), . . . , γ(t)) from (1, 2, . . . , t). Note
that

∏t
i=1 Aiγ(i) �= 0 if and only if there exists at least one

perfect matching p = {{x1, yγ(1)}, . . . , {x|X|, yγ(t)}} in G(π).
In that case, we have

det(A) =
∑
p

sign(p)

t∏
i=1

Aip(i)

where p ranges over all perfect matchings and sign(p) denotes
the sign of the perfect matching (we now identify perfect
matchings with their permutations). Suppose now there are l
equivalence classes of perfect matchings P1,P2, . . . ,Pl. Then,
we obtain

det(A) =

l∑
j=1

(
sgn(Pj)

t∏
i=1

Aip(i)

)
(5)

where, for j = 1, 2, . . . l, in the product appearing in the jth
term, p is an arbitrary matching in Pj . We will now prove the
“if” part. Assume that there exists at least one perfect matching,
and exactly one equivalence class of perfect matchings has
nonzero signature. Without loss of generality, assume that the
equivalence class P1 has nonzero signature. Obviously, for every
A ∈ Pπ(G), we then have

det(A) = sgn(P1)

t∏
i=1

Aip(i) �= 0

where p ∈ P1 is arbitrary; in other words, every A ∈ Pπ(G) is
nonsingular.

Next, we prove the “only if” part. For this, assume that all
A ∈ Pπ(G) are nonsingular, but one of the following holds.

i) There does not exist any perfect matching.
ii) No equivalence class of perfect matchings with nonzero

signature exists.
iii) There exist at least two equivalence classes of perfect

matchings with nonzero signature.
We will show that all these cases lead to a contradiction.
In case (i), we must obviously have det(A) = 0 for any

A ∈ Pπ(G), which gives a contradiction. For case (ii), it fol-
lows from (5) that det(A) = 0, since all equivalence classes
have zero signature. Therefore, we reach a contradiction again.
Finally, consider case (iii). Without loss of generality, assume
that P1 and P2 have nonzero signature. The signatures of the
remaining equivalence classes can be either zero or nonzero.
In the following, we associate the colors c1, c2, . . . , c� of the
cellsE1

XY , E
2
XY , . . . E

�
XY with independent, nonzero, variables

c1, c2, . . . , c� that can take values in C. The spectrum of an
equivalence class Pj then uniquely determines a monomial
ci11 ci22 . . . ci�� , where the powers i1, i2, . . . ik correspond to the
multiplicities of the colors c1, c2, . . . , c� in the perfect matchings
in Pj . We also identify each entry of a matrix A in Pπ(G) with
the color of its corresponding edge. In particular, for such A, we
have

Aij =

{
cr, if (j, i) ∈ Er for some r

0, otherwise.

From the expression (5) for the determinant of A, it can be seen
that the perfect matchings in the equivalence class Pj yield a
contribution sgn(Pj)c

i1
1 ci22 . . . ci�� , where the degrees correspond
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to the multiplicities of the colors of the perfect matchings in Pj .
By assumption, we have that spec(P1) and spec(P2) are not
equal. Without loss of generality, we assume that the multiplicity
of c1 as an element of spec(P1) is unequal to the multiplicity
of c1 as an element of spec(P2). Denote these multiplicities by
j1 and j2, respectively, with j1 �= j2. Then, for all values of
c2, . . . , c�, the determinant of A has the form

det(A) = sgn(P1)a1c
j1
1 + sgn(P2)a2c

j2
1 + f(c1) (6)

where a1 and a2 depend on c2, . . . , ck and f(c1) is a polyno-
mial in c1. The polynomial f(c1) corresponds to the remaining
equivalence classes. It can happen that some of these equiva-
lence classes also contain the color c1 in their spectrum with
multiplicity j1 or j2. By moving the corresponding monomials
to the first two terms in (6), we obtain

det(A) = b1c
j1
1 + b2c

j2
1 + f ′(c1) (7)

with b1 and b2 depending on c2, . . . , ck. Note that the first term
in (7) corresponds to the equivalence classes containing c1 in
their spectrum with multiplicity j1, and likewise the second term
with multiplicity j2. The remaining polynomial f ′(c1) does not
contain monomials with cj11 and cj21 . It is now easily verified that
nonzero c2, . . . , c� can be chosen such that b1 �= 0 and b2 �= 0.
By the fundamental theorem of algebra, we then have that the
polynomial equation b1c

j1
1 + b2c

j2
1 + f ′(c1) = 0 has at least one

nonzero root, since both b1 and b2 are nonzero. This implies
that for some choice of nonzero complex values c1, c2, . . . , c�,
we have det(A) = 0. In other words, not all A ∈ Pπ(G) are
nonsingular. This is a contradiction. �

Example 9: For the colored bipartite graph in Fig. 2(a), the
pattern class consists of all matrices of the form⎡

⎢⎢⎢⎣
c2 c2 c2

c2 c1 0

c3 0 c3

⎤
⎥⎥⎥⎦

where c1, c2, and c3 are arbitrary nonzero complex numbers. In
Example 7, we saw that there is exactly one equivalence class
of perfect matchings with nonzero signature. By Theorem 8, we
thus conclude that all these matrices are nonsingular.

B. Color Change Rule and Zero Forcing Sets

In this subsection, we will introduce a tailor-made zero
forcing notion for colored graphs. Let G(π) = (V,E, π) be a
colored directed graph with π = {E1, E2, . . . , Ek} the partition
of E. For given disjoint subsets X = {x1, x2, . . . , xs} and
Y = {y1, y2, . . . , yt} of V , we define an associated colored
bipartite graph G(π) = (X,Y,EXY , πXY ) as follows:

EXY := {{xi, yj} | (xi, yj) ∈ E, xi ∈ X, yj ∈ Y }.
Obviously, the partition π induces a partition πXY of EXY by
defining

Er
XY := {{xi, yj} ∈ EXY | (xi, yj) ∈ Er}, r = 1, 2 . . . , k.

