
 

 

 University of Groningen

Low-complexity learning of Linear Quadratic Regulators from noisy data
De Persis, Claudio; Tesi, Pietro

Published in:
Automatica

DOI:
10.1016/j.automatica.2021.109548

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
De Persis, C., & Tesi, P. (2021). Low-complexity learning of Linear Quadratic Regulators from noisy data.
Automatica, 128, [109548]. https://doi.org/10.1016/j.automatica.2021.109548

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1016/j.automatica.2021.109548
https://research.rug.nl/en/publications/e4e85974-2416-4110-a26e-04fe48cf6df4
https://doi.org/10.1016/j.automatica.2021.109548


Automatica 128 (2021) 109548

a

b

t
t
a
c
d
d
(
(
s

A
b
F
o
a
e
D
t
p
S
c
2

p

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Low-complexity learning of Linear Quadratic Regulators from noisy
data✩

Claudio De Persis a,∗, Pietro Tesi b
ENTEG, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
Department of Information Engineering (DINFO), University of Florence, 50139 Florence, Italy

a r t i c l e i n f o

Article history:
Received 3 May 2020
Received in revised form 21 January 2021
Accepted 28 January 2021
Available online 22 March 2021

a b s t r a c t

This paper considers the Linear Quadratic Regulator problem for linear systems with unknown
dynamics, a central problem in data-driven control and reinforcement learning. We propose a method
that uses data to directly return a controller without estimating a model of the system. Sufficient
conditions are given under which this method returns a stabilizing controller with guaranteed relative
error when the data used to design the controller are affected by noise. This method has low
complexity as it only requires a finite number of samples of the system response to a sufficiently
exciting input, and can be efficiently implemented as a semi-definite programme.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Control theory is witnessing an increasing renewed interest
owards data-driven (data-based) control. This terminology refers
o all those cases where the dynamics of the system are unknown
nd the control law must be designed using data alone. This
an be done either by identifying a model of the system from
ata and then use the model for control design, or by directly
esigning the control law bypassing the system identification
ID) step. Methods in the first category are usually called indirect
sequential system ID and control design), while methods in the
econd category are usually called direct or model-free.
The interest for data-driven control has several motivations.

s systems become more complex, first-principle models may
e difficult to obtain or may be too complex for control design.
ully automated (end-to-end) procedures may also facilitate the
nline tuning or re-design of controllers, which is needed in
ll those applications where the system to be controlled or the
nvironment are subject to changes that are difficult to predict.
ozens of publications on data-driven control have appeared in
he last few years. We mention works on predictive control (Al-
ago, Lygeros, & Dörfler, 2020; Coulson, Lygeros, & Dörfler, 2019;
alvador, Muñoz de la Peña, Alamo, & Bemporad, 2018), optimal
ontrol (Baggio, Katewa, & Pasqualetti, 2019; De Persis & Tesi,
019; Gonçalves da Silva, Bazanella, Lorenzini, & Campestrini,

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Tongwen
Chen under the direction of Editor Ian R. Petersen.
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2019; Recht, 2019), robust and nonlinear control (Berberich,
Koch, Scherer, & Allgöwer, 2019; Dai & Sznaier, 2018; De Persis
& Tesi, 2020a; Novara, Formentin, Savaresi, & Milanese, 2016;
Wabersich & Zeilinger, 2018). We refer the interested reader to
Hou and Wang (2013) for a survey on earlier contributions.
The Linear Quadratic Regulator problem

This paper considers the infinite horizon Linear Quadratic Reg-
ulator (LQR) problem for linear time-invariant systems. Besides
its relevance, this problem is a prime example of the challenges
encountered in data-driven control. Specifically, we consider the
problem of determining the solution to the LQR problem from a
finite set of (noisy) data collected from the system.

Early data-driven methods for LQR originate from adaptive
control, examples being self-tuning regulators (Åström & Witten-
ark, 1989) and policy iteration schemes (Bradtke, Ydstie, & Barto,
994). While the specific methods are different, the common idea
s to study the convergence of an adaptive law to the optimal
ne as time goes to infinity. Starting from Fiechter (1997), much
ffort has been made to derive non-asymptotic properties of data-
riven methods, that is for a finite number of steps. The interest
owards non-asymptotic properties is both theoretical and prac-
ical: they help to derive performance guarantees for iterative
online) methods (Fazel, Ge, Kakade, & Mesbahi, 2018), and are
he basis of non-iterative (offline) methods (De Persis & Tesi,
019; Recht, 2019) which use only a finite number of data points.
It turns out that non-asymptotic properties are very difficult

o derive if one departs from the assumption that the data are
oise-free. Most of the works dealing with noisy data are of
ndirect type. The idea is to estimate the parameters of the system
long with sample guarantees on the estimation error and then
esign or update the control law according to the estimate. Early
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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esults on the finite sample properties of system ID methods
an be traced back to Campi and Weyer (2002), but it is only
ecently that these ideas (with different estimation methods)
ave been considered for the LQR problem (Cohen, Koren, &
ansour, 2019; Dean, Mania, Matni, Recht, & Tu, 2020; Mania,
u, & Recht, 2019). Direct methods have been instead much less
xplored (Abbasi-Yadkori, Lazíc, & Szepesvári, 2018).
ontribution and outline of the paper
Our contribution is a new approach to design LQ controllers

rom noisy data. The method builds on the framework of De Persis
nd Tesi (2020a) and has the following features:

(i) Low complexity. The proposed method requires a finite
(pre-computable) number of data points obtained from
a single or multiple system’s trajectories, and it can be
implemented as a convex program.

(ii) Stability and performance guarantees. As long as the noise
satisfies suitable inequalities our method returns a stabiliz-
ing controller with guarantees on the relative error (the gap
between the solution and the unknown optimal controller).

(iii) No assumptions on statistical properties of noise. We do not
make assumptions regarding the noise statistics such as the
noise being a martingale or white.

As in Dean et al. (2020), Mania et al. (2019) and Recht (2019),
e focus on non-iterative methods. The main difference with
espect to the existing works is that our method is direct and
akes no assumptions on the noise statistics. The advantage of
ot relying on noise statistics is twofold. Although the solution
o LQR can be viewed as the one minimizing the variance of the
ystem output in response to white Gaussian noise, experimental
ata need not comply with such setting, and show correlation
nd dependence. Our method is free from this issue, but it can
lso be specialized to such noise. Not relying on noise statistics
lso enables us to extend the analysis to the stabilization of
onlinear systems around an equilibrium point since, around an
quilibrium, a nonlinear system can be expressed via its first-
rder approximation plus a remainder acting as a noise source.
e will elaborate on these points in the paper.
Our method is direct (model-free). Indirect methods show

xcellent performance (Dean et al., 2020; Mania et al., 2019) and
hey can capitalize on the many analysis and design tools avail-
ble for model-based control. On the other hand, although much
ess explored, also direct methods have their own strengths.
irst, while generalizations are intuitively possible, indirect meth-
ds for data-driven LQR are currently restricted to special types
f noise. Our method overcomes this limitation. Further, direct
ethods seem to be applicable in a more straightforward way

o settings where the ID step is usually involved such as with
onlinear and time-varying systems. Examples in this direction,
ot covering LQR, are Dai and Sznaier (2018), Guo, De Persis, and
esi (2020) and Wabersich and Zeilinger (2018).
Our method rests on a key result by Willems and co-authors

