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Summary
This article investigates the problem of designing a distributed fault estimation
observer (DFEO) for a given linear time invariant observed system with distur-
bances. The DFEO consists of a network of local fault estimation observers. The
local observers at the network nodes are physically distributed and hence each
of them has access to only part of the output of the observed system. Each local
fault estimation observer communicates with its neighbors as prescribed by the
given network graph. Both full order and reduced order DFEO’s are presented in
this article. A systematic design procedure for DFEO gains is addressed, enabling
the estimation error dynamics to be robust against the effects of the external
process disturbance and the derivative of the fault. The numerical design of our
DFEO is amounts to solving an optimization problem with constraints of a bank
of linear matrix inequalities. Finally, we illustrate the effectiveness of the pro-
posed distributed fault estimation approach by means of a number of simulation
results.

K E Y W O R D S

distributed estimation, fault estimation, linear system observers, LMI’s

1 INTRODUCTION

Motivated by the requirement to improve the reliability of modern control systems, in the past two decades much research
has been devoted to the development of fault diagnosis and fault-tolerant control (FTC) (see, eg, References 1-3 and the
references therein). In general, fault diagnosis consists of fault detection and isolation (FDI) and fault estimation.2,4 In
practice, however, it turns out to be difficult to obtain accurate information on the size and shape of the faults using a
FDI strategy only. Fortunately, there exist fault estimation techniques that are capable of providing exact information on
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the size of the faults that occur, thereby helping to reconstruct the fault signals. As such, fault estimation is an impor-
tant ingredient in improving active FTC. So far, considerable research attention has been devoted to research on the fault
estimation problem, and in the literature a variety of fault estimation approaches have appeared (see, for instance, Ref-
erences 5-12). For example, both full order and reduced order fault estimation observers were proposed for discrete-time
Takagi-Sugeno fuzzy systems in Reference 7. A centralized fault estimation and fault-tolerant control method using an
augmented observer approach was studied in Reference 13. However, most of the fault estimation methods developed
up to now assume that measurement outputs are obtained from sensors that are centrally located, that is, all output
information is measured at a single node.

As the size and complexity of systems increase, several systems of practical interest are large-scale and/or physically
output distributed. For these systems, some fault diagnosis approaches are proposed in the literature. For example, in Ref-
erences 14, a robust centralized fault estimation method based on the sliding mode observer technique was proposed for
multiagent system exchanging relative information. Considering probabilistic performance, an FDI filter was designed
for high dimensional nonlinear systems in Reference 15. We note that the fault diagnosis and fault estimation schemes
proposed in the above literature are still in a centralized form. Some research on decentralized or distributed fault diag-
nosis and FTC has been carried out in the literature as well.16-19 In Reference 20 fault tolerant decentralized H∞ control
for symmetric composite systems was presented. In Reference 21, a decentralized FDI/FTC scheme was proposed for
a network system. A multilayer distributed FDI scheme was proposed for large-scale systems in Reference 22. In addi-
tion, a distributed fault detection approach for interconnected second-order systems was studied in Reference 23. The
original plant discussed in the above literature can be separated into several interconnected subsystems. Each fault detec-
tion/estimation filter or observer is designed for the corresponding subsystem and only estimates the local fault of the
subsystem. For a whole monitored system, a distributed FDI algorithm was proposed by using average-consensus tech-
niques in Reference 24. It should be pointed out that, for a single monitored system, in contrast with many existing results
on distributed FDI problems, distributed fault estimation problems have been little studied. In Reference 25, a distributed
fault estimation problem was studied in which each node collects its neighbor’s output measurements and constructs a
local fault estimation observer. Some results on fault diagnosis have been proposed based on multiple sensors. The actua-
tor fault was estimated by using interacting multiple models in Reference 26. A distributed integration method to achieve
fault monitoring based on Kalman filter data fusion was proposed in Reference 27. An adaptive approximation-based
distributed detection and isolation methodology was provided in Reference 28 for a class of nonlinear uncertain systems
with multiple sensor faults. A sensor FTC was proposed for Takagi-Sugeno systems by using a dedicated observer scheme
in Reference 29. Note that none of the methods in References 26-29 are able to detect the fault at the local nodes and they
all have a decision center to achieve fault diagnosis.

Motivated by the above, this article studies the distributed fault estimation problem for continuous-time linear time
invariant (LTI) systems. The measured output of the original plant is physically distributed and the proposed distributed
fault estimation observer (DFEO) consists of a network of fault estimators with a priori given, fixed network graph (see
Figure 1 for an illustration). Each fault estimator has access to only a portion of the output of the known LTI system,
and communicates with its neighboring estimators. Each of the local fault estimators at the nodes of the network should
estimate the size or amplitude of the faults occurring in the observed system. Such distributed fault estimation scheme
could also serve as a basis for distributed active FTC. Note that the local measurement output and monitored system may
be not observable, which pinpoints the challenge of distributed fault estimation. In this article, estimating all faults at
each node is different from existing results, in which each local estimator only estimates part of the faults in References
18,21. The main contributions of this article are the following.

1. In our article, the local fault estimation observers at each node simultaneously estimate the fault and state of the
entire system in the presence of disturbances, whereas in References 14,18,21 the local fault estimators only estimate
the fault of their corresponding subsystems. Different from References 26-29, in our article there is no decision center
to deal with fault diagnosis centrally.

2. Our article uses the observability decomposition in the context of distributed fault estimation. The estimation error
of the local observer in the observable part is stabilized by the local output, while the estimate in the unobservable
part reaches consensus with the other local observer’s estimates. Compared with Reference 25, we use a different
distributed fault estimation scheme and we do not impose the assumption of observability on the sensor network.
Only joint observability is required, while in Reference 25 local observability is assumed.

3. Both full order as well as reduced order DFEO’s with a given H∞ performance level are proposed in order to restrict
the effect of an extended disturbance, which consists of the unknown input disturbance and the derivative of the
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F I G U R E 1 Framework of distributed
fault estimation

fault. In addition, the existence of a suitable DFEO is expressed in terms of feasibility of linear matrix inequalities
(LMI’s).

The article is organized as follows. In Section 2 some preliminaries are given and the distributed fault estimation
problem is formulated. A full order DFEO is proposed and a design procedure is established in Section 3. Then, we design
a reduced order DFEO that estimates the state and the fault simultaneously in Section 4. In Section 5, simulation results
illustrate the effectiveness of our fault estimation scheme. Finally, Section 6 contains our conclusions.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Preliminaries

Notation: For a given matrix M, its transpose is denoted by MT and M−1 denotes its inverse. Sym(M) denotes the matrix
Sym(M):=M +MT . The rank of the matrix M is denoted by rank(M). If M has full column rank m then M† = (MTM)−1MT

denotes its left Moore-Penrose inverse. The identity matrix of dimension N will be denoted by IN . The vector 1N denotes
the N-dimensional column vector comprising of all ones. For a symmetric matrix P, P > 0 (P < 0) means that P is positive
(negative) definite. For a set {A1,A2,… ,AN} of matrices, we use diag{A1,A2,… ,AN} to denote the block diagonal matrix
with the Ai’s along the diagonal, and the matrix

[
AT

1 AT
2 … AT

N
]T is denoted by col(A1,A2,… ,AN). The Kronecker

product of the matrices M1 and M2 is denoted by M1 ⊗M2. For a linear map A ∶  →  , ker (A) ∶= {x ∈ |Ax = 0} and
im (A) ∶= {Ax|x ∈ } will denote the kernel and image of A, respectively. For a real inner product space  , if  is a
subspace of  , then ⟂ will denote the orthogonal complement of  . For a signal x, ||x||2 denotes the L2 norm of x, which
is defined as ||x||2 =

√
∫ ∞

0 xT(t)x(t)dt.
In this article, a weighted directed graph is denoted by  = ( ,  ,), where  = {1, 2, … ,N} is a finite nonempty

set of nodes,  ⊂  × is an edge set of ordered pairs of nodes, and  = [aij] ∈ RN×N denotes the adjacency matrix.
The (j,i)th entry aji is the weight associated with the edge (i,j). We have aji ≠ 0 if and only if (i, j) ∈  . Otherwise aji = 0.
An edge (i, j) ∈  designates that the information flows from node i to node j. A graph is said to be undirected if it has
the property that (i, j) ∈  implies (j, i) ∈  for all i, j ∈  . We will assume that the graph is simple, that is, aii = 0 for all
i ∈  . For an edge (i,j), node i is called the parent node, node j the child node and j is a neighbor of i. A directed path
from node i1 to il is a sequence of edges (ik,ik+ 1), k= 1,2,… ,l− 1 in the graph. A directed graph  is strongly connected if
between any pair of distinct nodes i and j in , there exists a directed path from i to j, i, j ∈  .