Note that for some r, this set might be empty. Removing these,
we get a partition

πXY = {Ei1
XY , E

i1
XY , . . . , E

i�
XY }

of EXY , with associated colors ci1 , ci2 , . . . , ci� , with � ≤ k.
Without loss of generality, we renumber ci1 , ci2 , . . . , ci� as
c1, c2, . . . , c�, and the edges in cell Er

XY are said to have
color cr.

As before, a subsetC ofV is called a coloring set if the vertices
in C are initially colored black and those in V \ C initially
colored white. We will now define the notion of color-perfect
white neighbor.

Definition 10: Let X ⊆ C and Y ⊆ V with |Y | = |X|. We
call Y a color-perfect white neighbor of X if:

1) Y = NV \C(X), i.e., Y is equal to the set of white out-
neighbors of X;

2) in the associated colored bipartite graph G =
(X,Y,EXY , πXY ), there exists a perfect matching,
and exactly one equivalence class of perfect matchings
has nonzero signature.

Based on the notion of color-perfect white neighbor, we now
introduce the following color change rule: if X ⊆ C and Y is
a color-perfect white neighbor of X , then we change the color
of all vertices in Y to black and write X

c−→Y . Such a color
change is called a force. We define a derived set Dc(C) as a set
of black vertices obtained after repeated application of the color
change rule, until no more changes are possible. In contrast with
the original color change rule (see Section II-C), under our new
color change rule, derived sets will no longer be uniquely defined
and may depend on the particular list of forces that is applied to
the original coloring set C. This is illustrated by Example 26 in
Appendix II.

A coloring set C ⊆ V is called a zero forcing set for G(π) if
there exists a derived set Dc(C) such that Dc(C) = V .

Before illustrating the new color change rule, we remark on
its relation to the one defined earlier.

Remark 11: Given a directed graph G = (V,E), one can
obtain a colored graph G(π) = (V,E, π) by assigning to every
edge a different color, i.e., |π| = |E|. Clearly, the colored quali-
tative class Qπ(G) coincides with the qualitative class Q(G).
In addition, the original color change rule for G introduced
in Section II-C can be seen to be a special case of the new
one for G(π). This observation in mind, we will use the same
terminology for these two color change rules, and it will be clear
from the context which one is employed.

We now illustrate the new color change rule by means of an
example.

Example 12: Fig. 3 illustrates the repeated application of
zero forcing in the context of colored graphs. In Fig. 3(a), ini-
tially, vertices {1, 2, 3} are black and the remaining vertices are
white. As shown in Example 7, {4, 5, 6} is a color-perfect white
neighbor of {1, 2, 3}. Therefore, we have {1, 2, 3} c−→ {4, 5, 6},
as depicted in Fig. 3(b). Next, observe that the colored bipar-
tite graph associated with X = {4, 5, 6} and Y = {7, 8, 9} has
two perfect matchings, with identical spectrum and the same
sign 1. Hence, the single equivalence class has signature 2. As
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Fig. 3. Example of a zero forcing set. (a) Initial. (b) Step 1. (c) Step 2.

such, {7, 8, 9} is a color-perfect white neighbor of {4, 5, 6}.
Therefore, we have {4, 5, 6} c−→ {7, 8, 9}, as shown in Fig. 3(c).
Consequently, we conclude that the vertex set {1, 2, 3} is a zero
forcing set for G(π).

Next, we explore the relationship between zero forcing sets
and controllability of (G(π);VL). First, we show that color
changes do not affect the property of controllability. This is
stated in the following theorem.

Theorem 13: Let G(π) be a colored directed graph and let
C ⊆ V be a coloring set. Suppose that X

c−→ Y with X ⊆ C
and Y ⊆ V \ C. Then, (G(π);C) is controllable if and only if
(G(π);C ∪ Y ) is controllable.

Proof: Due to Lemma 6, it suffices to show that Dz(C) = V
if and only if Dz(C ∪ Y ) = V for all weighted graphs G(W ) =
(V,E,W ) with W ∈ Wπ(G). Here, C and C ∪ Y are taken as
zero vertex sets.

Let W ∈ Wπ(G) and G(W ) = (V,E,W ). By definition of
the color change rule, X

c−→ Y means that Y = NV \C(X), and
there exists exactly one equivalence class of perfect matchings
with nonzero signature in the colored bipartite graph G =
(X,Y,EXY , πXY ). By applying Theorem 8, we then find that
all matrices in the pattern class of G are nonsingular. Now,
let x1, x2, . . . , xn be variables assigned to the vertices in V ,
with xj = 0 for j ∈ C and xj undetermined for the remaining
vertices. For the vertices j ∈ C, consider the balance equa-
tions (3). By the fact that Wkj = 0 for all k ∈ V \ C with

Fig. 4. Example to show that VL being a zero forcing set is not a
necessary condition for controllability of (G(π);VL).

k /∈ NV \C({j}), the system of balance equations (3) for the
vertices j ∈ X can be written as

xT
Y WY,X = 0. (8)

We now observe that the submatrix WY,X of W belongs to the
pattern class of G. Using the fact that all matrices in this pattern
class are nonsingular, we obtain thatxT

Y = 0. By the definition of
the zero extension rule, we have that X

z−→ Y for G(W ) with the
set of zero verticesC. It then follows immediately thatC ∪ Y ⊆
Dz(C) and thus Dz(C ∪ Y ) = Dz(C). As a consequence, C is
a balancing set for G(W ) if and only if C ∪ Y is a balancing set
for G(W ). Since this holds for arbitrary choice of W in Wπ(G),
the result follows immediately from Lemma 6. �

By Theorem 13, colored strong structural controllability is
invariant under application of the color change rule. We then
obtain the following corollary.