Willems, Rapisarda, Markovsky, & De Moor, 2005) which is re-
alled in Section 2. This result states that a (noise-free) system
rajectory generated by a persistently exciting input is an equiv-
alent system representation. We exploit this result to develop
our model-free method. In Section 3, we cast the LQR as an
H2 problem (Scherer & Weiland, 2019) and derive a data-based
solution based on convex programming for the ideal case of
noise-free data (Theorem 1). The main results are given through-
out Sections 4 and 5 . The first one (Theorem 2) provides sta-
bility properties and error bounds of the baseline solution in
case of noisy data. One variant to the baseline solution is dis-
cussed in Theorem 3. This variant ensures more noise tolerance
at the cost of possibly reduced performance bounds. This matches
2

what has been observed also in indirect methods (Mania et al.,
2019). The results are discussed in Section 5.2. Section 6 extends
the analysis to nonlinear systems and de-noising strategies. In
Section 7 we provide some numerical simulations and Section 8
gives concluding remarks.

2. Notation and auxiliary facts

We denote by N0 and N1 non-negative and positive integers,
respectively. Given a signal z : N0 → Rσ and two integers
k, r ∈ N0 with r ≥ k we let z[k,r] := {z(k), . . . , z(r)}. Given a
signal z and a positive integer T , we also define Zi := [z(i) z(i +
1) . . . z(T + i − 1)]. As we will always consider experiments of
length T , we omit the dependence of Zi on T . Finally, the prime
denotes transpose.

Consider a linear time-invariant system

x(k + 1) = Ax(k) + Bu(k) k ∈ N (1)

where x ∈ Rn is the state and u ∈ Rm is the control input, and
suppose that we have access to T -long data sequences u[0,T−1] and
x[0,T−1] of (1). In this paper, the following condition plays a key
role:

rankW0 = n + m (2)

where

W0 :=

[
U0
X0

]
(3)

Condition (2) ensures that any T -long input-state trajectory of the
system can be expressed as a linear combination of the columns
ofW0, meaning thatW0 encodes full information on the dynamics
of the system. A key property established in Willems et al. (2005)
is that one can ensure (2) when the input is sufficiently exciting.

Definition 1 (Willems et al., 2005). A signal z[0,T−1] ∈ Rσ is said
to be persistently exciting of order s ∈ N1 if

Z0 :=

⎡⎢⎢⎣
z(0) z(1) · · · z(T − s)
z(1) z(2) · · · z(T − s + 1)

...
...

. . .
...

z(s − 1) z(s) · · · z(T − 1)

⎤⎥⎥⎦
has full rank σ s. ■

Lemma 1 (Willems et al., 2005, Corollary 2). Suppose that system
(1) is controllable. If u[0,T−1] is persistently exciting of order n + 1,
then condition (2) holds. ■

3. Problem definition and data-driven formulation

In this section, we introduce the problem of interest and our
baseline direct (model-free) data-driven method, which rests on
condition (2).

3.1. The linear quadratic regulator problem

Consider a linear time-invariant system⎧⎪⎨⎪⎩
x(k + 1) = Ax(k) + Bu(k) + d(k)

z(k) =

[
W 1/2

x 0
0 W 1/2

u

][
x(k)
u(k)

]
(4)

where x ∈ Rn is the state, u ∈ Rm is the control input,
and where d is a disturbance term; z is a performance signal of
interest; (A, B) is controllable Wx,Wu ≻ 0 are weighting matrices.
Controllability is actually not needed for the LQR problem, but we
assume it in view of Lemma 1.
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s

We consider the problem of designing a state-feedback con-
troller K that renders A + BK Schur and minimizes the H2-norm
of the transfer function T : d → z of the closed-loop system[
x(k + 1)
z(k)

]
=

⎡⎣ A + BK I[
W 1/2

x

W 1/2
u K

]
0

⎤⎦[x(k)
d(k)

]
(5)

where (Chen & Francis, 1995, Section 4.4)

∥T ∥2 :=

[
1
2π

∫ 2π

0
tr
(
T
(
ejθ
)′

T
(
ejθ
))

dθ
] 1

2

(6)

In the sequel, we will write T = T (K ) so as to emphasize
the dependence of T on K . It is known (Chen & Francis, 1995,
Section 4.4) that when A + BK is Schur

∥T (K )∥2
2 = tr (WxP) + tr

(
WuKPK ′

)
(7)

where P is the controllability Gramian of the closed-loop system
(5), which coincides with the unique solution to the Lyapunov
equation (A+BK )P(A+BK )′−P+I = 0. The H2-norm corresponds
in the time domain to the 2-norm of the output z when impulses
are applied to the input channels, and it can be interpreted as the
mean-square deviation of z when d is a white process with unit
covariance, which is the classic stochastic LQR formulation. Here,
we view the LQR problem as a H2-norm minimization problem
as our method is based on the minimization of (7).

As shown in Chen and Francis (1995, Section 6.4) the state-
feedback controller that minimizes the H2-norm of T (K ) is
unique and can be computed as

K⋆ = −(Wu + B′XB)−1B′XA (8)

where X is the unique positive definite solution to the classic
discrete-time algebraic Riccati (DARE) equation

A′XA − X − (A′XB)(Wu + B′XB)−1

×(B′XA) + Wx = 0

We are interested in computing K⋆ when a model of the system
is not available, and we have only access to a T -long stream
of (noisy) data u[0,T−1] and x[0,T−1] collected during some ex-
periment on system (4) where by noisy we mean that the data
collected from (4) might have been generated with nonzero dis-
turbance d. We aim at establishing properties of the data-driven
solution with respect to the one that we can compute under exact
model knowledge.

3.2. A data-driven SDP formulation

The problem of finding K⋆ can be equivalently formulated as a
semi-definite programme (SDP):1

min
(γ ,K ,P,L)

γ

subject to⎧⎪⎪⎪⎨⎪⎪⎪⎩
(A + BK )P(A + BK )′ − P + I ⪯ 0
P ⪰ I
L − KPK ′

⪰ 0
tr (WxP) + tr (WuL) ≤ γ

(9)

This formulation is the natural discrete-time counterpart of the
formulation proposed in Feron, Balakrishnan, Boyd, and El Ghaoui
(1992) for continuous-time systems. We will not discuss the

1 With some abuse of terminology, we refer to (9) and subsequent derivations
s an SDP, with the understanding that they can be written as SDP using
tandard manipulations.
3

properties associated to (9). Rather, we will discuss the properties
associated to an equivalent data-based version of (9).

