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Effects of Quantization and Dithering in Privacy Analysis for
a Networked Control System*

Yu Kawano1 and Ming Cao2

Abstract— In digital communication networks, typically in-
formation is sent after quantization. When such quantized
information is used by controllers, it is known that quantization
is very likely to degenerate control performance. In contrast,
we show in this paper the interesting finding that quantization
may improve privacy performance of the networked subsystems
under control. Namely, there is a trade-off between control and
privacy performances determined by the quantization step. In
this paper, we look at a dither (also called random dithered
quantizer) as a possible tool to improve both control and privacy
performances for networked systems. We review some known
improved control performances such as in sampling, and then
further discuss the effects of a dither in privacy analysis.

I. INTRODUCTION

A key feature of IoT technologies is to share data through
networks, which may create the risk of one user’s private
information being inferred by other users. To address such
threats, privacy protection has been studied in various fields,
see e.g. [1]–[4] for references in system and control. Note
that these papers mainly focus on statistical disclosure con-
trol methods. In IoT technologies, information is typically
sent after quantization. Utilities of quantizers are illustrated
by security of encrypted control systems [5], [6], where
in this paper, by security we mean data protection against
adversaries, and in comparison by privacy we mean to
prevent one user’s data being inferred by other users from
shared data. In contrast to security, quantization has not been
taken into account in privacy analysis except for [7], [8]; the
first paper studies noise design to maximize a privacy level
under a prescribed data distortion, and the latter for a static
mechanism.

The objective of this paper is to analyze the connection
between quantization and privacy. The specific private in-
formation considered here is the initial state of a system
as formulated in [3], [9]. First, we study how quantiza-
tion makes estimating the initial state difficult. Because of
quantization, the set where the initial state belongs can be
described by a family of linear equations. The volume of
this set can be viewed as the privacy level, which depends
on the quantization step and decreases as time evolves. For
Schur stable systems, we show that the number of these
linear equations is finite. This means that even if a system
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is observable, its initial state is not uniquely determined.
However, as a negative result, for some unstable system, the
initial state can be estimated in arbitrary accuracy.

Although quantization can improve privacy performance,
it degenerates control performance. This performance degen-
eration can be attenuated by adding noise before quantiza-
tion; such a technique is called dithering [10], [11]. Dithering
is different from the method in [7] that adds noise after (not
before) quantization. In the control context, better control
performance is observed for a feedback interconnected sys-
tem with dithered communication signals [12], [13]. This
improvement is due to the feedback loop between dithered
signals and state variables.

In this paper, we propose the use of dithering to improve
privacy performance. First, we confirm that estimating the
initial state becomes more difficult using dithering than quan-
tization. Note that if one considers state estimation, instead
of estimating the systems’ initial states, the error caused by
dithering can be viewed as measurement noise, and thus one
may design the Kalman filter. However, this measurement
noise is not Gaussian nor does not satisfy the Lindeberg
condition [14]. In other words, it is not guaranteed that the
Kalman filter works for this state-estimation problem. On
the other hand, one may expect that dithering can improve
observer performance as for control performance; however,
this is not always the case. Because dithered signals do not
depend on the observer states, in contrast to the feedback
in the control loop, dithering may not improve observer
performances. So to quantify observer performances, in this
paper, we design the standard Luenberger observer and
compute an upper bound on the state estimation error. Our
results can be used to evaluate how difficult it is to estimate
the state under dithering.

The remainder of this paper is organized as follows.
In Section II, we consider quantization and show that for
a Schur stable system, a finite set of linear inequalities
describes the set where the initial state belongs. In Section
III, we consider dithering. First, we show that estimating the
initial state becomes more difficult. Next, we compute an
upper bound on the state estimation error of an observer.
Finally, Section V concludes this paper.