Corollary 14: Let G(π) be a colored directed graph, let
VL ⊆ V be a leader set, and let Dc(VL) be a derived set. Then,
(G(π);VL) is controllable if and only if (G(π);Dc(VL)) is
controllable.

As an immediate consequence of Corollary 14, we arrive at
the main result of this section, which provides sufficient graph-
theoretic condition for controllability of (G(π);VL).

Theorem 15: Let G(π) = (V,E, π) be a colored directed
graph with leader set VL ⊆ V . If VL is a zero forcing set, then
(G(π);VL) is controllable.

Proof: The proof follows immediately from Corollary 14 and
the fact that, trivially, (G(π);V ) is controllable. �

To conclude this section, we will provide a counterexample
to show that the condition in Theorem 15 is not a necessary
condition.

Example 16: Consider the colored graph G(π) depicted in
Fig. 4 with a leader set VL = {1, 2}. It will turn out that
(G(π);VL) is controllable because VL is a balancing set for all
weighted graphs G(W ) = (V,E,W ) with W ∈ Wπ(G). Yet,
VL is not a zero forcing set.

Clearly, since none of the subsets {1, 2}, {1} and {2} have
color-perfect white neighbors, there does not exist a derived
set Dc(VL) that equals V . Hence, VL is not a zero forcing set.
We will show that, however, (G(π);VL) is controllable. Due to
Lemma 6, it is sufficient to show that VL is a balancing set for all
weighted graphs G(W ) with W ∈ Wπ(G). To do this, let W ∈
Wπ(G) correspond to a realization {c1, c2} of the color set, with
c1 and c2 nonzero real numbers. Assign variables x1, . . . , x5
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to the vertices in V . Let x1 = x2 = 0 and let x3, x4, and x5

be undetermined. The system of balance equations (3) for the
vertices 1 and 2 in VL is then given by

c1x3 + c1x4 = 0

c2x3 + c2x4 + c1x5 = 0. (9)

Since c1 �= 0 and c2 �= 0, the homogeneous system (9) is equiv-
alent to the system

c1x3 + c1x4 = 0

c1x5 = 0 (10)

which yields x5 = 0. By the definition of the zero extension
rule, we therefore have {1, 2} z−→ {5}. Repeated application of
the zero extension rule yields thatVL is a balancing set. Since the
matrix W ∈ Wπ(G) was taken arbitrary, we conclude that VL is
a balancing set for all weighted graphsG(W )withW ∈ Wπ(G).
Thus, we have found a counterexample for the necessity of the
condition in Theorem 15.

Remark 17: In this remark, we provide some intuition on
why the colored graph of Example 16 leads to a controllable
system, whileVL = {1, 2} is not a zero forcing set forG(π). The
main observation is that the balance equations (9) are equivalent
to the equations in (10), which correspond to a new colored graph
G′(π), in which the edges (2, 3) and (2, 4) have been removed.
In other words, we see that VL is a balancing set for all weighted
graphs associated with G(π) if and only if the same holds for
G′(π). Since VL is a zero forcing set for the new graph G′(π),
we have that (G′(π), VL) is controllable, so also (G(π), VL) is
controllable. In fact, we will generalize this idea in the next
section.

V. ELEMENTARY EDGE OPERATIONS AND DERIVED

COLORED GRAPHS

In the previous section, in Theorem 15, we have established
a sufficient condition for colored strong structural controllabil-
ity. In this section, we will establish another sufficient graph-
theoretic condition. This new condition is based on the so-called
elementary edge operations. These are operations that can be
performed on the original colored graph, and that preserve
colored strong structural controllability. These edge operations
on the graph are motivated by the observation that elementary
operations on the systems of balance equations appearing in
the zero extension rule do not modify the set of solutions to
these linear equations. Indeed, in Example 16, we verified that
{1, 2} z−→ {5} for all weighted graphs G(W ) with W ∈ Wπ(G).
As explained in Remark 17, this is due to the fact that the
system of balance equations (9) is equivalent to (10), implying
that x5 = 0 for all nonzero values c1 and c2. To generalize and
visualize this idea on the level of the colored graph, we now
introduce the following two types of elementary edge operations.

Let C ⊆ V be a coloring set, i.e., the set of vertices initially
colored black. The complement V \ C is the set of white ver-
tices. For two vertices u, v ∈ C (where u and v can be the same
vertex), we define

Eu(v) := {(v, j) ∈ E | j ∈ NV \C(u)}

Fig. 5. Example of performing elementary edge operations. (a) Initial
colored graph G(π) = (V,E, π). (b) Derived colored graph G1(π1) =
G(π,C, o1) where o1 represents “turning the colors of (1, 3) and (1,
4) to c2.” (c) Derived colored graph G2(π2) = G1(π1, C, o2) where o2
represents “removing all the edges in E1(2) = {(2, 3), (2, 4)}.”

as the subset of all edges between v and white out-neighbors
of u. We now introduce the following two elementary edge
operations.

1) (Turn color) If all edges in Eu(u) have the same color,
say ci, then change the color of these edges to any other
color in the color set.

2) (Remove edges) Assume NV \C(u) ⊆ NV \C(v). If for
any k ∈ NV \C(u), the two edges (u, k) and (v, k) have
the same color, then remove all edges in Eu(v).

The above elementary edge operations can be applied sequen-
tially and, obviously, will not introduce new colors or add new
edges. In the following, we will denote an edge operation by the
symbol o. Applying the edge operation o to G(π), we obtain a
new colored graph G′(π′) = (V,E,′ π′). We then call G′(π′) a
derived graph ofG(π) associated withC and o. We denote such a
derived graph byG(π,C, o). An application of a sequence of ele-
mentary edge operations is illustrated in the following example.