Consider system (4) along with data sequences d[0,T−1], u[0,T−1]
and x[0,T ] resulting from an experiment of length T . Define cor-
responding matrices D0, U0, X0 and X1, which satisfy the relation

X1 = AX0 + BU0 + D0 (10)

It turns out that K⋆ can be parametrized directly in terms of the
data matrices D0, U0, X0 and X1. Specifically, as shown in next
Theorem 1, under condition (2) the controller K⋆ can be expressed
as K⋆ = U0Q⋆P−1

⋆ where (γ⋆,Q⋆, P⋆, L⋆) is any optimal solution to
the SDP:
min

(γ ,Q ,P,L)
γ

subject to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(X1 − D0)QP−1Q ′(X1 − D0)′ − P + I ⪯ 0
P ⪰ I
L − U0QP−1Q ′U ′

0 ⪰ 0
X0Q = P
tr (WxP) + tr (WuL) ≤ γ

(11)

which only depends on data. The idea behind (11) is that, under
condition (2), any feedback interconnection A+BK can be written
in a form that does not involve the matrices A and B. In fact, under
condition (2), for any K there exists a matrix G that solves the
system of equations[
K
I

]
= W0G (12)

which implies

A + BK = [B A]W0G = (X1 − D0)G (13)

Under (2), the SDP (11) thus coincides with the one in (9) with
Q = GP . In particular, K = U0QP−1 and X0Q = P give an
equivalent characterization of the two constraints in (12). As
noted in van Waarde, Eising, Trentelman, and Camlibel (2020),
condition (2) is not restrictive for the LQR problem. In fact, it is
necessary for reconstructing A and B from data (thus for indirect
methods) and is generically needed for data-driven methods in
general.

The SDP (11) first appeared in De Persis and Tesi (2020a)
under the assumption that the collected data are noise-free, that
is with D0 = 0, in which case (11) can be solved. Here we revisit
this result providing some additional properties related to this
formulation.

Theorem 1. Suppose that condition (2) is satisfied. Then problem
(11) is feasible. Moreover, any optimal solution (γ⋆,Q⋆, P⋆, L⋆) is
such that K⋆ = U0Q⋆P−1

⋆ and

∥T (K⋆)∥2
2 = tr(WxP⋆) + tr(WuL⋆) (14)

The proof of Theorem 1 relies on two auxiliary results which
are proven in the Appendix.

Lemma 2. Consider any tuple (γ ,Q , P, L) feasible for (11). Then,
the controller K = U0QP−1 stabilizes (4) and is such that ∥T (K )∥2

2 ≤

tr (WxP) + tr (WuL). ■

Lemma 3. Suppose that condition (2) holds, and consider any con-
troller K which stabilizes (4). Then, there exists a tuple (γ ,Q , P, L)
feasible for (11) such that K = U0QP−1 and ∥T (K )∥2

2 = tr (WxP)+

tr (WuL). ■
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roof of Theorem 1. Under the controllability assumption there
xists a stabilizing and optimal controller K⋆. For this stabi-
izing controller, Lemma 3 ensures the existence of a solution
γ , P,Q , L) for (11), which proves the first part of the claim. Let
ow (γ⋆, P⋆,Q⋆, L⋆) be any optimal solution to (11). By Lemma 2

the controller K := U0Q⋆P−1
⋆ is such that ∥T (K )∥2

2 ≤ tr(WxP⋆) +

r(WuL⋆). On the other hand, since K⋆ is stabilizing, Lemma 3
nsures that there exists a solution (γ , P,Q , L) to (11) such
hat K⋆ = U0QP−1 and ∥T (K⋆)∥2

2 = tr(WxP) + tr(WuL). Since
(γ⋆,Q⋆, P⋆, L⋆) is by definition optimal for (11) we must therefore
have tr(WxP⋆) + tr(WuL⋆) ≤ tr(WxP) + tr(WuL). In turn, this
implies ∥T (K )∥2 ≤ ∥T (K⋆)∥2. However, since K⋆ is the controller
minimizing the H2-norm of the system we must have ∥T (K )∥2 =

∥T (K⋆)∥2, hence K = K⋆ because the optimal controller is
unique. ■

In Theorem 1 we say any optimal solution because, as it
emerges from the proof of Lemma 3, to any stabilizing controller
we can associate an infinite number of solutions (γ ,Q , P, L) fea-
sible for (11) with Q = Q+ +Q∼ where Q+ is a particular solution
and Q∼ is any matrix in the right kernel of W0.

We note that (11) is cheap in terms of sample complexity. In
fact, in order to find a solution we just need condition (2) fulfilled.
By Lemma 1 this holds if the input is persistently exciting of order
n+1. Thus, in view of Definition 1, even T = (m+1)n+m samples
can be sufficient.

4. Certainty-equivalence solution with noisy data

From the previous analysis, when the data are noise-free, K⋆

can be computed directly using (11). When D0 ̸= 0 the SDP (11)
cannot be solved unless we know D0. A natural alternative which
can be computed from data alone consists in disregarding the
noise term:
min

(γ ,Q ,P,L)
γ

subject to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X1QP−1Q ′X ′

1 − P + I ⪯ 0
P ⪰ I
L − U0QP−1Q ′U ′

0 ⪰ 0
X0Q = P
tr (WxP) + tr (WuL) ≤ γ

(15)

When a solution is found then the controller is computed as
K = U0QP−1. We will term (15) a certainty-equivalence solution
ince we carry out the design as if the noise were zero. Now, three
uestions arise for (15):

1. A solution need not exist.
2. Even if a solution is found, the corresponding controller K

need not be stabilizing.
3. Even if a solution is found and K is stabilizing, the perfor-

mance achieved by K might still substantially differ from
the performance achieved by K⋆.

In the sequel, we will focus on items 2 and 3 above. Item 1
s implicitly addressed in the analysis. Suppose that a solution
γ ,Q , P, L) to (15) is found, and denote by K = U0QP−1 the corre-
ponding controller. Moreover, let (γ⋆,Q⋆, P⋆, L⋆) be any optimal
olution to (11) with K⋆ = U0Q⋆P−1

⋆ . With this notation in place,
e aim at establishing the following chain of relations:

T (K )∥2
2 ≤ η1(tr(WxP) + tr(WuL))

≤ η1η2(tr(WxP⋆) + tr(WuL⋆)) (16)
= η1η2∥T (K⋆)∥2

2

for some real constants η1, η2 ≥ 1 along with the property that
K is stabilizing.
 (

4

4.1. Stability and performance bounds

We will focus on the two inequalities in (16) as the equality
follows from Theorem 1. Consider the first inequality. The idea is
to find conditions under which there exists a constant η1 ≥ 1
such that η1(γ ,Q , P, L) is a feasible solution to (11). Then the
inequality follows from Lemma 2. For brevity, we introduce some
additional notation. Let

M := QP−1Q ′

Θ := X1MX ′

1 − P (17)
:= D0MD′

0 − X1MD′

0 − D0MX ′

1

ith this notation the first constraint in (15) reads Θ + I ⪯ 0
hile the first constraint in (11) reads Θ + Ψ + I ⪯ 0. In the

sequel, it is understood that all the solutions of interest inherit the
same notation. In particular, we will use M , Θ and Ψ to denote
the matrices corresponding to (γ ,Q , P, L) and M⋆, Θ⋆ and Ψ⋆ to
enote the matrices corresponding to (γ⋆,Q⋆, P⋆, L⋆).