The Laplacian  = [lij] ∈ RN×N of  is defined as  ∶=  −, where the ith diagonal entry of the diagonal matrix 
is given by di =

∑N
j=1 aij. By construction,  has a zero eigenvalue with a corresponding eigenvector 1N (ie, 1N = 0N),

and if the graph is strongly connected, all the other eigenvalues lie in the open right-half complex plane.
For strongly connected graphs , we review the following lemma.

Lemma 1. 30-32 Assume  is a strongly connected directed graph. Then there exists a unique positive row vector r =[
r1, … , rN

]
such that r = 0 and r1N =N. Define R:= diag{r1,… ,rN}. Then ̂ ∶= R + TR is positive semidefinite,

1T
N̂ = 0 and ̂1N = 0.
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We note that R is the Laplacian of the balanced digraph obtained by adjusting the weights in the original graph. The
matrix ̂ is the Laplacian of the undirected graph obtained by taking the union of the edges and their reversed edges in
this balanced digraph. This undirected graph is called the mirror of this balanced graph.30

2.2 Problem formulation

In this article, we consider a continuous-time LTI system subject to actuator faults and disturbances represented by

ẋ = Ax + Bu + Ff + Ed

y =

⎡⎢⎢⎢⎢⎢⎣

y1

y2

⋮

yN

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

C1

C2

⋮

CN

⎤⎥⎥⎥⎥⎥⎦
x

(1)

where x ∈ Rn is the state, u ∈ Rr is the input, f ∈ Rq is the fault, d ∈ Rl is the disturbance, and y ∈ Rm is the aggregate
measurement output. The output vector y has been partitioned into subvectors yi ∈ Rmi , and the portion yi =Cix is the
only information that can be acquired by node i in the distributed fault estimator. Accordingly, we write C = col(C1,… ,CN)
with Ci ∈ Rmi×n and

∑N
i=1 mi = m. Here, note that the second equation of (1) models centrally located sensors in

the special case that the number of node is N = 1. We assume that F ∈ Rn×q is a full column rank matrix, that is,
rank(F)= q.

Here, a distributed estimator is developed to simultaneously estimate the system state and actuator fault. For this
purpose, we define

𝜁 =

[
x
f

]
, d =

[
d
ḟ

]
, Ā =

[
A F
0 0

]
, B =

[
B
0

]
, Ē =

[
E 0
0 Iq

]
, C =

[
C 0

]
. (2)

Thus, 𝜁 ∈ R
nq is an augmented state of dimension nq =n+ q and d ∈ R

lq is the extended disturbance of dimension
lq = l+ q. In this article, the disturbance d and the derivative ḟ of the fault are assumed to be in L2(R+), the space of square
integrable function on [0,∞). As a result, the signal d is in L2(R+) as well.

In terms of the notation introduced in (2), an augmented system is obtained as follows:

𝜁̇ = Ā𝜁 + Bu + Ēd
y = C𝜁.

(3)

Note that the augmented state vector 𝜁 is composed of the original system state x and the actuator fault f . As a result,
we get simultaneous estimation of the original system state and the actuator fault if we are able to construct a distributed
estimator estimating the augmented state vector 𝜁 and attenuating the effect of the extended disturbance d.

In this article, a standing assumption will be that the communication graph is a strongly connected directed graph.
Here, the graph is known and fixed. We will also assume that the pair (C, Ā) is observable. On the other hand, we will not
impose any observability condition on the system (1) with the ith measured output, in other words, (Ci, Ā) is not assumed
to be observable or detectable, where Ci =

[
Ci 0

]
.

Remark 1. It is noted that the pair (C, Ā) is observable if and only if the following rank condition holds for all 𝜆 being the
eigenvalues of A and 𝜆 = 0:33

rank

[
𝜆I − Ā

C

]
= rank

⎡⎢⎢⎢⎣
𝜆I − A −F

0 𝜆I
C 0

⎤⎥⎥⎥⎦ = n + q.
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In the next two sections, we will discuss robust full order and reduced order DFEO design, respectively. The state and
the fault are estimated simultaneously. In addition, the distributed estimators will ensure a given H∞ performance level
𝛽 > 0.

3 FULL ORDER DFEO DESIGN

In this section, we will design a full order DFEO with the given communication network for the system (3). The distributed
fault estimator will consist of N local fault estimators, and the local fault estimator at node i will have dynamics of the
following form:

̇̂
𝜁 i = Ā𝜁 i + Li(yi − Ci𝜁 i) + 𝛾riMi

N∑
j=1

aij(𝜁 j − 𝜁 i) + Bu, i ∈  , (4)

where 𝜁 i ∈ R
nq is the augmented state estimation of the local estimator at node i, aij is the (i,j)th entry of the adjacency

matrix  of the given network, ri is defined as in Lemma 1, 𝛾 ∈ R is a coupling gain to be designed, and Li ∈ R
nq×mi and

Mi ∈ R
nq×nq are gain matrices to be designed.

The objective of distributed fault estimation is to design a network of observers that cooperatively estimate the state
and the fault input signal of the system described by (1) in the presence of an unknown disturbance input.

To analyze and synthesize observer (4), we define the local estimation error of the ith observer as

ei ∶= 𝜁 i − 𝜁. (5)

By combining (3) and (4), we find that the error of the ith local observer is represented by

ėi = (Ā − LiCi)ei + 𝛾riMi

N∑
j=1

aij(ej − ei) + Ēd

efi = Cf ei

, i ∈  , (6)

where efi is the local estimation error of the fault, Cf =
[
0 Iq

]
.

Let e:= col(e1,e2,… ,eN) be the joint vector of errors and d̃ ∶= 1N ⊗ d be the joint vector of disturbances. Then we
obtain the global error system

ė = Λe − 𝛾M(R⊗ In)e − Ẽd̃
ef = C̃f e, (7)

where

Λ = diag{Ā − L1C1, … , Ā − LN CN},
M = diag{M1, … ,MN}, C̃f = diag{Cf , … ,Cf },
Ẽ = IN ⊗ Ē,

and R is as defined in Lemma 1. It is noted that d̃ is in L2(R+) since d is in L2(R+).
Here, we will discuss how to design gain matrices for the DFEO (4) so that the joint error converges to zero while

attenuating the effect of the extended disturbance signal on the estimation error. Note that we consider nonzero initial
condition and use a new H∞ performance motivated by Reference 34.

More specifically, we want to design a DFEO such that the following specifications hold:

(i) The error system (7) is internally stable, that is, it is asymptotically stable if the extended disturbance vector d̃ ≡ 0.
(ii) The error system (7) satisfies the given H∞ performance level 𝛽 > 0, that is, for all d̃ ∈ L2(R+), we have
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||ef ||2 ⩽
√

𝛽2||d̃||22 + V(e(0)), (8)

where V(e(0)) = eT(0)e(0) is a quadratic function of e(0) with  > 0 to be specified later.