Notation: The sets of real numbers and non-negative
integers are denoted by R and Z+, respectively. The vector
whose all elements are 1 is denoted by 1l. For two vectors a
and b with the same size, a ⪯ b (a ≺ b) stands for the
element-wise inequality, namely ai ≤ bi (ai < bi) for all
elements.
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II. PROBLEM FORMULATION

Consider the following two subsystems:{
x(t+ 1) = Ax(t) +Bu(t), x(0) = x0,
y(t) = Cx(t),

(1){
ξ(t+ 1) = Fξ(t) +Gν(t), ξ(0) = ξ0,
η(t) = Hξ(t),

(2)

where x ∈ Rn1 , ξ ∈ Rn2 , u, η ∈ Rm, and y, ν ∈ Rp. The
matrix dimensions are compatible. These two subsystems are
connected via communication networks by which typically
quantized information are sent. Specifically, they are inter-
connected through the quantized couplings:

u = Q(η),
ν = Q(y),

(3)

where the quantizer Q is defined by

Q(z + nd) = nd for z ∈
(
−d

2
,
d

2

]
, n ∈ Z, d > 0. (4)

In this paper, we focus on the privacy analysis of each
subsystem against the other. In particular, we consider the
following scenario.

Scenario 2.1: Consider the two subsystems (1) and (2)
interconnected via (3), where each subsystem and the inter-
connected system with u = η and ν = y are Schur stable.
The subsystem (1) aims to protect the information of its
initial state x0 against the subsystem (2) that can access u(t)
and ν(t) = Q(y(t)) at each time instant t ∈ Z+ and the
triplet (A,B,C). ◁

If the subsystem (1) is observable, and there is no quan-
tization in communication networks, then it is impossible to
protect the initial state x0 against (2). To improve privacy
performance, random noise is added to data before sending
it [2]–[4]. In fact, quantization can be interpreted as deter-
ministic noise. Throughout this note, we investigate the effect
of quantization for privacy protection.

III. INITIAL STATE PRIVACY UNDER QUANTIZATION

A. Autonomous Systems

To exclusively evaluate the effect of quantization for
protecting the initial state from being identified, first we
consider the following autonomous system.{

x(t+ 1) = Ax(t), x(0) = x0,
ν(t) = Q(Cx(t)),

(5)

where x ∈ Rn1 and ν ∈ Rp. For analysis purposes, we define
the observability matrix and vector consisting of the output
sequence as follows:

OT =


C
CA

...
CAT

 , νT =


ν(0)
ν(1)

...
ν(T )

 .

From the definition (4) of the quantizer Q, if νT is observed,
the initial state x0 of the system (5) belongs to the following
set:

VT (νT ) :=

{
x0 ∈ Rn1 : −d

2
1l ≺ OTx0 − νT ⪯ d

2
1l
}
. (6)

The volume of VT (νT ) can be interpreted as a privacy level
of the initial state x0. Since the larger d > 0 is, the larger
the volume is, quantization increases the privacy level. As T
increases, the volume, i.e., the privacy level decreases. It is
possible to show that for Schur stable systems, the privacy
level does not decrease after sufficient time.

Theorem 3.1: Suppose that the system (5) is Schur stable.
For any x0 ∈ Rn1 and ν : Z+ → Rp, there exists T =
T (x0) ∈ Z+ such that VT (νT ) = VT+i(νT+i), i ∈ Z+.
Moreover, VT (νT ) contains an open subset of Rn.

Proof: First, consider the following set:

V0(0) =

{
x0 ∈ Rn1 : −d

2
1l ≺ Cx0 ⪯ d

2
1l
}
, (7)

which contains an open subset U ⊂ Rn1 .
Since the system is Schur stable, it admits a Lyapunov

function V (x) = x⊤Px, where P is symmetric and positive-
definite. For this Lyapunov function, there exists r > 0 such
that

Ωr := {x ∈ Rn1 : x⊤Px ≤ r} ⊂ U ⊂ V0(0).

This Ωr is positively invariant. Therefore, from (7), we have

−d

2
1l ≺ Cx(T ) ⪯ d

2
1l, ∀T ∈ Z+,∀x0 ∈ Ωr.

In other words, Ωr ⊂ VT (0) for all T ∈ Z+.
Now, we consider an arbitrary initial state. Since the

system is Schur stable, for any x0 ∈ Rn1 there exists s =
s(x0) ∈ Z+ such that x(s) ∈ Ωr. Therefore, the statement
holds for T = s.