Lemma 4. Suppose that (15) is feasible. Let (γ ,Q , P, L) be any
ptimal solution and let K = U0QP−1. Let η1 ≥ 1. If the solution

satisfies

Ψ ⪯

(
1 −

1
η1

)
I (18)

then the controller K is stabilizing and ensures ∥T (K )∥2
2 ≤ η1

(tr(WxP) + tr(WuL)).

Proof. The idea is to show that although (γ ,Q , P, L) need not
be feasible for (11), under the condition (18) a feasible solution
to (11) is given by η1(γ ,Q , P, L). We prove this fact. Since by
hypothesis (γ ,Q , P, L) is feasible for (15), then it satisfies Θ+I ⪯

. Hence,

1Θ + η1Ψ + I =

1(Θ + Ψ ) + η1I + (1 − η1)I = (19)

1(Θ + I) + η1Ψ + (1 − η1)I ⪯ 0

here the inequality follows from η1(Θ + I) ⪯ 0 and (18).
Hence η1(γ ,Q , P, L) satisfies the first constraint of (11). Since
γ ,Q , P, L) is feasible for (15) then η1(γ ,Q , P, L) satisfies by
construction all the other constraints of (11). Hence, by Lemma 2,
U0(η1Q )(η1P)−1

= U0QP−1
= K is stabilizing and ∥T (K )∥2

2 ≤

tr(Wxη1P) + tr(Wuη1L), which proves the claim. ■

The second inequality in (16) is similar to the first one. The
idea is to find conditions under which we can associate to K⋆

some tuple η2(γ⋆,Q⋆, P⋆, L⋆) feasible for (15).

Lemma 5. Suppose that condition (2) is satisfied, and let (γ⋆,Q⋆,

P⋆, L⋆) be any optimal solution to (11). Let η2 ≥ 1. If the solution
satisfies

− Ψ⋆ ⪯

(
1 −

1
η2

)
I (20)

then (15) is feasible and any optimal solution (γ ,Q , P, L) is such
hat tr(WxP) + tr(WuL) ≤ η2∥T (K⋆)∥2

2.

roof. Condition (2) ensures that problem (11) is feasible and
⋆ = U0Q⋆P−1

⋆ where (γ⋆,Q⋆, P⋆, L⋆) is any optimal solution to
11). As before, the idea is to show that although (γ⋆,Q⋆, P⋆, L⋆)
eed not be feasible for (15), under (20) a feasible solution to
15) is given by η (γ ,Q , P , L ). To see this, note that since
2 ⋆ ⋆ ⋆ ⋆



C. De Persis and P. Tesi Automatica 128 (2021) 109548

(
Ψ

η

t

η

w

4

a
o
h

C
i
d
d

x

i
p

r

a
d
i
I
w
f
e

X
n
c
v

r
n

r

∥

f

V

T

L

γ⋆,Q⋆, P⋆, L⋆) is feasible for (11) then (γ⋆,Q⋆, P⋆, L⋆) satisfies Θ⋆+

⋆ + I ⪯ 0, so

η2Θ∗ + I =

η2(Θ⋆ + Ψ⋆) − η2Ψ⋆ + η2I + (1 − η2)I = (21)

2(Θ⋆ + Ψ⋆ + I) − η2Ψ⋆ + (1 − η2)I ⪯ 0

where the inequality follows from η2(Θ⋆ + Ψ⋆ + I) ⪯ 0 and (20).
Hence, η2(γ⋆,Q⋆, P⋆, L⋆) satisfies the first constraint of (15). Fur-
ther, since (γ⋆,Q⋆, P⋆, L⋆) is feasible for (11) then η2(γ⋆,Q⋆, P⋆, L⋆)
satisfies by construction also all the other constraints of (15).
Hence the claim follows because (γ ,Q , P, L) is optimal and since
the cost associated with the solution η2(γ⋆,Q⋆, P⋆, L⋆) is such that
r(Wxη2P⋆) + tr(Wuη2L⋆) = η2 ∥T (K⋆)∥2

2. ■

We then have the following result.

Theorem 2. Let U0, X0 and X1 be data generated from an experi-
ment on system (4) possibly with nonzero disturbance vector D0 and
consider problem (15). If (15) is feasible and the solution satisfies
(18) then the resulting K is stabilizing and such that ∥T (K )∥2

2 ≤

1(tr(WxP) + tr(WuL)). If (2) and (20) also hold then

∥T (K )∥2
2 − ∥T (K⋆)∥2

2

∥T (K⋆)∥2
2

≤ (η1η2 − 1) (22)

ith η1 as in (18) and η2 as in (20). ■

.2. Limitations of the certainty-equivalence approach

The SDP (15) is a natural variant of (11) for noisy data and is
ppealing as it gives stability and performance guarantees with-
ut assuming specific statistics on the disturbance. In practice,
owever, it has some limitations.
Specifically, (15) rests on three conditions: (2), (18) and (20).

ondition (2), which is needed also for (11), does not bring major
ssues: it can be verified from data and may hold even when the
isturbance has very large magnitude. In fact, if we write the
ynamics as

(k + 1) = Ax(k) +
[
B I

] [u(k)
d(k)

]
(23)

t follows from Lemma 1 that if the augmented input (u, d) is
ersistently exciting of order n + 1 then

ank
[
W0
D0

]
= 2n + m (24)

nd so condition (2) holds. (In fact, this simply means that the
isturbance can be cooperative to enforce excitation.) The main
ssue is related to (18) and (20), in particular to condition (18).
n fact, the term Ψ that appears in (18) is the gap, associated
ith the solution, between the stability condition of the ideal

ormulation (11) and the condition that we use in the certainty-
quivalence approach (15) where we neglect the noise term D0. In

order to fulfil (18), we need a solution such that Ψ = D0MD′

0 −

1MD′

0 − D0MX ′

1 has small norm, hence such that M has small
orm. In (15), however, there is no such constraint with the
onsequence that even a small level of noise may lead to the
iolation of (18), which is also confirmed in simulation.
In the section that follows we will discuss how to incorporate

obustness constraints into (15), and study the properties of this
ew formulation also in comparison with (15).
5

5. Noise robustness through soft constraints

As just discussed, we would like to incorporate constraints on
M into (15). The solution we propose is based on adding a penalty
in the cost function. In particular, we consider the following SDP:

min
(γ ,Q ,P,L,V )

γ

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1QP−1Q ′X ′

1 − P + I ⪯ 0
P ⪰ I
L − U0QP−1Q ′U ′

0 ⪰ 0
V − QP−1Q ′

⪰ 0
X0Q = P
tr (WxP) + tr (WuL) + αtr (V ) ≤ γ

(25)

where α > 0 is a parameter that interpolates performance and
robustness, where large values of α favour solutions with M =