In order to design a suitable DFEO, we will use an orthogonal transformation that yields the observability decompo-
sition for the pair (Ci, Ā). For i ∈  , let Ti be an orthogonal matrix, that is, a square matrix such that TiTT

i = Inq , such
that the matrices Ā and Ci are transformed by the state space transformation Ti into the form

TT
i ĀTi =

[
Aio 0
Air Aiu

]
, CiTi =

[
Cio 0

]
, (9)

where Aio ∈ Rvi×vi , Air ∈ R
(nq−vi)×vi , Aiu ∈ R

(nq−vi)×(nq−vi), Cio ∈ Rmi×vi , and nq − vi is the dimension of the unobservable
subspace of the pair (Ci, Ā). Clearly, by construction, the pair (Cio,Aio) is observable. In addition, if we partition

Ti =
[

Ti1 Ti2

]
, (10)

where Ti1 consists of the first vi columns of Ti, then the unobservable subspace is given by imTi2 = ker(Oi), where Oi =
col(Ci,CiĀ, … ,CiĀnq−1). Note that imTi1 = (ker(Oi))⟂.

Before presenting our main design procedure, we state the following lemmas, based on Lemma 1. Our first lemma is
standard:

Lemma 2. 35 For a strongly connected directed graph , zero is a simple eigenvalue of ̂ = R + TR introduced in Lemma
1. Furthermore, its eigenvalues can be ordered as 𝜆1 = 0 < 𝜆2 ⩽ 𝜆3 ⩽ … ⩽ 𝜆N . Furthermore, there exists an orthogonal
matrix U =

[ 1√
N

1N U2
]

, where U2 ∈ RN×(N−1), such that UT(R + TR)U = diag{0, 𝜆2, … , 𝜆N}.
Our second lemma was proven in Reference 36. The statement of the lemma is as follows:

Lemma 3. Let  be the Laplacian matrix associated with the strongly connected directed graph . For all gi > 0, i ∈  ,
there exists 𝜖 > 0 such that

TT((R + TR)⊗ In)T + G > 𝜖InN , (11)

where T = diag{T1,… ,TN}, R is defined as in Lemma 1, G= diag{G1,… ,GN}, and Gi =
[

giIvi 0
0 0nq−vi

]
, i ∈  .

To design a robust full order DFEO, we investigate the condition (i) first, that is, the requirement of internal stability.
Let ri > 0, i ∈  , be as in Lemma 1. Let gi > 0, i ∈  , and 𝜖 > 0 be such that (11) holds. We have the following lemma:

Lemma 4. There exist a coupling gain 𝛾 , gain matrices Li, and Mi, i ∈  , such that the error system (7) is internally stable
if there exist positive definite matrices io ∈ Rvi×vi ,iu ∈ R

(nq−vi)×(nq−vi), and a matrix i ∈ Rvi×pi such that[
Φi + 𝛾giIvi AT

iriu

iuAir Sym(iuAiu)

]
− 𝛾𝜖In < 0, ∀i ∈  , (12)

where Φi ∶= ioAio + AT
ioio −iCio − CT

ioT
i . In that case, suitable gain matrices in the distributed observer (4) can be

taken as

Li ∶= Ti

[
Lio

0

]
, Mi ∶= Ti

[−1
io 0
0 −1

iu

]
TT

i , (13)

where Lio = −1
io i, i ∈  .

Proof. Choose a candidate Lyapunov function for the error system (7)
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V(e1, … , eN) ∶=
N∑

i=1
eT

i iei, (14)

where i ∶= Ti

[io 0
0 iu

]
TT

i . Clearly then i > 0.

Taking d̃ ≡ 0, the time-derivative of V(e) is equal to

V̇(e) = eT(Λ + ΛT − 𝛾M(R⊗ In) − 𝛾(TR ⊗ In)MT)e, (15)

where  = diag{1, … ,N}. Since the matrix Mi in (13) is chosen as Mi = −1
i , we have M = −1. Hence, the

time-derivative of V becomes

V̇(e) = eT(Λ + ΛT − 𝛾(R + TR)⊗ In)e. (16)

On the other hand, we get the following inequality by (12) and (11) in Lemma 3.

diag{1, … ,N} − TT𝛾((R + TR)⊗ In)T < 0, (17)

where i =
[

Φi AT
iriuiuAir iuAiu + AT

iuiu

]
, i ∈  , with Φi as defined in the statement of the lemma.

By taking Lio = −1
io i and pre- and post- multiplying the inequality (17) with T and its transpose, we get

Λ + ΛT − 𝛾(R + TR)⊗ In < 0, (18)

which implies V̇(e) < 0. Hence the error system (7) is internally stable. ▪

Based on Lemma 4, we now give our main theorem on designing a robust full order DFEO. To attenuate the effect of
disturbances on the fault estimation error, the H∞ performance index 𝛽 can be minimized. A condition for its existence
is expressed in terms of feasibility of an optimization problem. Solutions to the optimization problem yield required gain
matrices. Let ri > 0, i ∈  , be as in Lemma 1. Let gi > 0, i ∈  , and 𝜖 > 0 be such that (11) holds. We have the following:

Theorem 1. There exist a coupling gain 𝛾 , gain matrices Li, and Mi, i ∈  , such that the error system (7) satisfies (i) and
(ii) if there exist positive definite matrices io ∈ Rvi×vi ,iu ∈ R

(nq−vi)×(nq−vi), and a matrix i ∈ Rvi×mi such that the following
optimization problem is feasible

min 𝛽2 s.t. (20) (19)

⎡⎢⎢⎢⎣
Φi + 𝛾giIvi AT

iriu ioTT
i1Ē

iuAir Sym(iuAiu) iuTT
i2Ē

ĒTTi1io ĒTTi2iu −𝛽2Ilq

⎤⎥⎥⎥⎦ +
[

TT
i CT

f Cf Ti − 𝛾𝜖Inq 0

0 0

]
< 0, ∀i ∈  , (20)

where Φi ∶= ioAio + AT
ioio −iCio − CT

ioT
i and Ti1,Ti2 are defined in (10). In that case, the gain matrices in the

distributed observer (4) can be taken as

Li ∶= Ti

[
Lio

0

]
, Mi ∶= Ti

[−1
io 0
0 −1

iu

]
TT

i , (21)

where Lio = −1
io i, i ∈  .

Proof. For condition (i), it is clear that the inequality (12) follows from inequality (20). Hence condition (i) is
satisfied.
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In order to check condition (ii), from (12) and (11) in Lemma 3, we obtain[
diag{1, … ,N} − TT𝛾((R + TR)⊗ In)T + TTC̃T

f C̃f T TTẼ
ẼTT −𝛽2INlq

]
< 0, (22)

where i =
[

Φi AT
iriuiuAir iuAiu + AT

iuiu

]
, i ∈  , with Φi as defined in the statement of the theorem.

By taking Lio = −1
io i and pre- and post- multiplying the inequality (22) with diag{T, INlq} and its transpose, we get[Λ + ΛT − 𝛾(R + TR)⊗ In + C̃T

f C̃f Ẽ
ẼT −𝛽2INlq

]
< 0. (23)

Now choose the same candidate Lyapunov function as in (14). By pre- and post- multiplying the inequality (23) with
[eT , d̃T] and its transpose, we have

V̇(e) < −eT
f ef + 𝛽2d̃Td̃. (24)

for any d̃ in L2(R+).
Under the internal stability condition, that is, V̇(e) < 0 and V(e) ⩾ 0 based on Lemma 4, it follows that e ∈ L2(R+) and

hence

∫
∞

0
eT

f (t)ef (t)dt + V(e(∞)) − V(e(0)) ⩽ 𝛽2 ∫
∞

0
d̃T(t)d̃(t)dt (25)

which implies

||ef ||22 ⩽ 𝛽2||d̃||22 + V(e(0)). (26)

We conclude that also condition (ii) is satisfied. ▪

Next, we will give a design algorithm based on the above lemmas and theorem. Let 𝛽 > 0. Assume that F has full
column rank, (C,A) is an observable pair and 0 is not a zero of the system (A,F,C). Assume that the graph  is a strongly
connected directed graph. Then a DFEO (4) that estimates the state and the fault simultaneously and attenuates the effect
of the extended disturbance can be designed using the following algorithm:

Algorithm 1:

1 Let

Ā =

[
A F
0 0

]
, Ci =

[
Ci 0

]
. (27)

2 For each i ∈  , choose an orthogonal matrix Ti such that

TT
i ĀTi =

[
Aio 0
Air Aiu

]
, CiTi =

[
Cio 0

]
(28)

with (Cio,Aio) observable.
3 Compute the positive row vector r =

[
r1, … , rN

]
such that r = 0 and r1N =N.