Finally, we show that VT (νT ) contains an open subset.
From its definition, VT (νT ) is the intersection of a finite
number of

V̂t(ν(t)) :=

{
x0 ∈ Rn1 : −d

2
1l ≺ CAtx0 − ν(t) ⪯ d

2
1l
}
.

Each V̂t(ν(t)) contains an open subset, which contains the
actual initial state in its interior. That is, the intersection
of V̂t(ν(t)) is not empty. Furthermore, the intersection of a
finite number of open subsets is an open subset. Therefore,
any VT (νT ) contains an open subset.

Remark 3.2: Theorem 3.1 can be extended to nonlinear
systems under a suitable stability assumption. For nonlinear
systems, VT (νT ) is defined by a set of nonlinear algebraic
equations. ◁

Theorem 3.1 implies that the set of initial states estimated
from the quantized output is characterized by a finite set of
linear inequalities for Schur stable systems. If a system is
unstable, this is not true, which can be exemplified by the
following scalar system:{

x(t+ 1) = ax(t), x(0) = x0,
ν(t) = Q(cx(t)).

2759
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The output can be described by

ν(t) = Q(catx0),

i.e.

ν(t)

cat
− d

2cat
< x0 ≤ ν(t)

cat
+

d

2cat
.

For the sake of simplicity, let a > 1 and c > 0. Then, cat

can be arbitrary large as time evolves, and thus the above
range can be made arbitrary small.

The above discussion for unstable systems implies that if
the absolute values of a and c are large, then the initial state
is less private for the same time interval. This leads to the
natural observation even for a stable system: if the absolute
values of elements of OT are large, i.e., the system is highly
observable, then the initial state is less private.

B. Taking Interconnections into Consideration

In this subsection, we consider the problem setting in
Scenario 2.1. To consider external input to the subsystem (1),
we define the following matrix and vector:

H0 := 0,

HT :=


0 · · · · · · · · · 0

CB 0 · · · · · · 0

CAB
. . . 0 · · · 0

...
. . . . . .

...
CAT−1B · · · CAB CB 0

 ,

uT =
[
u⊤(0) u⊤(1) · · · u⊤(T − 1)

]
.

For the input sequence uT and output sequence νT of the
subsystem (1), the initial state x0 belongs to the following
set:

WT (νT , uT )

:=

{
x0 ∈ Rn1 : −d

2
1l ≺ OTx0 +HTuT − νT ⪯ d

2
1l
}
.

(8)

Note that under Scenario 2.1, u(t) and ν(t) are bounded. In
fact, the interconnected system can be described as[

x(t+ 1)
ξ(t+ 1)

]
=

[
A BH
GC F

] [
x(t)
ξ(t)

]
+

[
B 0
0 G

] [
Q(η(t))− η(t)
Q(y(t))− y(t)

]
. (9)

The Schur stability of the system matrix and

−d

2
1l ≺

[
Q(η(t))− η(t)
Q(y(t))− y(t)

]
⪯ d

2
1l

imply the boundedness of (x(t), ξ(t)) and consequently of
(u(t), ν(t)) = (Q(Gξ(t)),Q(Cx(t))).

As described above, the effect of quantization can be
modeled as bounded disturbance. Because of this, typically
three types of trajectories are observed for the system (9) as
shown in the following example.

Example 3.3: Suppose that the subsystems (1) and (2) are
identical and given by

A = F =

[
1 0.01

−0.01 0.99

]
, B = G =

[
0

0.01

]
C = H =

[
0.7 −0.8

]
.

Each subsystem and the interconnected system with u = η
and ν = y are Schur stable. Let the quantization step be d =
1. In this case, as in Fig.1, the trajectories of y and η converge
to the origin. Next, we consider different output matrices

C = H =
[
0.8 0.8

]
. (10)

In this case, as shown in Fig.2, there are off-sets for trajec-
tories due to the effect of quantization. Finally, we choose

C = H =
[
0.8 −0.8

]
. (11)

Then, each output trajectory is periodic as confirmed in Fig.3.
◁

In the above three cases, we have similar observation for
WT (νT , uT ) as in Theorem 3.1 without the proof.