QP−1Q ′ having small trace, thus small 2-norm. In particular, since
∥A∥ ≤

√
tr(A′A) for any matrix A and because tr(AB) ≤ tr(A)tr(B)

for any matrices A, B ⪰ 0 we have ∥M∥ ≤ tr(M). Thus, since a
sufficient condition for (18) is

∥D0∥
2
∥M∥ + 2∥D0∥∥X1∥∥M∥ ≤ 1 −

1
η1

it follows that large values of α favour stabilizing solutions. The
idea to add constraints on M in the form of soft penalty comes
from the following consideration. As an alternative to (25) one
could think of adding a (hard) constraint of the type M ⪯ τ I
with τ > 0. This solution has been studied in De Persis and Tesi
(2020a) in the context of robust stabilization and in a preliminary
version of this paper (De Persis & Tesi, 2020b) in the context of
LQR. This approach, however, favours too much robust solutions
and typically leads to large gaps from optimality. We refer the
reader to De Persis and Tesi (2020b) for a discussion and for
numerical simulations that illustrate this point.

The remainder of this section is as follows. We first derive
a counterpart of Theorem 2 for (25) which rests again on (18)
and (20). In Section 5.2 we then analyse how the disturbance
and α affect (18) and (20). Finally, we discuss how stability and
performance can be verified from data.

5.1. Stability and performance bounds

We proceed as before. Assume that a solution (γ ,Q , P, L, V )
to (25) is found and let K = U0QP−1 be the corresponding
controller. Also let (γ⋆,Q⋆, P⋆, L⋆) be any optimal solution to (11)
with K⋆ = U0Q⋆P−1

⋆ . We want to establish the following chain of
elations:

T (K )∥2
2 ≤ η1(tr(WxP) + tr(WuL))

≤ η1η2(tr(WxP⋆) + tr(WuL⋆) + αtr(V⋆)) (26)
= η1η2(∥T (K⋆)∥2

2 + αtr(V⋆))

or some constants η1, η2 ≥ 1 with

⋆ := M⋆ = Q⋆P−1
⋆ Q ′

⋆ (27)

he first inequality follows as in Lemma 4.

emma 6. Suppose that (25) is feasible. Let (γ ,Q , P, L, V ) be
any optimal solution and let K = U0QP−1. Let η1 ≥ 1. If the
solution satisfies (18) then K is stabilizing and ensures ∥T (K )∥2

2 ≤

η1(tr(WxP) + tr(WuL)).
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roof. The proof is analogous to the one of Lemma 4 and there-
ore omitted. (Note in particular that the constraint in (25) that
nvolves V does not appear in (11).) ■

We also have a natural counterpart of Lemma 5, which estab-
lishes the second inequality in (26).

Lemma 7. Suppose that condition (2) is satisfied, and let
γ⋆,Q⋆, P⋆, L⋆) be any optimal solution to (11). Let η2 ≥ 1. If the
olution satisfies (20) then (25) is feasible, and any optimal solution
γ ,Q , P, L, V ) is such that tr(WxP) + tr(WuL) ≤ η2(∥T (K⋆)∥2

2 +

tr(V⋆)).

roof. The proof is analogous to the proof of Lemma 5. By pro-
eeding as in Lemma 5 it is immediate to verify that η2(γ⋆,Q⋆,

⋆, L⋆, V⋆) is a feasible solution to (25) where the constraint that
nvolves V⋆ is satisfied by the choice V⋆ = Q⋆P−1

⋆ Q ′
⋆, which

implies tr(WxP) + tr(WuL) + αtr(V ) ≤ η2 (tr(WxP⋆) + tr(WuL⋆)
+αtr(V⋆)). ■

We then have the following result.

heorem 3. Let U0, X0 and X1 be data generated from an experi-
ent on system (4) possibly with nonzero disturbance vector D0, and
onsider problem (25) with α > 0 arbitrary. If (25) is feasible and
he solution satisfies (18) then the resulting controller K is stabilizing
nd such that ∥T (K )∥2

2 ≤ η1(tr(WxP)+tr(WuL)). If (2) and (20) also
hold then

∥T (K )∥2
2 − ∥T (K⋆)∥2

2

∥T (K⋆)∥2
2

≤ (η1η2 − 1) + η3 (28)

ith η1 as in (18), η2 as in (20), and where

3 := αη1η2
tr(V⋆)

∥T (K⋆)∥2
2

(29)

ith V⋆ as in (27). ■

Theorem 3 is similar to Theorem 2. Like for (15), also here con-
ditions (2) and (20) are not needed to find a stabilizing controller
(Lemma 6), but they provide guarantees on the performance gap
from K⋆. The disadvantage with respect to (15) is that we now
have an extra term η3 which degrades the performance as α

increases.
In Theorem 4 we make one step further and provide a char-

acterization of the amount of noise that our method can tolerate.
The result is stated in an epsilon-delta manner, the precise bound
is given in (41). Later in Section 5.2 we will discuss on this result.

Theorem 4. Let U0, X0 and X1 be data generated from an experi-
ment on system (4) with persistently exciting input of order n + 1.
Consider problem (25) with α > 0 arbitrary. Then, for every η2 ≥ 1
and η1 ≥ η2 there exists a value δ ≥ 0 such that if ∥D0∥ ≤ δ then
(2) and (20) are satisfied (implying that (25) is feasible), and any
solution to (25) satisfies (18).

This result relies of the following lemma.

Lemma 8. Under the same assumptions as in Theorem 4, for every
ϵ ≥ 0 there exists δ ≥ 0 such that if ∥D0∥ ≤ δ then W0 has full row
ank and ∥D0∥∥W

†
0 ∥ ≤ ϵ, where A† is the right inverse of a full row

ank matrix A.

roof. Let ξ := (x(0), u), and let X0,ξ and X0,d be the state data
enerated by ξ and d, that is

X0,ξ ]k+1 := Akx(0) +

k−1∑
Ak−1−iBu(i)
i=0

6

[X0,d]k+1 :=

k−1∑
i=0

Ak−1−id(i)

for k = 0, . . . , T−1, where [A]i denotes the ith column of a matrix
A. Hence, W0 = W0,ξ + W0,d where

W0,ξ :=

[
U0
X0,ξ

]
, W0,d :=

[
0

X0,d

]
(30)

Since by assumption the input signal is persistently exciting of or-
der n+1 then W0,ξ has full row rank, which implies σmin(W0,ξ ) >
0 where σmin denotes the smallest singular value. Thus, by stan-
dard results on matrix perturbation, W0 has full row rank if
∥W0,d∥ < σmin(W0,ξ ). Now recall that, for any matrix A, ∥A∥ ≤

∥A∥F ≤
√
r∥A∥ where ∥ · ∥F denotes Frobenius norm and r is the

rank of A. Also recall that ∥A∥F = ∥vec(A)∥ where vec denotes
vectorization. It is readily seen that vec(X0,d) = Ω vec(D0) where

Ω :=

⎡⎢⎢⎢⎢⎣
0 0 0 · · · 0
I 0 0 · · · 0
A I 0 · · · 0
...