4 Put gi = 1, i ∈  and take 𝜖 > 0 such that (11) holds.
5 Solve the optimization problem (19) and get 𝛾 , io, iu, i.
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6 Define

Li ∶= Ti

[−1
io 
0

]
,Mi ∶= Ti

[−1
io 0
0 −1

iu

]
TT

i , i ∈  . (29)

7 Build the distributed estimator (4) where the gain matrices are obtained in the above steps. As a result, the estimates
of the state and fault are immediately given by

x̂i =
[

In 0
]
𝜁 i, f̂ i =

[
0 Iq

]
𝜁 i. (30)

Remark 2. In the special case that the communication graph among the observers is a connected undirected graph, we
have that r = 1T

N is the unique positive row vector such that r = 0 and r1N =N in Lemma 1. In the design procedure, we
can then take ri = 1 for all i ∈  .

4 REDUCED ORDER DFEO DESIGN

In the previous section, a full order DFEO design was presented to achieve robust distributed fault estimation. In order
to reduce the order of the local estimators and computations at each node, in this section we investigate how to obtain a
reduced order DFEO.

To design a reduced order DFEO, we make a full rank decomposition for each local augmented output matrix Ci, that
is, we decompose Ci = DiWi where Di ∈ Rmi×pi and Wi ∈ R

pi×nq have full column rank and row rank, respectively, and
pi = rank (Ci).

Since yi = Ci𝜁 , we have

ỹi ∶= D†
i yi = Wi𝜁, i ∈  , (31)

where ỹi ∈ Rpi represents a virtual local output and D†
i = (DT

i Di)−1DT
i denotes the Moore-Penrose left inverse, that is,

D†
i Di = Ipi .

Denote W = col(W1,W2,… ,W N ). Clearly, since by assumption (C, Ā) is observable, (W , Ā) is observable, but for i ∈  ,
(Wi, Ā) is not necessarily observable. We use an orthogonal transformation that yields the observability decomposition
for the pair (Wi, Ā). For i ∈  , let Ti be an orthogonal matrix such that the matrices Ā, Ē, and W i are transformed by the
state space transformation Ti into the following form:

TT
i ĀTi =

⎡⎢⎢⎢⎣
Ai11 Ai12 0
Ai21 Ai22 0
Ai31 Ai32 Aiu

⎤⎥⎥⎥⎦ , TT
i Ē =

⎡⎢⎢⎢⎣
Ēi1

Ēi2

Ēi3

⎤⎥⎥⎥⎦ , WiTi =
[

Ji 0 0
]
, (32)

where Ai11 ∈ Rpi×pi , Ai12 ∈ Rpi×(vi−pi), Ai21 ∈ R(vi−pi)×pi , Ai22 ∈ R(vi−pi)×(vi−pi), Ai31 ∈ R
(nq−vi)×pi , Ai32 ∈ R

(nq−vi)×(vi−pi), Aiu ∈
R

(nq−vi)×(nq−vi), Ēi1 ∈ R
(nq−vi)×lq , Ēi2 ∈ R

(nq−vi)×lq , Ēi3 ∈ R
(nq−vi)×lq , Ji ∈ Rpi×pi is a nonsingular matrix, and nq − vi is the

dimension of the unobservable subspace of the pair (Wi, Ā).
For the sake of brevity, we denote

Aio =

[
Ai11 Ai12

Ai21 Ai22

]
,Air =

[
Ai31 Ai32

]
,Wio =

[
Ji 0

]
, (33)

where Aio ∈ Rvi×vi , Air ∈ R
(nq−vi)×vi , Wio ∈ Rpi×vi . Clearly, by construction, the pair (W io,Aio) is observable. Furthermore,

it can be checked, for example, by using Hautus test, that the pair (Ai12,Ai22) is also observable. Since Ji is nonsingular,
then also the pair (JiAi12,Ai22) is observable.

Similarly, if we partition Ti =
[
Ti1 Ti2

]
, where Ti1 consists of the first vi columns of Ti, then the unobservable subspace

is given by imTi2 = ker(OWi), where OWi = col(Wi,WiĀ, … ,WiĀnq−1). Note that imTi1 = (ker(OWi))⟂.
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We will now design a reduced order DFEO with the given communication network for the system (3). The reduced
order DFEO will consist of N local fault estimators, and the local reduced order fault estimator at node i will have dynamics
of the following form

żi = Nizi + Liyi + Uiu + 𝛾riMi

N∑
j=1

aij(𝜁 j − 𝜁 i)

𝜁 i = Pizi + Qiyi

, i ∈  , (34)

where zi ∈ R
nq−pi is the state of local reduced order fault estimator, 𝜁 i ∈ R

nq is the estimate of the plant state and fault
at node i, aij is the (i,j)th entry of the adjacency matrix  of the given network, ri is defined as in Lemma 1, 𝛾 ∈ R is
a coupling gain to be designed, Ni ∈ R

(nq−pi)×(nq−pi), Li ∈ R
(nq−pi)×mi , Mi ∈ R

(nq−pi)×n, Ui ∈ R
(nq−pi)×r, Pi ∈ R

nq×(nq−pi) and
Qi ∈ R

nq×mi are gain matrices to be designed.
We now proceed with defining the gain matrices Pi and Qi in the output equation of (34). For i ∈  , we define Si ∈

R
nq×(nq−pi) and Ki ∈ R

nq×mi by

Si ∶=

[
0

Inq−pi

]
and Ki ∶=

⎡⎢⎢⎢⎣
J−1

i

Hi

0

⎤⎥⎥⎥⎦D†
i , (35)

where Hi ∈ R(vi−pi)×pi still needs to be designed. We denote

Tis ∶= TiSi (36)

as the nq × (nq − pi) matrix consisting of the last nq − pi columns of the orthogonal matrix Ti. Next define

Pi ∶= Tis and Qi ∶= TiKi. (37)

To analyze and synthesize a local fault estimator (34), we define the local estimation error of the ith fault
estimator as

ei ∶= 𝜁 i − 𝜁. (38)

Combining (3) and (34) yields the following error equation

ėi = Piżi + Qiẏi − 𝜁̇

= Tisżi + TiKiẏi − 𝜁̇

= TiSi(Nizi + Liyi + Uiu + 𝛾riMi

N∑
j=1

aij(𝜁 j − 𝜁 i)) + (TiKiCi − I)(Ā𝜁 + Bu + Ēd)

= TiSi(NiST
i (T

T
i ei − Kiyi + TT

i x) + Liyi + Uiu + 𝛾riMi

N∑
j=1

aij(x̂j − x̂i))

+ (TiKiCi − I)(Ā𝜁 + Bu + Ēd)

= TiSiNiST
i TT

i ei + 𝛾riTiSiMi

N∑
j=1

aij(ej − ei)