Example 18: For the colored graph G(π) = (V,E, π) de-
picted in Fig. 5(a), let C = {1, 2} be the coloring set. For the
vertex 1 ∈ C, we have E1(1) = {(1, 3), (1, 4)}, in which both
edges have the same color c1. We apply the turn color operation
to change the colors of (1, 3) and (1, 4) to c2. Denote this opera-
tion by o1. We then obtain the derived colored graph G(π,C, o1)
of G(π) with respect to C and o1, which is denoted by G1(π1)
and shown in Fig. 5(b). In addition, for nodes 1 and 2 in G1(π1),
we have NV \C(1) ⊆ NV \C(2), where NV \C(1) = {3, 4} and
NV \C(2) = {3, 4, 5}. Besides, for any k ∈ NV \C(1), the two
edges (1, k) and (2, k) have the same color. Performing the edge
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removal operation denoted by o2, we then remove all the edges
in E1(2) = {(2, 3), (2, 4)}. Thus, we obtain the derived colored
graph G1(π1, C, o2) of G1(π1) with respect to C and o2, which
is denoted by G2(π2) and depicted in Fig. 5(c).

Each elementary edge operation o corresponds to a single
vertex u ∈ C or a pair of vertices u, v ∈ C. In the following, we
will denote this subset of C corresponding to o by C(o). Thus,
C(o) is either a singleton containing one vertex or a subset of V
consisting of two vertices.

Next, we study the relationship between elementary edge
operations and controllability of (G(π);VL). We first show that
elementary edge operations preserve zero extension. This issue
is addressed in the following lemma.

Lemma 19: Let G(π) be a colored directed graph and C be a
coloring set. Let o represent an edge operation, and let G′(π′) =
G(π,C, o) be a derived graph with respect to C and o. Let W ∈
Wπ(G) be a weighted adjacency matrix, and let W ′ ∈ Wπ′(G′)
be the corresponding matrix associated with the same realization
of the colors. Let X ⊆ C \ C(o) and define X ′ := C(o) ∪X .
Then, interpreting C as the set of zero vertices, for any Y ⊆ V ,
we have X ′ z−→ Y in the weighted graph G(W ) if and only if
X ′ z−→ Y in the weighted graph G′(W ′).

Proof: By suitably relabeling the vertices, we may assume
that W has the form

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1,1 W1,2 . . . W1,6

W2,1 W2,2 . . . W2,6

W3,1 W3,2 . . . W3,6

W4,1 W4,2 . . . W4,6

W5,1 W5,2 . . . W5,6

W6,1 W6,2 . . . W6,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the first row block corresponds to the vertices indexed by
C(o), the second row block corresponds to the vertices indexed
by X , the third row block corresponds to the vertices indexed by
C \X ′, the fourth row block corresponds to the vertices indexed
by NV \C(C(o)), the fifth row block corresponds to the vertices
indexed by NV \C(X ′) \NV \C(C(o)), and the last row block
corresponds to the remaining white vertices. The column blocks
ofW result from the same labeling. Correspondingly, the matrix
W ′ must then be equal to

W ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1,1 W1,2 . . . W1,6

W2,1 W2,2 . . . W2,6

W3,1 W3,2 . . . W3,6

W ′
4,1 W4,2 . . . W4,6

W5,1 W5,2 . . . W5,6

W6,1 W6,2 . . . W6,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for some matrix W ′
4,1. Since the fourth and fifth row

blocks correspond to the vertices indexed by NV \C(C(o))
and NV \C(X ′) \NV \C(C(o)), respectively, it follows easily

that W5,1 = 0, W6,1 = 0, and W6,2 = 0. Consider the sub-
matrices WNV \C(X ′),X ′ = [W4,1

0
W4,2

W5,2
] and W ′

NV \C(X ′),X ′ =

[W
′
4,1

0
W4,2

W5,2
] of W and W ′, respectively. We then distinguish

two cases.
1) Suppose the edge operation o represents a color turn

operation. In that case, C(o) only contains one vertex;
in other words, both W4,1 and W ′

4,1 consist of only
one column. Hence, it follows that W ′

4,1 = αW4,1 for
a suitable nonzero real number α.

2) Suppose the edge operation o represents an edge removal
operation. In that case, C(o) contains two vertices, say u
and v, and both W4,1 and W ′

4,1 consist of two columns.
We may assume that u and v correspond to the first and
second columns of these matrices, respectively, and the
edges in Eu(v) are removed. This implies that

W ′
4,1 = W4,1

⎡
⎣1 −1

0 1

⎤
⎦ .

Clearly,WNV \C(X ′),X ′ andW ′
NV \C(X ′),X ′ are column equiva-

lent. Next, again assign variablesx1, . . . , xn to every vertex inV ,
where xi is equal to 0 if i ∈ C and otherwise undetermined. For
the vertex j ∈ C, we consider the balance equation (3). By the
fact that Wkj = 0 for all k ∈ V \ C with k /∈ NV \C({j}) and
NV \C({j}) ⊆ NV \C(X ′), the balance equation (3) is equiva-
lent to ∑

k∈NV \C(X ′)

xkWkj = 0. (11)

Again using the notation for the submatrix WNV \C(X ′),X ′ and
subvector xNV \C(X ′), we can rewrite the system of balance
equations (11) for j ∈ X ′ as

xT
NV \C(X ′)WNV \C(X ′),X ′ = 0. (12)

Similarly, for the graph G′(W ′), we obtain the following system
of balance equations for j ∈ X ′:

xT
NV \C(X ′)W

′
NV \C(X ′),X ′ = 0. (13)

Since W ′
NV \C(X ′),X ′ and WNV \C(X ′),X ′ are column equivalent,

the solution sets of (12) and (13) coincide. By definition of the
zero extension rule, we therefore have that, for any vertex set
Y , X ′ z−→ Y in G(W ) if and only if X ′ z−→ Y in G′(W ′). This
completes the proof. �

It follows from the previous that colored strong structural
controllability is preserved under elementary edge operations.
Indeed, we have the following.