Corollary 3.4: Under Scenario 2.1, suppose that y and η
converge to certain values or periodic orbits. Then, for
any x0 ∈ Rn1 , there exists T = T (x0) ∈ Z+ such
that WT (νT , uT ) = WT+i(νT+i, uT+i), i ∈ Z+. ◁

Corollary 3.4 implies that owing to quantization, the initial
state of the subsystem (1) is not uniquely determined even

Fig. 1. Trajectories of y and η of the interconnected system when C =
H = [0.7 − 0.8]

Fig. 2. Trajectories of y and η of the interconnected system when C =
H = [0.8 0.8]
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if the subsystem is observable. However, as illustrated by
Example 3.3, quantization degenerates control performances.
Therefore, there is a trade-off between privacy and control
performances as typically observed in various privacy prob-
lems, see e.g. [1]–[4].

C. Observer Design

In the previous subsections, we have shown that the set
where the initial state belongs is described by a finite set of
linear inequalities for Schur stable systems. Then, the initial
state is not uniquely determined by the quantized output.
For estimating the system state instead of the initial state,
one may design an observer. In this subsection, we consider
observer design without assuming stability.

Consider the standard Luenberger observer for the sys-
tem (1) with the quantized output:

z(t+ 1) = Az(t) +Bu(t) + L(Cz(t)−Q(y(t))). (12)

Then, the error e := z − x satisfies

e(t+ 1) = (A+ LC)e(t) + L(y(t)−Q(y(t))). (13)

Due to the quantization error y(t)−Q(y(t)), the estimation
error e(t) does not converge to zero in general. It is desirable
to design an observer such that e is less sensitive with respect
to y(t) − Q(y(t)). Such an observer design reduces to a
linear matrix inequality (LMI). Since the proof is a simple
application of the bounded real lemma [15], this is omitted.

Proposition 3.5: The H∞-norm of the error dynam-
ics (13) from the quantization error y(t) − Q(y(t)) to the
state estimation error e(t) is not greater than γ > 0 if and
only if the following LMI has solutions P and Y .

P 0 (PA+ Y C)T I
0 γ2I Y T 0

PA+ Y C Y P 0
I 0 0 I

 > 0.

Moreover, for L := P−1Y , the H∞-norm is not greater
than γ. ◁

Fig. 3. Trajectories of y and η of the interconnected system when C =
H = [0.8 − 0.8]

Fig. 4. Trajectories of ȳ and η̄ of the interconnected system when C =
H = [0.8 0.8] with uniform noise

Fig. 5. Trajectories of ȳ and η̄ of the interconnected system when C =
H = [0.8 − 0.8] with uniform noise

IV. INITIAL STATE PRIVACY UNDER DITHERED
QUANTIZATION

A. Improvement of Both Control and Privacy Performances

In the literature, it is observed that effects of quantization
errors can be made smaller by adding noise because noise
can eliminate periodic behavior caused by quantization. Such
a technique is called dithering [10], [11]. In this section, we
confirm that dithering improves not only control performance
but also privacy performance. In other words, dithering can
be a tool to improve the overall trade-off between these
performances under quantization.

Now, we consider the following interconnections:

ν̄ = Q(y + wy),
ū = Q(η + wη),

(14)

where wy, wη : Z → [−d/2, d/2] are uniform distributed
random noise. We confirm the utility of dithering thorough
an example.

Example 4.1 (Continuation of Example 3.3): Fig.4 and
Fig.5 show the trajectories of y and η with dithered
quantization (14) when the output matrices are (10)
and (11), respectively. In both cases, outputs are sufficiently
close to the origin. ◁

As shown in Example 4.1, adding noise can increase
control performance in the sense of the convergence to the
origin. From the viewpoint of privacy, it is easy to see that
dithering increases privacy performance, where noise is not
added formally, or said differently, some noise that is equal
to zero with probability one is added.
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Proposition 4.2: Consider the same assumptions as in
Corollary 3.4, and ūT and ν̄T denote the input and output
sequences of the subsystem (1) when the interconnection
is (14). Then, we have the following

P(x0 ∈ WT (ωT , vT )|(ωT , vT ) = (ν̄T , ūT ))

< P(x0 ∈ WT (ωT , vT )|(ωT , vT ) = (νT , uT )),
Proof: It is clear that P(x0 ∈ WT (ωT , vT )|(ωT , vT ) =

(νT , uT )) = 1 when noise is not added, and P(x0 ∈
WT (ωT , vT )|(ωT , vT ) = (ν̄T , ūT )) < 1 when noise is
added.