+ Ti((SiLi − SiNiST
i Ki)DiWiTi + SiNiST

i + (KiDiWiTi − I)TT
i ĀTi)TT

i 𝜁

+ Ti(SiUi + (KiDiWiTi − I)TT
i B)u + (TiKiCi − I)Ēd. (39)
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It is required that the right-hand side of the differential equation (39) does not depend on the augmented state 𝜁 and
the input u. Hence the coefficient matrices to be defined should be such that the following equations are satisfied

(SiLi − SiNiS†
i Ki)DiWiTi + SiNiS†

i + (KiDiWiTi − I)TT
i ATi = 0. (40)

SiUi + (KiDiWiTi − I)TT
i B = 0. (41)

It is checked by straightforward verification that (40) and (41) are achieved by choosing

Ni =

[
Ai22 − HiJiAi12 0

Ai32 Aiu

]
, (42)

Li =

[
Ai21 − HiJiAi11

Ai31

]
J−1

i D†
i + NiS†

i Ki, (43)

Ui =

[
−HiJi Ivi−qi 0

0 0 Inq−vi

]
TT

i B. (44)

Then the local error ei satisfied the following differential equation

ėi = TiSiNiS†
i TT

i ei + 𝛾riTiSiMi

N∑
j=1

aij(ej − ei) + (TiKiCi − I)Ēd

efi = Cf ei

, i ∈  . (45)

where efi is the local estimation error of the fault, Cf =
[
0 Iq

]
.

Let e:= col(e1,e2,… ,eN) be the joint vector of errors and d̃ ∶= 1N ⊗ d be the joint vector of disturbances. The joint
error vector e satisfies

ė = (TsÑTT
s − 𝛾TsM(R⊗ In))e + Ẽd̃

ef = C̃f e, (46)

where

Ts ∶= diag{T1s, … ,TNs}, C̃f = diag{Cf , … ,Cf }, (47)

M = diag{M1, … ,MN}, Ñ = diag{N1, … ,NN}, (48)

Ẽ = diag{(T1K1C1 − I)Ē, … , (TN KN CN − I)Ē}, (49)

and R is as defined in Lemma 1.
It can be shown that imTs is an invariant subspace for the differential Equation (46) in the sense that if e(0)∈ imTs,

then for each d̃ we have e(t)∈ imTs for all t. Even more, it can be shown that each feasible global error trajectory e lives
in the subspace imTs. This fact was proven in Reference 37 and will be stated as a lemma here:

Lemma 5. Assume that the gain matrices Pi, Qi, Ni, Li, and Ui are given by (37), (42), (43), and (44). Let e:= col(e1,e2,… ,eN)
be the joint vector of errors, with for i ∈  the local error equal to ei = 𝜁 i − 𝜁 , where 𝜁 is a trajectory of the plant (3) and 𝜁 i
satisfies (34). Then e(t)∈ imTs for all t ∈ R.

Thus, we can conclude that each feasible global error trajectory e satisfies the differential equation (46) restricted to
its invariant subspace imTs. Therefore, in the sequel we will study the restriction of (46) to the invariant subspace imTs.

The objective of the reduced order DFEO design is similar to the full order DFEO mentioned before. We want to design
a reduced order DFEO such that the following specifications hold:
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(i) The error system (46) restricted to imTs is internally stable, that is, if the extended disturbance vector d̃ ≡ 0 then for
each initial condition e(0)∈ imTs we have e(t)→ 0 as t tends to ∞.

(ii) The error system (46) restricted to imTs satisfies the given H∞ performance level 𝛽 > 0, that is, for all d̃ ∈ L2(R+), we
have

||ef ||2 ⩽
√

𝛽2||d̃||22 + V(e(0)), (50)

where V(e(0)) = eT(0)e(0) is a quadratic function of e(0) with  > 0 to be specified later.

Remark 3. Note that the fault estimation performance may not be satisfactory for high-frequency fault estimation. This
is due to the fact that the joint disturbance d̃ in the H∞ performances (8) and (50) includes the variation of the fault.

We will now first discuss the condition (i). Let ri > 0, i ∈  , be as in Lemma 1. Let gi > 0, i ∈  , and 𝜖 > 0 be such
that (11) holds. We have the following lemma:

Lemma 6. There exist a coupling gain 𝛾 , gain matrices Ni, Li, Mi, Ui, Pi, and Qi, i ∈  , such that such that the error system
(46) restricted to imTs is internally stable if there exist positive definite matrices ie ∈ R(vi−pi)×(vi−pi),iu ∈ R

(nq−vi)×(nq−vi), and
a matrix  ∈ R(vi−pi)×pi such that[

Φi + 𝛾giInq−pi AT
i32iu

iuAi32 Sym(iuAiu)

]
− 𝛾𝜖Inq−pi < 0, ∀i ∈  , (51)

where Φi ∶= ieAi22 + AT
i22ie −iJiAi12 − AT

i12JT
i T

i . In that case, suitable gain matrices in the reduced order DFEO (34)
can be taken as

Ki ∶=
⎡⎢⎢⎢⎣
J−1

i

Hi

0

⎤⎥⎥⎥⎦D†
i , Mi ∶=

[−1
ie 0
0 −1

iu

]
TT

is , Ni ∶=

[
Ai22 − HiJiAi12 0

Ai32 Aiu

]
, (52)

Li ∶=

[
Ai21 − HiJiAi11

Ai31

]
J−1

i D†
i + NiS†

i Ki, (53)

Ui =

[
−HiJi Ivi−qi 0

0 0 Inq−vi

]
TT

i B, (54)

Pi ∶= Tis, Qi ∶= TiKi, (55)

where Hi = −1
ie i, i ∈  .

Proof. Choose a candidate Lyapunov function for the error system (46) restricted to imTs

V(e1, … , eN) ∶=
N∑

i=1
eT

i iei, (56)

where i ∶= Ti

[Ipi 0 0
0 ie 0
0 0 iu

]
TT

i . Clearly then i > 0.

Taking d̃ ≡ 0, the time-derivative of V(e) is equal to

V̇(e) = eT(Λ + ΛT − 𝛾TSM(R⊗ In) − 𝛾(TR ⊗ In)MTSTTT)e, (57)

where  = diag{1, … ,N} and Λ = TsÑTT
s .

Substituting Mi ∶=
[−1

ie 0
0 −1

iu

]
TT

is into (57), the time-derivative of V becomes
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V̇(e) = eT(Λ + ΛT − 𝛾TsTT
s (R⊗ In) − 𝛾(TR ⊗ In)TT

s Ts)e, (58)

where Ts = diag{T1s,… ,TNs}.
On the other hand, we get the following inequality by (51) and (11) in Lemma 3.

diag{1, … ,N} − TT
s 𝛾((R + TR)⊗ In)Ts < 0, (59)

where i =
[

Φi AT
i32iuiuAi32 iuAiu + AT

iuiu

]
, i ∈  , with Φi as defined in the statement of the lemma.

By substituting Hi = −1
ie i into the inequality (59), we get

TT
s (Λ + ΛT − 𝛾TsTT

s (R⊗ In) − 𝛾(TR ⊗ In)TsTT
s )Ts < 0. (60)

Since we have restricted the dynamics to the invariant subspace imTs, we have that e can be represented as e=Tsz for
some function z. Thus, we get

V̇(e) = eT(Λ + ΛT − 𝛾TsTT
s (R⊗ In) − 𝛾(TR ⊗ In)TsTT

s )e
= zTTT

s (Λ + ΛT − 𝛾TsTT
s (R⊗ In) − 𝛾(TR ⊗ In)TsTT

s )Tsz,

and therefore V̇(e(t)) < 0 whenever e(t)≠ 0.
Hence the solutions of the error system (46) restricted to imTs is internally stable. ▪

Based on Lemma 6, we now give our main theorem on designing a reduced order DFEO. Similarly, the H∞ perfor-
mance index 𝛽 is minimized. A sufficient condition for its existence is expressed in terms of feasibility of an optimization
problem. Solutions to the optimization problem yield required gain matrices. Let ri > 0, i ∈  , be as in Lemma 1. Let
gi > 0, i ∈  , and 𝜖 > 0 be such that (11) holds. We have the following theorem.