Theorem 20: Let G(π) be a colored directed graph, VL ⊆ V
be a leader set, and o an elementary edge operation. LetG′(π′) =
G(π, VL, o) be a derived colored graph of G(π) with respect to
VL and o. Then, we have that (G(π);VL) is controllable if and
only if (G′(π′);VL) is controllable.

Proof: The proof follows from Lemmas 6 and 19. �
As an immediate consequence of Theorems 15 and 20, we see

that if the leader set VL of the original colored graph G(π) is a
zero forcing set for the derived graph G′(π′) = G(π, VL, o), then
(G(π);VL) is controllable. Obviously, this result can be readily
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extended to derived graphs obtained by applying not only one,
but a finite sequence of edge operations.

This immediately leads to the following sufficient graph-
theoretic condition for controllability of (G(π);VL).

Corollary 21: Let G(π) be a colored directed graph, and let
VL be a leader set. Let G′(π′) be a colored graph obtained
by applying finitely many elementary edge operations. Then,
(G(π), VL) is controllable if VL is a zero forcing set for G′(π′).

Example 22: We now apply Corollary 21 to the colored graph
of Example 16. We already saw that VL = {1, 2} is not a zero
forcing set, but we showed that we do have strong structural
controllability for this colored graph. This can now also be
shown graph theoretically by means of Corollary 21: the leader
setVL is a zero forcing set for the derived graph in Fig. 5(c), so the
original colored graph in Fig. 5(a) yields a controllable system.

By combining Theorem 20 and Corollary 14, we are now
in the position to establish yet another procedure for checking
controllability of a given colored graph (G(π);VL). First, dis-
tinguish the following two steps.

1) As the first step, apply the color change operation to
compute a derived set Dc(VL). If this derived set is equal
to V , we have controllability. If not, we cannot yet decide
whether we have controllability or not.

2) As a next step, then, apply an edge operation o to G(π)
to obtain G1(π1), where G1(π1) = G(π,Dc(VL), o) is a
derived graph of G(π) with coloring set Dc(VL) and edge
operation o.

By Theorem 20 and Corollary 14, it is straightforward
to verify that (G(π);VL) is controllable if and only if
(G1(π1);Dc(VL)) is controllable.

We can now repeat steps 1 and 2, applying them to G1(π1).
Successive and alternating application of these two steps trans-
forms the original leader set VL using several color change op-
erations associated with the several derived graphs appearing in
the process. After finitely many iterations, we thus arrive at a so-
called edge-operations-color-change derived set of VL, which
will be denoted by Dec(C). This set will remain unchanged
in case we again apply step 1 or step 2. Since controllability
is preserved, we arrive at the following theorem, which gives
yet another sufficient condition for colored strong structural
controllability.

Theorem 23: Let G(π) be a colored directed graph, and let
VL ⊆ V be a leader set. Let Dec(VL) be an edge-operations-
color-change derived set of VL. We then have that (G(π);VL) is
controllable if Dec(VL) = V .

Remark 24: Obviously, a derived set Dc(VL) of VL in G(π)
is always contained in an edge-operations-color-change derived
setDec(VL)ofVL. Hence, the condition in Theorem 23 is weaker
than the conditions in Theorem 15 and Corollary 21.

In the following example, we illustrate the application of
Theorem 23 to check controllability of a given colored graph
and leader set.

Example 25: Consider the colored graph G(π) = (V,E, π)
depicted in Fig. 6(a) with VL = {1, 2, 3} the leader set. To start
with, we compute a derived set Dc(VL) = {1, 2, 3, 4, 5, 6} of
VL in G(π), as depicted in Fig. 6(b), and denote it by D0. For
the vertices 5, 4 ∈ D0, in G(π), we have NV \D0

(6) = {8, 9} ⊆
NV \D0

(4). Since the edges (6, 8) and (6, 9) have the same color

Fig. 6. Example of application of Theorem 23. (a) Initial colored graph
G(π) = (V,E, π) with coloring set VL = {1, 2, 3}. Let G0(π0) = G(π).
(b) Compute a derived set Dc(VL) = {1, 2, 3, 4, 5, 6} of VL in G0(π0) and
set D0 = Dc(VL). (c) Derived colored graph G1(π1) = G0(π0,D0, o0)
with D0 = {1, 2, 3, 4, 5, 6} and o0 representing “turning colors of edges
(6, 8) and (6, 9) to c3 and removing edges (4, 8) and (4, 9).” (d) Com-
pute a derived set D1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} of D0 in the col-
ored graph G1(π1). (e) Derived colored graph G2(π2) = G1(π1,D1, o1)
with D1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} and o1 representing “removing edges
(8, 10) and (8, 11).” (f) Compute a derived set D2 = V of D1 in the
colored graph G2(π2). Return that (G(π);VL) is controllable.
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c1, their color can be changed to any arbitrary color. Here, we
change the colors of (6, 8) and (6, 9) to c3. Then, for any k ∈
NV \D0

(4), the two edges (4, k) and (6, k) have the same color
c3. Thus, we remove the edges in E4(6) = {(4, 8), (4, 9)}, and
we denote the above two edge operations by o0. In this way, we
obtain a derived colored graph G1(π1) = G(π,D0, o0) of G(π)
with respect to D0 and o0, that is depicted in Fig. 6(c). We pro-
ceed to compute a derived setDc(D0) = {1, 2, 3, 4, 5, 6, 7, 8, 9}
of D0 in G1(π1), as shown in Fig. 6(d), and denote this de-
rived set by D1. Since D1 �= V and D1 �= D0, the procedure
will continue. For the nodes 7, 8 ∈ D1 in the graph G1(π1),
we have NV \D1

(7) ⊆ NV \D1
(8), and for any k ∈ NV \D1

(7),
the two edges (7, k) and (8, k) have the same color. Thus,
we remove the edges in E7(8) = {(8, 10), (8, 11)} and denote
this operation by o1. We then obtain a derived colored graph
G2(π2) = G1(π1,D1, o1) of G1(π1) with respect to D1 and o1,
which is depicted in Fig. 6(e). Finally, we compute a derived set
Dc(D1) of D1 in G2(π2), as shown in Fig. 6(f). This derived set
is denoted by D2 and turns out to be equal to the original vertex
set V . Thus, we obtain that an edge-operations-color-change
derived set Dec(VL) is equal to V and conclude that (G(π);VL)
is controllable.