...
...

. . .
...

AT−2 AT−3 AT−4
· · · 0

⎤⎥⎥⎥⎥⎦
Thus ∥W0,d∥ ≤

√
n∥Ω∥∥D0∥, so W0 has full row rank if

∥D0∥ ≤
1

2
√
n∥Ω∥∥W †

0,ξ∥
(31)

where we used the relation σmin(W0,ξ ) = ∥W †
0,ξ∥

−1, which holds
because W0,ξ has full row rank by hypothesis. This inequality is
satisfied when ∥D0∥ is sufficiently small since Ω and W0,ξ are
independent of the disturbance. This shows the first part of the
claim. Now recall that σmin(A + B) ≥ σmin(A) − ∥B∥ for any two
atrices A and B. By letting A = W0,ξ and B = W0,d, condition

31) gives

W †
0 ∥

−1
≥ ∥W †

0,ξ∥
−1

− ∥W0,d∥ (32)

ote that condition (31) also implies 2∥W0,d∥ ≤ ∥W †
0,ξ∥

−1. Hence,
condition (31) ensures

∥W †
0 ∥ ≤ 2∥W †

0,ξ∥ (33)

This proves the second part of the claim because ∥W †
0,ξ∥ is inde-

pendent of the disturbance. ■

Proof of Theorem 4. Let ∥D0∥ be such that (31) is satisfied.
Then (2) is satisfied and (11) is feasible by Theorem 1. We now
determine a particular optimal solution to (11). Let K⋆ be the
optimal controller as in (8), and let P⋆ ⪰ I be the unique solution
to (A + BK⋆)P⋆(A + BK⋆)′ − P⋆ + I = 0. Define

Φ⋆ :=

[
K⋆

I

]
(34)

G⋆ := W †
0 Φ⋆, Q⋆ := G⋆P⋆ (35)

with W †
0 well-defined. Let γ⋆ := tr (WxP⋆) + tr (WuL⋆) with L⋆ :=

U0Q⋆P−1
⋆ Q ′

⋆U
′

0. Thus (γ⋆,Q⋆, P⋆, L⋆) satisfies all the constraints in
(11). Further, since K⋆ can be written as K⋆ = U0Q⋆P−1

⋆ we have
L⋆ = K⋆P⋆K ′

⋆. By definition of H2-norm, ∥T (K⋆)∥2
2 = tr (WxP⋆) +

tr (WuL⋆) so this solution is optimal for (11) as it achieves the
same cost of any other optimal solution (Theorem 1). Thus, a
sufficient condition for (20) is

η2∥D0∥
2tr(M⋆) + 2η2∥D0∥∥X1∥tr(M⋆) ≤ 1 −

1
η2

(36)

with M⋆ = G⋆P⋆G′
⋆. (Note that we could have derived a less

conservative condition using ∥M ∥ instead of η tr(M ) in (36).
⋆ 2 ⋆
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e want a condition on the noise enforcing (36) because it is
seful for the subsequent part of the proof.) Recall that X1 =

[B A]W0 + D0. Since M⋆ = W †
0 Φ⋆P⋆Φ

′
⋆(W

†
0 )

′ we thus have
tr(M⋆) = ∥W †

0 Φ⋆P
1/2
⋆ ∥

2
F ≤ ω∥W †

0 ∥
2, where we have set ω :=

n∥P⋆∥∥Φ⋆∥
2. As a final step, recall that ∥W0∥ ≤ ∥W0,ξ∥ +

√
n∥Ω∥∥D0∥ and that (31) implies ∥W †

0 ∥ ≤ 2∥W †
0,ξ∥. Hence,

nder (31), a sufficient condition for (36), hence for (20), is

2ω∥D0∥
2
∥W †

0,ξ∥
2
+ 8ω

√
n∥Ξ∥∥Ω∥∥D0∥

2
∥W †

0,ξ∥
2

+8ω∥Ξ∥∥W0,ξ∥∥D0∥∥W
†
0,ξ∥

2
≤

1
η2

(
1 −

1
η2

)
here Ξ := [B A]. Hence, a condition ensuring both (31) and
36), hence both (2) and (20) is

D0∥ ≤
1

∥W †
0,ξ∥

min
{

1
2
√
n∥Ω∥

,
ε2

√
36ω

,

ε2

24ω∥Ξ∥κ(W0,ξ )
,

ε2√
24ω

√
n∥Ξ∥∥Ω∥

}
=: δ1 (37)

here ε2 := η−1
2 (1 − η−1

2 ) and κ(A) := ∥A∥∥A†
∥ is the condition

umber of A. Condition (37) is satisfied for ∥D0∥ sufficiently small
ecause all the quantities defining δ1 are independent of the
oise, and this implies that (2) and (20) hold for ∥D0∥ sufficiently
mall. We next consider (18). Let (γ ,Q , P, L, V ) be any optimal
olution to (25), which exists under (37) by Lemma 7. We con-
ider two sub-cases. Assume that tr(M) ≤ η2tr(M⋆). Under (37),
ince (37) implies (36) and because η1 ≥ η2 we have

D0∥
2tr(M) + 2∥D0∥∥X1∥tr(M) ≤ 1 −

1
η1

(38)

hich ensures (18). Assume next that tr(M) > η2tr(M⋆). This is
he more difficult case which can occur when α is chosen small.
ote that X1M = (A + BK )PG′

+ D0M , thus condition (18) can be
ritten as

D0MD′

0 − (A + BK )PG′D′

0 −

D0GP(A + BK )′ ⪯

(
1 −

1
η1

)
I (39)

e want to bound in norm the second and the third term on the
eft side of the above inequality. Let for brevity η⋆ := η2∥T (K⋆)∥2

2,
:= min{σmin(Wx), σmin(Wu)}, and define Φ as in (34) with

respect to K . By Lemma 7, tr(WxP) + tr(WuL) + αtr(M) ≤ η⋆ +

η2tr(V⋆) where V⋆ = M⋆ = G⋆P⋆G′
⋆. Since tr(M) > η2tr(M⋆) we

have ∥P∥ ≤ η⋆/ρ and ∥L∥ ≤ η⋆/ρ. Further, since L = KPK ′ and
P ⪰ I we have ∥K∥

2
≤ η⋆/ρ. Accordingly, we have ∥A + BK∥ =

∥ΞΦ∥ ≤ ∥Ξ∥(1 + η⋆/ρ). It remains to bound the norm of G.
otice that αtr(M) ≤ η⋆ + αη2tr(M⋆). Hence, by recalling that
r(M⋆) ≤ ω∥W †

0,ξ∥
2 we then have ∥M∥ ≤ β where we set

:=
η⋆

α
+ ωη2∥W

†
0,ξ∥

2 (40)