Proposition 4.2 is intuitive and follows from the fact that

|y −Q(y)| ≤ |y −Q(y + wy)|. (15)

However, it is difficult to compute the probability P(x0 ∈
WT (ωT , vT )|(ωT , vT ) = (ν̄T , ūT )). To evaluate the effect of
dithering, it can still be helpful to compute the probability
when T = 0, i.e. to check how difficult it is to estimate y
from Q(y + wy). To have a close look of the effect of the
uniform noise, we change the range of wy .

Proposition 4.3: For the uniform distributed random vari-
able w : Z → [−a/2, a/2], 0 < a ≤ d, it follows that

P
(
z ∈

(
nd− d

2
, nd+

d

2

] ∣∣∣∣Q(z + w) = nd

)
=

2d− a

2d
.

Proof: The proof is given in Appendix.

B. Observer Design

In this subsection, we revisit the observer (12) and in-
vestigate the estimation error. The following theorem shows
that the error can be made small if one designs the observer
having a small H∞-norm using Proposition 3.5.

Theorem 4.4: Consider the observer (12) for the sys-
tem (1) with the quantized output. Suppose that A + LC
is Schur stable, and the H∞-norm of the observer (12) from
the quantization error y(t)−Q(y(t)) to the state estimation
error e(t) is not greater than γ > 0. Then, it follows that

lim
t→∞

E[|e(t)|2] ≤ d2γ2

2
. (16)

Proof: From (12), e(t) can be described by

e(t) = (A+ LC)te(0) +

t∑
k=0

hk(y(t− k)−Q(y(t− k))),

where

hk :=

{
0, k = 0,

(A+ LC)k−1L, k > 0.

Since limt→∞(A + LC)t = 0, one takes e(0) = 0 without
loss of generality.

Note that y(t) − Q(y(t)) is uncorrelated with respect to
time [12]. Therefore, we have

E[|e(t)|2] =
t∑

k=0

|hk|2E[|y(t− k)−Q(y(t− k))|2]

According to [12], it follows that

E[|y(t− k)−Q(y(t− k))|2] ≤ d2

4
.

From the definition of the H∞-norm,
∑t

k=0 |hk|2 ≤ γ2.
From these two, E[|e(t)|2] is bounded as

E[|e(t)|2] ≤ d2γ2

2
, ∀t ∈ Z+.

From its definition, E[|e(t)|2] is an increasing sequence
of t. Therefore, E[|e(t)|2] converges to some value, and
consequently (16) holds.

When there is measurement noise, the Kalman filter is
employed in most of the cases. However, in this problem
setting, due to the property (16), random variables hk(y(t)−
Q(y(t))) do not satisfy the Lindeberg condition [14]. That
is, it is not clear if

∑t
k=0 hk(y(t−k)−Q(y(t−k))) tends to

a normal distribution, and there is no theoretical guarantee
that the Kalman filter works for this problem. This is another
advantage of dithering from the privacy viewpoint.

Using Example 4.1, we confirm that dithering improves
control performance. One may expect similar improvement
for observer design. However, there is an essential difference
between the feedback interconnection and observer. In the
feedback interconnection, y − Q(y) depends on the state ξ
of the other subsystem. This dependence is a key property
for improvement of control performance by dithering [13].
In observer design, the quantization error y−Q(y) does not
depend on the observer state z in contrast to the feedback
interconnection. Therefore, a similar improvement may not
exist for the observer.

V. CONCLUSION

In this paper, we have proceeded with privacy analysis
under quantization and dithering, respectively. It is known
that quantization degenerates control performance, and dither
attenuates the degeneration. In contrast, both quantizer and
dither have potential to improve privacy performance as
discussed in this paper. Therefore, dithering can be a useful
tool to improve the trade-off between control and private
performances under quantization. In the future, we plan to
look into different types of quantizers and to examine other
control performance indices.