VI. CONCLUSION

In this article, we have studied strong structural controllabil-
ity of leader–follower networks. In contrast to existing work,
in which the nonzero off-diagonal entries of matrices in the
qualitative class are completely independent, in this article, we
have studied the general case that there are equality constraints
among these entries, in the sense that a priori given entries in
the system matrix are restricted to take arbitrary but identical
nonzero values. This has been formalized using the concept of
colored graph and by introducing the new concept of colored
strong structural controllability. In order to obtain conditions
for colored strong structural controllability of leader–follower
networks, we have introduced a new color change rule and a new
concept of zero forcing set. These have been used to formulate
a sufficient condition for controllability of the colored graph
with a given leader set. We have shown that this condition
is not necessary, by giving an example of a colored strong
structurally controllable colored graph and leader set, for which
our sufficient condition is not satisfied.

Motivated by this example, we have established the concept
of elementary edge operations on colored graphs. It has been
shown that these edge operations preserve colored strong struc-
tural controllability. Based on these elementary edge operations
and the color change rule, a second sufficient graph-theoretic
condition for colored strong structural controllability has been
provided.

Finally, we have established a condition for colored strong
structural controllability in terms of the new notion of edge-
operations-color-change derived set. This derived set is obtained
from the original leader set by applying edge operations and the
color change rule sequentially in an alternating manner. This
iterative procedure has been illustrated by means of an example.

The main new ideas of this article are a new color change
rule and the concept of elementary edge operations for colored
directed graphs. We have established several conditions for col-
ored strong structural controllability using these new concepts.
The conditions that we provided are not necessary, and finding
necessary and sufficient conditions is still an open problem.
Another open problem is to establish methods to characterize
strong structural controllability for the case that given entries in
the system matrices satisfy linear relations (instead of requiring
them to take identical values). For weak structural controllability,
this was studied in [30].

In this article, we have focused on finding graph-theoretic
conditions rather than providing suitable algorithms (see, e.g.,
[27]). Establishing an efficient algorithm to check colored strong
structural controllability could also be a future research problem.
Finally, other system-theoretic concepts like strong targeted
controllability [10], [35] and identifiability [36] for systems
defined on colored graphs are possible future research directions.

APPENDIX I
PROOF OF LEMMA 5

Proof: By the Hautus test [37], (G(W );VL) is controllable
if and only if [A− λI B] has full row rank for all A ∈ QW (G)
and all λ ∈ C with B = B(V ;VL) given by (2). Let V =
{1, 2, . . . , n}.

We first prove the “if” part. Suppose that VL is a balancing
set for G(W ). Without loss of generality, we may assume that
there is a chronological list of zero extensions

(C1
z−→ Y1, C2

z−→ Y2, . . . , Cs
z−→ Ys)

where, for r = 1, 2, . . . , s, Cr represents the current set of zero
vertices before the rth zero extension and Yr ⊆ V \ Cr, and
Cs ∪ Ys = V . Assign variables x1, x2, . . . , xn to every vertex
in V , with xi = 0 if i ∈ Cr and xi undetermined otherwise. To
every vertex j ∈ Cr, we then assign a balance equation given
by (3). By definition of the zero extension rule, we have the
following implications:

xT
V \Ci

WV \Ci,Ci
= 0 ⇒ xT

Yi
= 0 for i = 1, 2, . . . , s. (14)

For any A ∈ QW (G) and λ ∈ C, there exists a diagonal matrix
D ∈ Cn×n such that A− λI = W +D. It then follows imme-
diately that

(A− λI)V \Ci,Ci
= WV \Ci,Ci

for i = 1, 2, . . . , s.

Recalling (14), we have that

xT
V \Ci

(A− λI)V \Ci,Ci
= 0 ⇒ xT

Yi
= 0 for i = 1, 2, . . . , s.

Since xTB = 0 ⇒ xT
VL

= 0 and VL ∪ (
⋃s

j=1 Yj) = V , we then
have that

xT [A− λI B] = 0 ⇒ xT = 0

which implies that [A− λI B] has full row rank. Since the A
and λ are arbitrary, (G(W );VL) is controllable. Thus, we have
proved the “if” part.

To prove the converse, suppose that (G(W );VL) is control-
lable, while VL is not a balancing set. It follows immediately
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Fig. 7. Example of nonuniqueness of derived sets. (a) Colored di-
rected graph G(π). (b) Colored bipartite graph G.

that [A− λI B] has full row rank for all A ∈ QW (G) and
all λ ∈ C, with B = B(V ;VL) given by (2), and the derived
set D = Dz(VL) is not equal to V . Again assign variables
xi to the vertices i ∈ V such that xi = 0 if i ∈ D and xi is
undetermined otherwise. Let D′ = V \D. By definition of the
zero extension rule, we conclude that there exists a vector x such
that xD = 0, xD′ �= 0 and xTW = 0, where xD and xD′ are the
subvectors corresponding to the components in D and D′, re-
spectively. Recalling thatVL ⊆ D, it follows thatxT [W B] = 0.
This implies that the matrix [W B] does not have full row
rank. Thus, we have reached a contradiction, and the proof is
complete. �

APPENDIX II
EXAMPLE OF NONUNIQUENESS OF DERIVED SETS

Example 26: Consider the colored graph G(π) = (V,E, π)
depicted in Fig. 7(a). Take as coloring set C = {1, 2, 3, 4, 5}.
Consider the colored bipartite graph G = (X,Y,EXY , πXY )
associated with X = {1, 2, 3, 4} and Y = {6, 7, 8, 9}, as de-
picted in Fig. 7(b). It can be shown that there exists exactly
one equivalence class of perfect matchings in G with nonzero
signature. Since X ⊂ C and Y = NV \C(X), we have that

X
c−→ Y . After applying this force, we arrive at the derived set

D1(C) = V .
On the other hand, obviously, X1

c−→ Y1, with X1 = {5} and
Y1 = {6}. After applying this force, no other forces are possible.
Indeed, it can be verified that there does not exist a subset of
{1, 2, 3, 4, 5, 6} that forces any subset of {7, 8, 9}. In this way,
we arrive at the derived set D2(C) = {1, 2, 3, 4, 5, 6}.