Theorem 2. There exist a coupling gain 𝛾 , gain matrices Ni, Li, Mi, Ui, Pi, and Qi, i ∈  , such that the error system (46)
restricted to imTs satisfies (i) and (ii) if there exist positive definite matrices ie ∈ R(vi−pi)×(vi−pi),iu ∈ R

(nq−vi)×(nq−vi), and a
matrix i ∈ R(vi−pi)×pi for all i ∈  such that the following optimization problem is feasible

min 𝛽2 s.t. (62) (61)

⎡⎢⎢⎢⎣
Φi + 𝛾giIvi−pi AT

i32iu iJiĒi1 − ieĒi2

iuAi32 Sym(iuAiu) iuĒi3

ĒT
i1JT

i T
i − ĒT

i2ie ĒT
i3iu −𝛽2Ilq

⎤⎥⎥⎥⎦ +
[

TT
is CT

f Cf Tis − 𝛾𝜖Inq−pi 0

0 0

]
< 0, (62)

where Φi ∶= ieAi22 + AT
i22ie −iJiAi12 − AT

i12JT
i T

i . In that case, suitable gain matrices in the reduced order DFEO (34)
can be taken as

Ki ∶=
⎡⎢⎢⎢⎣
J−1

i

Hi

0

⎤⎥⎥⎥⎦D†
i , Mi ∶=

[−1
ie 0
0 −1

iu

]
TT

is , Ni ∶=

[
Ai22 − HiJiAi12 0

Ai32 Aiu

]
, (63)

Li ∶=

[
Ai21 − HiJiAi11

Ai31

]
J−1

i D†
i + NiS†

i Ki, (64)

Ui =

[
−HiJi Ivi−qi 0

0 0 Inq−vi

]
TT

i B, (65)

Pi ∶= Tis, Qi ∶= TiKi, (66)

where Hi = −1
ie i, i ∈  .
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Proof. For condition (i), it is clear that the inequality (51) follows from inequality (62). Hence condition (i) is satisfied.
We take the same candidate Lyapunov function (56) in Lemma 6 for the error system (46).
The time-derivative of V(e) is

V̇(e) = eT(TsÑTT
s + TsÑ

TTT
s  − 𝛾TsM(R⊗ In) − 𝛾(TR ⊗ In)MTTT

s )e
+ eTẼd̃ + d̃TẼTe

(67)

with Ts, M, and N the block diagonal versions of the Tis, Mi, and Ni as defined by (47) and (48). By substituting Mi ∶=[−1
ie 0
0 −1

iu

]
TT

is into (67), the time-derivative of V(e) becomes

V̇(e) = eTΛe + eTẼd̃ + d̃TẼTe, (68)

where we have defined

Λ ∶= TsÑTT
s + TsÑ

TTT
s  − 𝛾TsTT

s (R⊗ In) − 𝛾(TR ⊗ In)TT
s Ts.

On the other hand, by combining (62) with (11) in Lemma 3 it can be verified that

diag{1, … ,N} − TT
s 𝛾((R + TR)⊗ In)Ts +

1
𝛽2 diag{Ψ1, … ,ΨN} < 0, (69)

where

Ψi =

[ iJiĒi1 − ieĒi2

iuĒi3

][
ĒT

i1JT
i T

i − ĒT
i2ie ĒT

i3iu

]
, i ∈  ,

i ∶=

[
Φi AT

i32Piu

iuAi32 iuAiu + AT
iuiu

]
+ TT

is CT
f Cf Tis, i ∈  ,

and Φi as defined in the statement of the theorem.
Recall that we have defined Hi ∶= −1

ie i. Hence i = ieHi. By substituting this into the expression for Φi and Ψi,
we can check that

i = TT
isiTisNi + NT

i TT
isiTis + TT

is CT
f Cf Tis,

diag{Ψ1, … ,ΨN} = TT
s ẼẼTTs.

Substituting these into the inequality (59), using that TT
s Ts is the identity matrix, we get

TT
s (TsÑTT

s + TsÑ
TTT

s  − 𝛾TsTT
s (R⊗ In) − 𝛾(TR ⊗ In)TsTT

s + C̃T
f C̃f +

1
𝛽2 ẼẼT)Ts < 0,

so, in other words, [
Ts 0
0 INlq

]T [
Λ + C̃T

f C̃f Ẽ
ẼT 𝛽2INlq

][
Ts 0
0 INlq

]
< 0. (70)

By taking the gain matrices (63), (64), (65), and (66), the global error e(t) satisfies the differential Equation (46).
Moreover, we have e(t)∈ imTs for all t ∈ R. Hence e can be represented as e=Tsz for some function z. Thus, we get

V̇(e) + eTe + 𝛽2d̃Td̃ = eTΛe + eTẼd̃ + d̃TẼTe + eTe + 𝛽2d̃Td̃
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=

[
Tsz
d̃

]T [
Λ + C̃T

f C̃f Ẽ
ẼT 𝛽2INlq

][
Tsz
d̃

]
,

and therefore

V̇(e) + eT
f ef − 𝛽2d̃Td̃ < 0. (71)

Under the internal stability condition, that is, V̇(e) < 0 and V(e) ⩾ 0 based on Lemma 6, it follows that e ∈ L2(R+) and
hence

∫
∞

0
eT

f (t)ef (t)dt + V(e(∞)) − V(e(0)) ⩽ 𝛽2 ∫
∞

0
d̃T(t)d̃(t)dt (72)

which implies

||ef ||22 ⩽ 𝛽2||d̃||22 + V(e(0)). (73)

We conclude that also condition (ii) is satisfied. ▪

Next, we will give a conceptual algorithm to compute a reduced order DFEO based on the above lemmas and theorem.
Let 𝛽 > 0. Assume that F has full column rank, (C,A) is an observable pair and 0 is not a zero of the system (A,F,C).
Assume the graph  is a strongly connected directed graph. Then a reduced order DFEO (34) that estimates the state
and the fault simultaneously and attenuates the effect of the extended disturbance can be computed using the following
algorithm:

Algorithm: 2

1 Let

Ā =

[
A F
0 0

]
, B =

[
B
0

]
, Ē =

[
E 0
0 Iq

]
, Ci =

[
Ci 0

]
. (74)

2 For each i ∈  , make a full rank decomposition Ci = DiWi where Di ∈ Rmi×pi and Wi ∈ Rpi×n have full column rank
and row rank, respectively.

3 For each i ∈  , choose an orthogonal matrix Ti such that

TT
i ĀTi =

⎡⎢⎢⎢⎣
Ai11 Ai12 0
Ai21 Ai22 0
Ai31 Ai32 Aiu

⎤⎥⎥⎥⎦ , TT
i Ē =

⎡⎢⎢⎢⎣
Ēi1

Ēi2

Ēi3

⎤⎥⎥⎥⎦ , WiTi =
[

Ji 0 0
]

(75)

with the pair
([

Ji 0
]
,

[
Ai11 Ai12
Ai21 Ai22

])
observable and Ji nonsingular. Then (JiAi12,Ai22) is also observable.

4 Compute the positive row vector r =
[
r1, … , rN

]
such that r = 0 and r1N =N.