Hence, since M = GPG
′

and P ⪰ I we have ∥G∥ ≤
√

β . It
follows that under (37) a sufficient condition for (39) is given
by 2

√
β∥D0∥∥Ξ∥(ρ + η⋆)η⋆ ≤ ρ2(1 − η−1

1 ). Hence, a condition
ensuring (37) and (39), hence (2), (18) and (20) is given by

∥D0∥ ≤ min
{
δ1,

ρ2ε1

2
√

β∥Ξ∥(ρ + η⋆)η⋆

}
(41)

where we set ε1 := 1 − η−1
1 . This condition is satisfied if ∥D0∥ is

sufficiently small since, except for D0, all the other quantities are
independent of the noise. ■
7

5.2. Discussion

Theorems 3 and 4 highlight some interesting facts which we
now discuss.
1. Role of α and quality of the data. To have (41) fulfilled one
needs ∥D0∥ ≤ δ1, where δ1 is defined in (37). Now, the term
δ1 is independent of the noise: it only depends on the system
parameters and on the matrix W0,ξ defined in (30), which is the
noiseless input-state response of the system to ξ = (x(0), u).
This indicates that the fulfilment of the condition ∥D0∥ ≤ δ1 will
depend on the quality of the data, namely on the ratio between
the magnitude of ξ (useful information) and the magnitude of
the noise (useless information). In fact, notice that in δ1 there
are two terms affected by ξ , the condition number κ(W0,ξ ) and
∥W †

0,ξ∥. The condition number is invariant to a scaling of ξ . On
the other hand, the term ∥W †

0,ξ∥ decreases as ξ scales up since,
given ζ := γ ξ with γ ∈ R, it holds that W0,ζ = γW0,ξ .
Hence the term χ := ∥D0∥∥W

†
0,ξ∥ decreases as the ratio between

the magnitude of ξ and the magnitude of the noise increases,
ensuring the fulfilment of the condition ∥D0∥ ≤ δ1. Under such
circumstances, the fulfilment of (41) will thus depend on how
big ∥D0∥ is compared with

√
β , with β defined in (40) (all the

other terms in the fraction in (41) are again constants). Since
β depends on α and ∥W †

0,ξ∥, and we are considering the case
in which χ is small, then (41) will then essentially depend on
the ratio ∥D0∥/

√
α, so a large enough α will suffice to ensure

(41). Thus, one can expect that for data of a reasonable quality
(χ sufficiently small), and α large enough, the SDP (25) will be
effective against noise, which is indeed confirmed in simulation.
Clearly, picking α large may degrade the performance as it may
lead to large values of η3 in (28). However, this is not always the
case. To see this, notice that the term η3 in (29) can be upper
bounded as

η3 ≤ αη1η2
n∥P⋆∥∥Φ⋆∥

2
∥W †

0 ∥
2

∥T (K⋆)∥2
2

(42)

here we used the bound tr(V⋆) ≤ n∥P⋆∥∥Φ⋆∥
2
∥W †

0 ∥
2 estab-

ished in the proof of Theorem 4 after (36). Except for W †
0 , all the

erms in (42) are parameters. By (33), ∥W †
0 ∥ ≤ 2∥W †

0,ξ∥ when
is sufficiently small and this implies α∥W †

0 ∥
2

≤ 4χ2α/∥D0∥
2.

his shows that even large ratios
√

α/∥D0∥ can lead to small
values of η3 if χ is small. Also this observation is confirmed in
simulation. We finally note that α > 0 is needed to have (41)
fulfilled. If we let α = 0 the proof of Theorem 4 breaks down.
This stresses the difficulties to get robustness guarantees with the
certainty-equivalence solution (15).
2. Role of the weight matrices. The bound in (41) depends on the
weight matrices via ρ = min{σmin(Wx), σmin(Wu)}. Simulations
how that it is more difficult to get stability when Wu is taken
arge relatively to Wx and α. This makes sense: when Wu is large
he cost function will mostly depend on L which must obey L ⪰

0QP−1Q ′U ′

0. To keep L small the algorithm will then favour so-
utions Q with U0Q ≈ 0. However, this does not ensure solutions
ith small tr(V ), meaning that robustness might be lost. This

s particularly risky for systems unstable in open-loop. In fact,
0Q ≈ 0 implies to restrict the search to low-gain controllers,
nd this may render stabilization an impossible task. In contrast,
hen Wu is small the algorithm will favour solutions with small
r(V ) because the other term tr(WxP) that appears in the cost
function cannot be lowered arbitrarily in view of the constraint
P ⪰ I . Decreasing Wu, however, may affect performance and this
can be inferred from (42): as ρ decreases, ∥T (K⋆)∥2

2 gets smaller,
potentially yielding larger performance errors.
3. Sample complexity. A final point is related to the number T of
ata. Like (11), also the SDP (25) is cheap in terms of sample
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omplexity since (41) can be satisfied even with T = (m +

)n + m (the ideal bound of the noiseless case). We cannot,
however, provide the typical complexity result stating that the
conditions for stability and performance become easier to satisfy
as T gets larger. This is however not surprising since (41) makes
no assumptions on the noise statistics. We will discuss a case
where having large datasets is beneficial in Section 6.2.

5.3. Verifying stability and performance bounds from data

We close this section by discussing how conditions (18) and
20) can be verified from data. Suppose we have computed a
olution to (25). If we know that ∥D0∥ ≤ δ for some δ > 0 then
18) can be tested via the following condition:

2
∥M∥ + 2δ∥X1M∥ ≤ 1 −

1
η1

(43)

hich thus provides a data-dependent test for stability.
If condition (43) is verified then we immediately have also

n estimate of the performance gap with respect to the opti-
al controller K⋆. In fact, by Theorem 3, condition (43) ensures

T (K )∥2
2 ≤ η1(tr(WxP) + tr(WuL)), thus

∥T (K )∥2
2 − ∥T (K⋆)∥2

2

∥T (K⋆)∥2
2

≤
η1(tr(WxP) + tr(WuL))

ρn
− 1 (44)

(We used the fact that ∥T (K⋆)∥2
2 ≥ ρn which follows since

T (K⋆)∥2
2 ≥ tr(WxP⋆) and P⋆ ⪰ I .). Alternatively, we can get

n estimate of the performance loss via (28). Assume that we
omputed a solution to (25) and that (2) and (43) are satisfied.
y Lemma 6, η1(γ ,Q , P, L) is feasible for (11), so tr(WxP⋆) +

r(WuL⋆) ≤ η1(tr(WxP) + tr(WuL)) =: η̃ where (γ⋆,Q⋆, P⋆, L⋆) de-
notes any optimal solution to (11). Pick in particular the solution
given in (34) and (35). Then we have ∥P⋆∥ ≤ η̃/ρ and ∥K⋆∥