We conclude that there exist two different derived sets inG(π)
with coloring set C. Thus, we have found an example for the
nonuniqueness of derived sets for a given colored graph and
coloring set.

REFERENCES

[1] M. E. Newman, “The structure and function of complex networks,” SIAM
Rev., vol. 45, no. 2, pp. 167–256, 2003.

[2] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks, vol. 33. Princeton, NJ, USA: Princeton Univ. Press, 2010.

[3] Y. Liu and A. L. Barabási, “Control principles of complex systems,” Rev.
Modern Phys., vol. 88, no. 3, 2016, Art. no. 035006.

[4] J. Ruths and D. Ruths, “Control profiles of complex networks,” Science,
vol. 343, no. 6177, pp. 1373–1376, 2014.

[5] H. G. Tanner, “On the controllability of nearest neighbor interconnec-
tions,” in Proc. IEEE Conf. Decis. Control, vol. 3, 2004, pp. 2467–2472.

[6] B. Liu, T. Chu, L. Wang, and G. Xie, “Controllability of a leader-follower
dynamic network with switching topology,” IEEE Trans. Autom. Control,
vol. 53, no. 4, pp. 1009–1013, May 2008.

[7] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of
multi-agent systems from a graph-theoretic perspective,” SIAM J. Control
Optim., vol. 48, no. 1, pp. 162–186, 2009.

[8] Y. Liu, J. J. Slotine, and A. L. Barabási, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.

[9] M. Egerstedt, S. Martini, M. Cao, M. K. Camlibel, and A. Bicchi, “In-
teracting with networks: How does structure relate to controllability in
single-leader, consensus networks?” IEEE Control Syst., vol. 32, no. 4,
pp. 66–73, Aug. 2012.

[10] H. J. van Waarde, M. K. Camlibel, and H. L. Trentelman, “A distance-based
approach to strong target control of dynamical networks,” IEEE Trans.
Autom. Control, vol. 62, no. 12, pp. 6266–6277, Dec. 2017.

[11] G. Notarstefano and G. Parlangeli, “Controllability and observability of
grid graphs via reduction and symmetries,” IEEE Trans. Autom. Control,
vol. 58, no. 7, pp. 1719–1731, Jul. 2013.

[12] M. Nabi-Abdolyousefi and M. Mesbahi, “On the controllability properties
of circulant networks,” IEEE Trans. Autom. Control, vol. 58, no. 12,
pp. 3179–3184, Dec. 2013.

[13] A. Chapman and M. Mesbahi, “On symmetry and controllability of multi-
agent systems,” in Proc. IEEE Conf. Decis. Control, 2014, pp. 625–630.

[14] C. Godsil and S. Severini, “Control by quantum dynamics on graphs,”
Phys. Rev. A, vol. 81, no. 5, 2010, Art. no. 052316.

[15] S. S. Mousavi and M. Haeri, “Controllability analysis of networks
through their topologies,” in Proc. IEEE Conf. Decis. Control, 2016,
pp. 4346–4351.

[16] S. Zhang, M. Cao, and M. K. Camlibel, “Upper and lower bounds for
controllable subspaces of networks of diffusively coupled agents,” IEEE
Trans. Autom. Control, vol. 59, no. 3, pp. 745–750, Mar. 2014.

[17] S. Zhang, M. K. Camlibel, and M. Cao, “Controllability of diffusively-
coupled multi-agent systems with general and distance regular coupling
topologies,” in Proc. IEEE Conf. Decis. Control/Eur. Control Conf., 2011,
pp. 759–764.

[18] Z. Yuan, C. Zhao, Z. Di, W.-X. Wang, and Y.-C. Lai, “Exact controllability
of complex networks,” Nature Commun., vol. 4, 2013, Art. no. 2447.

[19] Z. Yuan, C. Zhao, W.-X. Wang, Z. Di, and Y.-C. Lai, “Exact control-
lability of multiplex networks,” New J. Phys., vol. 16, no. 10, 2014,
Art. no. 103036.

[20] S. Nie, X. Wang, and B. Wang, “Effect of degree correlation on exact
controllability of multiplex networks,” Phys. A: Statist. Mech. Appl.,
vol. 436, pp. 98–102, 2015.

[21] J. Trumpf and H. L. Trentelman, “Controllability and stabilizability of
networks of linear systems,” IEEE Trans. Autom. Control, vol. 64, no. 8,
pp. 3391–3398, Aug. 2019.

[22] J. A. Torres and S. Roy, “Graph-theoretic characterisations of zeros for
the input–output dynamics of complex network processes,” Int. J. Control,
vol. 87, no. 5, pp. 940–950, 2014.

[23] C. T. Lin, “Structural controllability,” IEEE Trans. Autom. Control,
vol. AC-19, no. 3, pp. 201–208, Jun. 1974.

[24] H. Mayeda and T. Yamada, “Strong structural controllability,” SIAM J.
Control Optim., vol. 17, no. 1, pp. 123–138, 1979.

[25] A. Chapman and M. Mesbahi, “On strong structural controllability of
networked systems: A constrained matching approach,” in Proc. Amer.
Control Conf., 2013, pp. 6126–6131.