5 Put gi = 1, i ∈  and take 𝜖 > 0 such that (11) holds.
6 Solve the optimization problem (61) and get 𝛾 , ie, iu, i.
7 Define

Hi ∶= −1
ie i, Ki ∶=

⎡⎢⎢⎢⎣
J−1

i

Hi

0

⎤⎥⎥⎥⎦D†
i , Si ∶=

[
0

Inq−pi

]
,Tis ∶= TiSi, (76)
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Li ∶=

[
Ai21 − HiJiAi11

Ai31

]
J−1

i D†
i + NiST

i Ki, Ui ∶=

[
−HiJi Ivi−qi 0

0 0 Inq−vi

]
TT

i B, (77)

Mi ∶=

[−1
ie 0
0 −1

iu

]
TT

is , Ni ∶=

[
Ai22 − HiJiAi12 0

Ai32 Aiu

]
, (78)

Pi ∶= Tis, Qi ∶= TiKi. (79)

8 Build the reduce order distributed estimator (34) where the gain matrices are obtained in the above steps. As a result,
the estimates of the state and fault are immediately given by

x̂i =
[

In 0
]
𝜁 i, f̂ i =

[
0 Iq

]
𝜁 i. (80)

Remark 4. In the special case that C has full row rank m, all local output matrices Ci have full row rank mi as well, so
pi =mi for all i ∈  . In this case our reduced order DFEO has order Nnq −m. In Algorithm 2, step 1 can be skipped since
Wi = Ci and Di = Imi .

Remark 5. Another special case occurs if vi = pi for some ith node, which means that ker (Ci) coincides with the unob-
servable subspace of (Ci, Ā). In this case, the second block column and row in the transformation (32) are void, so in
particular Ai12, Ai22, Ai32, Ai21, and Ēi2 do not appear. The inequality (62) in Theorem 2 reduces to:[

Sym(iuAiu) − 𝛾𝜖Inq−vi iuĒ3

ĒT
3 iu −𝛽2Ilq

]
+

[
TT

is CT
f Cf Tis 0

0 0

]
< 0, ∀i ∈  . (81)

The gain matrices in the local fault estimator (34) at node i are then given by

Ni ∶= Aiu, Li ∶= Ai31J−1
i D†

i , Mi ∶= TT
is , Pi ∶= Tis, Qi ∶= TiKi, Ki ∶=

[
J−1

i

0

]
D†

i , Ui ∶= TT
is B. (82)

Remark 6. For both full order and reduced order DFEO’s, if there is no fault, that is, f = 0, the DFEO reduces to a robust
distributed observer that estimates the original state in the presence of disturbances. Furthermore, if there are no fault
and disturbance, the distributed estimator reduces to an ordinary distributed observer studied in References 36,37.

5 SIMULATIONS

In this section, we study a four-tank system borrowed from References 38,39 to show the effectiveness of the proposed
approaches to design robust full order and reduced order DFEO’s, respectively. A schematic diagram of the plant is shown
in Figure 2. As inputs, water is delivered to the upper tanks, 1 and 3, whose levels are coupled through a connection pipe.

System description:
The coupled-tanks system admits the linear model (1), around the equilibrium point water level in the tanks

h0 = [1017814]T(cm) and voltages applied to the pumps u0 = [32]T (V). The coefficient matrices are given by

A =

⎡⎢⎢⎢⎢⎢⎣

−0.0540 0 0.0343 0
0.0286 −0.0205 0 0
0.0243 0 −0.0355 0

0 0 0.0211 −0.0310

⎤⎥⎥⎥⎥⎥⎦
, B = F =

⎡⎢⎢⎢⎢⎢⎣

0.2918 0
0 0
0 0.2557
0 0

⎤⎥⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

C1

C2

C3

C4

⎤⎥⎥⎥⎥⎥⎦
, E =

⎡⎢⎢⎢⎢⎢⎣

0
0.1
0

0.1

⎤⎥⎥⎥⎥⎥⎦
.
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F I G U R E 2 A diagram of four-tank system,
assuming a node estimator attached to every tank.
The dotted lines represent the communication links
[Colour figure can be viewed at
wileyonlinelibrary.com]

In our example, we will consider actuator additive faults. For a four-tank system, the control command acts on the
actuator-pump. The additive actuator fault is an offset of the pump action during the process. The offset may be a constant
or time-varying value in practice. The offset is one of the additive actuator faults. Such faults usually occur in the input
channel. Therefore, the fault distribution matrix is assumed to be F =B.

A network with four agents is considered, each one labeled from 1 to 4 according to the number of the
tank whose level is measured. As depicted in Figure 2, the communication network among measurement nodes
is represented as red dotted graph. The digraph is strongly connected. The Laplacian matrix of this graph is
given by

 =

⎡⎢⎢⎢⎢⎢⎣

2 −1 0 −1
0 1 −1 0
−1 −1 2 0
−1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
For our simulations, we take the following actuator faults:

f (t) =
⎧⎪⎨⎪⎩
[
0 0

]T
0 ⩽ t < 300[

5 4 + sin(0.03(t − 450))
]T

300 ⩽ t ⩽ 1000
(83)

where the time units are seconds. The two actuator faults are injected at t = 300s.

Remark 7. Note that the faults considered in the example are a constant fault and a sinusoid fault, respectively. The
injected sinusoid is a low frequency signal. It is not unreasonable to take a low frequency fault signal in our context of
the tank system since the response of process control systems is usually slow, and therefore the faults in practice usually
are in the low frequency domain.

It can be verified that (Ci, Ā) is not observable at any of the individual nodes. Obviously, (C, Ā) is observable by checking
the rank condition in Remark 1. In the following we will compute robust full order and reduced order DFEO’s using
Algorithm 1 and Algorithm 2, respectively.

Full order DFEO design: We have computed a full order DFEO using Algorithm 1. The optimal H∞ performance index
is calculated as 𝛽 = 0.5638. The fault estimator gain matrices are calculated by using the YALMIP toolbox in MATLAB.
The observer parameters are given as

http://wileyonlinelibrary.com
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L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8403
0

−0.1769
0

1.5846
2.6161

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.8324
1.0181
−0.3034

0
5.6057
6.9316

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0129
0

0.8320
0

0.7722
1.3684

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1888
0

10.1303
1.0328
1.2941
4.5063

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0693 0 −0.0078 0 0.0727 0.1174
0 10.6738 0.2993 −0.3454 −0.0352 0.0415

−0.0078 0.2993 203.6346 16.6452 −23.9621 28.0568
0 −0.3454 16.6452 16.6401 −1.9566 2.3109

0.0727 −0.0352 −23.9621 −1.9566 3.0350 −2.9289
0.1174 0.0415 28.0568 2.3109 −2.9289 5.7788

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.2977 0.5716 −0.2185 0 3.7851 4.7787
0.5716 0.0682 −0.0188 0 0.3449 0.4273
−0.2185 −0.0188 303.2002 14.6812 −35.7879 41.7448

0 0 14.6812 16.6799 −1.7257 2.0383
3.7851 0.3449 −35.7879 −1.7257 6.6438 −1.7790
4.7787 0.4273 41.7448 2.0383 −1.7790 11.0160

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

104.5679 29.8460 −0.0006 −0.0038 19.2587 −9.9403
29.8460 38.2941 0 0.0241 5.5232 −2.8364
−0.0006 0 0.0703 0 0.0380 0.0681
−0.0038 0.0241 0 0.0532 −0.0007 0.0004
19.2587 5.5232 0.0380 −0.0007 4.1305 −1.7092
−9.9403 −2.8364 0.0681 0.0004 −1.7092 1.1495

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

113.2378 29.0144 0.1451 0.0143 20.8905 −10.6930
29.0144 37.9140 0 0 5.3694 −2.7573
0.1451 0 8.1872 0.7318 1.2002 3.8636
0.0143 0 0.7318 0.0832 0.1001 0.3454

20.8905 5.3694 1.2002 0.1001 4.5611 −1.3098
−10.6930 −2.7573 3.8636 0.3454 −1.3098 3.0509

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For this simulations, the disturbance is assumed to be d(t) = 0.3 sin(t)e−0.01t, which belongs to L2(R+).
Applying the corresponding distributed fault estimator (4), we get simulated curves of the faults and their estimates.