APPENDIX

Proof: [Proposition 4.3] Without loss of generality,
let n = 0. From Bayes’ theorem, it follows that

P
(
z ∈

(
−d

2
,
d

2

] ∣∣∣∣Q(z + w) = 0

)
=

P
(
z ∈

(
−d

2 ,
d
2

])
P(Q(z + w) = 0)

P
(
Q(z + w) = 0

∣∣∣∣z ∈
(
−d

2
,
d

2

])
.

(17)

When n = 0, z belongs to (−(a + d)/2, (a + d)/2], which
implies

P
(
z ∈

(
−d

2
,
d

2

])
=

d

a+ d
.
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Next, we compute P(Q(z + w) = 0|z ∈ (−d/2, d/2]). It
follows that

P
(
Q(z + w) = 0

∣∣∣∣z ∈
(
−d

2
,
d

2

])
= P

(
Q(z + w) = 0

∣∣∣∣z < −d− a

2

)
× P

(
z < −d− a

2

∣∣∣∣z ∈
(
−d

2
,
d

2

])
+ P

(
Q(z + w) = 0

∣∣∣∣−d− a

2
≤ z ≤ d− a

2

)
× P

(
−d− a

2
≤ z ≤ d− a

2

∣∣∣∣z ∈
(
−d

2
,
d

2

])
+ P

(
Q(z + w) = 0

∣∣∣∣d− a

2
< z

)
× P

(
d− a

2
< z

∣∣∣∣z ∈
(
−d

2
,
d

2

])
.

We compute each probability as follows:

P
(
Q(z + w) = 0

∣∣∣∣z < −d− a

2

)
=

d+ a+ 2z

2(a+ d)
,

P
(
Q(z + w) = 0

∣∣∣∣−d− a

2
≤ z ≤ d− a

2

)
= 1,

P
(
Q(z + w) = 0

∣∣∣∣d− a

2
< z

)
=

d+ a− 2z

2(a+ d)
,

and

P
(
z < −d− a

2

∣∣∣∣z ∈
(
−d

2
,
d

2

])
=

a

2d
,

P
(
−d− a

2
≤ z ≤ d− a

2

∣∣∣∣z ∈
(
−d

2
,
d

2

])
=

d− a

d
,

P
(
d− a

2
< z

∣∣∣∣z ∈
(
−d

2
,
d

2

])
=

a

2d
.

Combining them yields

P
(
Q(z + w) = 0

∣∣∣∣z ∈
(
−d

2
,
d

2

])
=

2d− a

2d
.

Finally, we compute P(Q(z + w) = 0). It follows that

P(Q(z + w) = 0)

= P
(
Q(z + w) = 0

∣∣∣∣z ∈
(
−a+ d

2
,−d

2

])
× P

(
z ∈

(
−a+ d

2
,−d

2

])
+ P

(
Q(z + w) = 0

∣∣∣∣z ∈
(
−d

2
,
d

2

])
× P

(
z ∈

(
−d

2
,
d

2

])
+ P

(
Q(z + w) = 0

∣∣∣∣z ∈
(
d

2
,
a+ d

2

])
× P

(
z ∈

(
d

2
,
a+ d

2

])

Again, we compute each probability as follows:

P
(
Q(z + w) = 0

∣∣∣∣z ∈
(
−a+ d

2
,−d

2

])
=

d+ a+ 2z

2(a+ d)
,

P
(
Q(z + w) = 0

∣∣∣∣z ∈
(
d

2
,
a+ d

2

])
=

d+ a− 2z

2(a+ d)
,

and

P
(
z ∈

(
−a+ d

2
,−d

2

])
=

a

2(a+ d)
,

P
(
z ∈

(
d

2
,
a+ d

2

])
=

a

2(a+ d)
.

Therefore, we obtain

P(Q(z + w) = 0) =
d

a+ d
.

In summary, substituting all computed results into (17)
yields

P
(
z ∈

(
−d

2
,
d

2

] ∣∣∣∣Q(z + w) = 0

)
=

2d− a

2d

That completes the proof.
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