[26] N. Monshizadeh, S. Zhang, and M. K. Camlibel, “Zero forcing
sets and controllability of dynamical systems defined on graphs,”
IEEE Trans. Autom. Control, vol. 59, no. 9, pp. 2562–2567,
Sep. 2014.

[27] A. Weber, G. Reissig, and F. Svaricek, “A linear time algorithm to verify
strong structural controllability,” in Proc. IEEE Conf. Decis. Control, 2014,
pp. 5574–5580.

Authorized licensed use limited to: University of Groningen. Downloaded on March 09,2022 at 11:35:22 UTC from IEEE Xplore.  Restrictions apply. 



3990 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 10, OCTOBER 2020

[28] M. Trefois and J. C. Delvenne, “Zero forcing number, constrained match-
ings and strong structural controllability,” Linear Algebra Appl., vol. 484,
pp. 199–218, 2015.

[29] S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and strong
structural controllability of undirected networks,” IEEE Trans. Autom.
Control, vol. 63, no. 7, pp. 2234–2241, Jul. 2018.

[30] F. Liu and A. S. Morse, “A graphical characterization of structurally con-
trollable linear systems with dependent parameters,” IEEE Trans. Autom.
Control, vol. 64, no. 11, pp. 4484–4495, 2019.

[31] T. Menara, D. Bassett, and F. Pasqualetti, “Structural controllability
of symmetric networks,” IEEE Trans. Autom. Control, vol. 64, no. 9,
pp. 3740–3747, Sep. 2019.

[32] A. Chapman, M. Nabi-Abdolyousefi, and M. Mesbahi, “Controllability
and observability of network-of-networks via Cartesian products,” IEEE
Trans. Autom. Control, vol. 59, no. 10, pp. 2668–2679, Oct. 2014.

[33] J. Jia, H. L. Trentelman, W. Baar, and M. K. Camlibel, “A sufficient
condition for colored strong structural controllability of networks,” IFAC-
PapersOnLine, vol. 51, no. 23, pp. 16–21, 2018.

[34] F. Barioli et al., “Zero forcing sets and the minimum rank of graphs,”
Linear Algebra Appl., vol. 428, pp. 1628–1648, 2008.

[35] N. Monshizadeh, M. K. Camlibel, and H. L. Trentelman, “Strong targeted
controllability of dynamical networks,” in Proc. IEEE Conf. Decis. Con-
trol, 2015, pp. 4782–4787.

[36] H. J. van Waarde, P. Tesi, and M. K. Camlibel, “Identifiability of undirected
dynamical networks: A graph-theoretic approach,” IEEE Control Syst.
Lett., vol. 2, no. 4, pp. 683–688, Oct. 2018.

[37] M. L. J. Hautus, “Controllability and observability conditions of linear
autonomous systems,” Indagationes Math., vol. 72, no. 5, pp. 443–448,
1969.

Jiajia Jia was born in Xuzhou, China, in 1989.
He received the bachelor’s degree in automa-
tion from the Jiangsu University of Science and
Technology, Zhenjiang, China, in 2011, and the
master’s degree in control science and engi-
neering from the China University of Mining and
Technology, Xuzhou, China, in 2016. He is cur-
rently working toward the Ph.D. degree in sys-
tems and control with the University of Gronin-
gen, Groningen, The Netherlands.

His research interests include linear net-
worked systems, the geometric theory of linear systems, and graph
theory.

Harry L. Trentelman (F’14) received the Ph.D.
degree in mathematics from the University of
Groningen, Groningen, The Netherlands, in
1985.

He is currently a Professor of systems and
control with the Johann Bernoulli Institute for
Mathematics and Computer Science, Univer-
sity of Groningen. From 1991 to 2008, he was
an Associate Professor and, later, an Adjoint
Professor with the Johann Bernoulli Institute
for Mathematics and Computer Science. From

1985 to 1991, he was an Assistant Professor and, later, an Asso-
ciate Professor with the Mathematics Department, Eindhoven University
of Technology, Eindhoven, The Netherlands. He is a coauthor of the
textbook entitled Control Theory for Linear Systems (Berlin, Germany:
Springer, 2001). His research interests include the behavioral approach
to systems and control, robust control, model reduction, multidimen-
sional linear systems, hybrid systems, analysis, control and model re-
duction of networked systems, the geometric theory of linear systems,
and data-driven analysis and control.

Dr. Trentelman is a Senior Editor for the IEEE TRANSACTIONS ON
AUTOMATIC CONTROL. He was an Associate Editor for Automatica, the
SIAM Journal on Control and Optimization, and Systems and Control
Letters.

Wouter Baar was born in Heerenveen, The
Netherlands, in 1994. He received the bach-
elor’s degree in mathematics and the mas-
ter’s degree in applied mathematics in 2015
and 2018, respectively, from the University of
Groningen, Groningen, The Netherlands, where
he is currently working toward the Ph.D. degree
in systems and control.

His research interests include multiagent sys-
tems, graph theory, structural controllability, and
dynamics of complex networks.

M. Kanat Camlibel (M’05) received the Ph.D.
degree in mathematical theory of systems and
control from Tilburg University, Tilburg, The
Netherlands, in 2001.

He is currently an Associate Professor with
the Johann Bernoulli Institute for Mathematics
and Computer Science, University of Gronin-
gen, Groningen, The Netherlands, where he
was an Assistant Professor from 2007 to 2013.
From 2001 to 2007, he was a Postdoctoral Re-
searcher/Assistant Professor with the University

of Groningen, Tilburg University, and Eindhoven Technical University,
Eindhoven, The Netherlands. His research interests include differential
variational inequalities, complementarity problems, optimization, piece-
wise affine dynamical systems, switched linear systems, constrained
linear systems, multiagent systems, model reduction, geometric theory
of linear systems, and data-driven analysis and control.

Authorized licensed use limited to: University of Groningen. Downloaded on March 09,2022 at 11:35:22 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