The two actuator faults occur at t = 300. Figures 3 and 4 present the faults and their estimates at each node. The curves
show that the fault is estimated successfully.

Figures 5 and 6 show the estimation errors of the states. In addition, Figure 7 presents the estimation errors of the two
faults. It can be seen that all the errors tend to zero as time runs off to infinity. The estimation error results show that the
effect of the joint disturbance is attenuated.

Reduced order DFEO design: We have computed a reduced order DFEO following Algorithm 2. Similarly, the optimal
H∞ performance index is calculated as 𝛽 = 0.5638. The observer parameters are given as
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L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2.2165
−1.8806
0.5767
0.0006
−0.1202

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−9.8693
−12.4450
−10.4420

0.0059
4.3914

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2.5336
−1.0933
−0.3845
0.0211
0.0687

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−8.5797
−9.5757
−3.8644
−2.6839
0.2735

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.0013 0 0.1309 0.1011
0 0 −0.0903 0 0.1134 0.7465
0 0.0307 102.8003 6.5714 −12.0838 14.2722
0 0.0047 6.6785 3.4860 −0.7850 0.9272
0 0.0459 −26.6726 −1.7013 3.1353 −3.7031

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.2652 0 0.0029 0 0.2143 0.1603
0.2132 0 0.0040 0 0.3204 0.2427
0.1618 0 −0.0878 0 0.2571 0.8504

0 0 6.5025 3.2805 −0.7643 0.9028
0 0 107.6796 6.6092 −12.6573 14.9496

⎤⎥⎥⎥⎥⎥⎥⎥⎦

M3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0032 0 0 0 0.0491 0.1297
−0.0685 0 0 0 0.3995 0.0567
−32.7472 −10.7611 0 −0.0037 −6.0601 3.1121

0.0039 −0.0012 0 0.0517 0.0007 −0.0004
−3.4953 −5.5842 0 0.0019 −0.6468 0.3322

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

M4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0082 0 0.3492 0 0.0878 0.2573
0.0101 0 0.2569 0 0.1243 0.3478
−0.0655 0 0.0893 0 0.4221 0.1332
−30.5617 −8.5620 0 0 −5.6557 2.9044
12.0341 8.0309 0 0 2.2270 −1.1436

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

N1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.8475 0.0301 0 0 0
−0.6661 −0.0350 0 0 0
−0.0039 0.2458 −0.0013 0 −0.0050
0.0025 −0.0029 0.0201 −0.0310 −0.0052
0.0010 −0.0638 −0.0050 0 −0.0192

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

N2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.7109 0.2938 0 0 0
−0.5799 −0.0005 0.0301 0 0
−0.4454 0.0006 −0.0350 0 0

0 0.0025 −0.0029 −0.0310 0.0208
0.0239 −0.0041 0.2540 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

N3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.8311 0.0281 0 0 0
−0.3290 −0.0535 0 0 0
0.0044 −0.2847 0.0043 0 −0.0046

0 0 0 −0.0310 0
−0.0036 0.0577 0.0234 0 −0.0248

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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N4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.5691 0.2569 0 0 0
−0.4097 −0.0005 0.0281 0 0
−0.1476 0.0009 −0.0535 0 0
−0.0334 0.0052 −0.2897 −0.0028 −0.0017
0.0032 0.0022 0.0223 −0.0297 −0.0177

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

P1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0.2513 0 0.9679

0.1167 −0.1357 0.9523 0 −0.2472
0 0 0 1 0

0.9932 0.0159 −0.1119 0 0.0291
0 0.9906 0.1322 0 −0.0343

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,P2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0.1167 −0.1357 0 0.9839
0 0 0 1 0
0 0.9932 0.0159 0 −0.1156
0 0 0.9906 0 0.1366

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0946 −0.1804 −0.9628 0 0.1774
0 0 −0.1812 0 −0.9835
0 0 0 0 0
0 0 0 1 0
0 0.9835 −0.1782 0 0.0328

0.9955 0.0171 0.0915 0 −0.0169

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,P4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.0946 −0.1804 −0.9746 0.0926
0 0 0 0.0946 0.9955
1 0 0 0 0
0 0 0 0 0
0 0 0.9835 −0.1804 0.0171
0 0.9955 0.0171 0.0926 −0.0088

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0

0.0287
0

2.8994
2.2478

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Q2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

22.9672
1

0.2817
0

20.4825
15.3125

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Q3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0743
0
1
0

1.2632
3.2414

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Q4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6431
0

25.2879
1

6.5895
19.5990

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For this simulation, we consider a large magnitude for the disturbance. It is assumed to be d(t) = 0.5 sin(t)e−0.01t, which
belongs to L2(R+).

By using the reduced order DFEO (34), we obtain simulated curves of the faults and their estimates in Figures 8 and
9. From the simulation results, it can be seen that the proposed reduced order DFEO achieves robust distributed fault
estimation.
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F I G U R E 3 The fault 1 and its estimates at each node
using full order DFEO. DFEO, distributed fault estimation
observer [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 4 The fault 2 and its estimates at each
node using full order DFEO. DFEO, distributed fault
estimation observer [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 5 Estimation errors of the states 1 and 2 at
each node using full order DFEO. DFEO, distributed fault
estimation observer [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 6 Estimation errors of the states 3 and 4 at
each node using full order DFEO. DFEO, distributed fault
estimation observer [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 7 Estimation errors of the faults 1 and 2 at
each node using full order DFEO. DFEO, distributed fault
estimation observer [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 8 The fault 1 and its estimates at each
node using reduced order DFEO. DFEO, distributed fault
estimation observer [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 9 The fault 2 and its estimates at each
node using reduced order DFEO. DFEO, distributed fault
estimation observer [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 10 Estimation errors of the states 1 and
2 at each node using reduced order DFEO. DFEO,
distributed fault estimation observer [Colour figure can
be viewed at wileyonlinelibrary.com]
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F I G U R E 11 Estimation errors of the states 3 and 4
at each node using reduced order DFEO. DFEO,
distributed fault estimation observer [Colour figure can
be viewed at wileyonlinelibrary.com]
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Figures 10 and 11 show the estimation errors of the states. Figure 12 presents the estimation errors of the two faults.
The results show that the estimation errors of all states and faults reach the region around 0. It can be seen that the joint
disturbance is attenuated successfully.

Remark 8. The fault and disturbance can be distinguished by differences of the matrices F and E. The fault matrix F
and disturbance matrix E are usually different. These matrices depend on the application that is considered. We plan
to attenuate the disturbances in H∞ norm sense in this article. If the fault and disturbances affect the same chan-
nel, even F =E, it is hard to distinguish faults and disturbances. Finite-frequency fault estimation could be a possible
way.11

Remark 9. The simulations show some advantages of the proposed distributed fault estimation method. In this
article, the local fault estimation observers at each node simultaneously estimate the fault and state of the entire
system in the presence of disturbances, whereas in References 14,18,21 the local fault estimators only estimate
the fault of their corresponding subsystems. On the other hand, compared with Reference 25, we use a different
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F I G U R E 12 Estimation errors of the faults 1 and
2 at each node using reduced order DFEO. DFEO,
distributed fault estimation observer [Colour figure can
be viewed at wileyonlinelibrary.com]

distributed fault estimation scheme. Only joint observability is required, while in Reference 25 local observability is
assumed.

6 CONCLUSIONS

In this article, we have proposed a distributed fault estimation approach. The framework includes full order and reduced
order DFEO’s, respectively. Under some standard assumptions, conditions for the existence of suitable DFEO’s have been
expressed in terms of feasibility of LMI’s. To calculate the gain matrices in our DFEO’s, systematic design algorithms have
been presented for full order and reduced order DFEO’s, respectively. Finally, simulation results show the effectiveness
of the proposed method.

Further results are anticipated by applying the proposed distributed fault estimation techniques to the problem of
distributed FTC, which will be the focus of our future work.
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