2
≤

η̃/ρ. Further, we haveM⋆ = G⋆P⋆G′
⋆ where G⋆ = W †

0 Φ⋆ and where
Φ⋆ is as in (34). This implies that ∥M⋆∥ ≤ ∥W †

0 ∥
2η̃(ρ + η̃)/ρ2 and

∥X1M⋆∥ ≤ ∥X1W
†
0 ∥∥W †

0 ∥η̃(ρ + η̃)/ρ2. Thus, a sufficient condition
for (20) is

η̃(ρ + η̃)
ρ2

(
δ2∥W †

0 ∥
2
+ 2δ∥X1W

†
0 ∥∥W †

0 ∥

)
≤ 1 −

1
η2

(45)

hich can be tested from data. Hence, if (45) is verified for some
2 ≥ 1 then (28) applies. In particular, we can upper bound η3
s η3 ≤ η4 := αη1η2η̃(ρ + η̃)∥W †

0 ∥
2/ρ3 which follows from (42),

∥P⋆∥∥Φ⋆∥
2

≤ η̃(ρ + η̃)/ρ2, and from ∥T (K⋆)∥2
2 ≥ ρn. This leads

to

∥T (K )∥2
2 − ∥T (K⋆)∥2

2

∥T (K⋆)∥2
2

≤ (η1η2 − 1) + η4 (46)

ompared with (44) this upper bound requires the additional
ondition (45). However, when applicable it leads to better es-
imates, in fact estimates potentially close to zero (when we pick
small and δ∥W †

0 ∥ is small), which is not possible in general with
(44).

The choice of the weight matrices clearly affects also these
tests. In particular, according to the previous considerations, de-
creasing Wu can help to have (43) fulfilled but it may lead to
larger performance errors.

6. Extensions: nonlinear systems and de-noising

6.1. Nonlinear systems

The previous analysis extends to the problem of finding the
LQR law for a nonlinear system around an equilibrium using
data collected from the nonlinear system. In fact, around an
8

equilibrium a nonlinear system can be expressed via its first order
approximation plus a reminder, which acts as a process distur-
bance for the linearized dynamics. Consider a smooth nonlinear
system

x(k + 1) = f (x(k), u(k)) + ξ (k) (47)

here ξ is a process disturbance, and let (x, u) be a known
equilibrium pair, that is such that x = f (x, u). Thus, we can
ewrite the dynamics as

x(k + 1) = Aδx(k) + Bδu(k) + d(k) (48)

where δx := x − x, δu := u − u, A and B are the state and input
matrices of the linearized dynamics, d := ξ + r where r accounts
for higher-order terms and it has the property that is goes to zero
faster than δx and δu, namely

= R(δx, δu)
[
δx
δu

]
(49)

here R(δx, δu) is a matrix of smooth functions with the property
hat R(δx, δu) goes to zero as [δx′ δu′

]
′ goes to zero. Now, if the

air (A, B) defining the linearized system is stabilizable then a
ontroller K rendering A+ BK stable also exponentially stabilizes
he equilibrium (x, u) for the original nonlinear system. Thus, the
analysis in Theorem 3 carries over directly to this case.

Corollary 1. Consider a nonlinear system as in (47), along with
a known equilibrium pair (x, u). and let K⋆ be the optimal LQR
controller of the system linearized around (x, u). Then, Theorem 3
holds with (4) replaced by (48). ■

6.2. Gaussian disturbances and large datasets

For random disturbances with special distribution it might
be convenient to have large datasets. This is the case when the
disturbance has normal (Gaussian) distribution. As shown next,
the reason is that for this distribution we can decrease the noise
effect through de-noising strategies which become effective as
the number of data points gets large.

We discuss a simple de-noising strategy based on averaging of
ensembles (Wang & Uhlenbeck, 1945). Roughly, the idea is that the
effect of the disturbances can be filtered out by taking an average
of several signal cycles. Suppose we can make N experiments on
system (4), each of length T , and let (U (n)

0 ,D(n)
0 , X (n)

0 , X (n)
1 ), n =

, . . . ,N , be the dataset resulting from the nth experiment. Given
matrices S(n), n = 1, . . . ,N , let

S :=
1
N

N∑
n=1

S(n) (50)

denote their average. Accordingly, if we average N datasets we
obtain the relation

X1 = AX0 + BU0 + D0 (51)

Hence, the average signals still provide a valid trajectory of the
system, meaning that all previous results apply without any
modifications. In the rest of this section, to simplify the notation,
we let (X1, X0,U0,D0) := (X1, X0,U0,D0) with the understanding
that all the matrices now represent average quantities.

We now specialize the analysis to disturbances with normal
distribution. Following Lindgren (1993, Definition p. 435), a vec-
tor/collection of random variables is called multivariate normal if
very linear combination of its entries has normal distribution.
or a multivariate normal vector d we will write d ∼ N (µ, Σ),

where µ is the mean vector while Σ ⪰ 0 is the variance–
covariance matrix. According to this definition, assume that the
disturbance vectors d(k) are (stochastically) independent with
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istribution N (0, σ 2I). It is immediate to see that in this case the
verage matrix D0 has independent and identically distributed
i.i.d.) entries with distribution N (0, σ 2/N). In fact, each entry
f D0 is the sample mean of independent normals having distri-
ution N (0, σ 2), thus it is normal with distribution N (0, σ 2/N)
Lindgren, 1993, Theorems 3 and 4 pp. 180–181). Further, since
he vectors d(k) have zero covariances their entries are inde-
endent (Lindgren, 1993, Corollary p. 436). This implies that
he entries of D0 form a multivariate normal collection because
ny of their linear combinations is itself a linear combination of
ndependent normals (Lindgren, 1993, Theorems 3 and 4 pp. 180–
81). Finally, any two distinct entries of D0 have zero covariance
ince obtained from independent variables. Thus the entries of
0 are independent, which follows again from Lindgren (1993,
orollary p. 436).
Hence, D0 has i.i.d. entries with distributionN (0, σ 2/N), which

s actually nothing but a consequence that averaging N i.i.d.
ariables reduces the variance by N . This implies that E[D0D′

0] =
2 T
N I , and hence E[∥D0∥] = σ

√
T/N . Now, the interesting point

s that finite sample guarantees on ∥D0∥ also hold.

emma 9. Consider N experiments, each of length T , on system
4). Let the disturbance vectors be independent with distribution
(0, σ 2I). Then, for any µ > 0, the average matrix D0 ∈ Rn×T

satisfies

∥D0∥ ≤ σ

√
T
N

(
1 + µ +

√
n
T

)
(52)

ith probability at least 1 − e−Tµ2/2.

roof. By the previous discussion, D0 has i.i.d. entries with distri-
ution N (0, σ 2/N). Then, the result follows directly from Wain-
right (2019, Theorem 6.1). ■

Building on Lemma 9, we have the following result which
escends directly from Theorems 3 and 4.

heorem 5. Consider N experiments, each of length T , on system
4) and let (X1, X0,U0,D0) := (X1, X0,U0,D0) be the average data
atrices. Assume that the experiments are carried out from the
ame initial state and with the same input signal u, and that u is
ersistently exciting of order n+1. Also assume that the disturbance
ectors are i.i.d. with distribution N (0, σ 2I). Consider problem (25)
ith α > 0 arbitrary. Then, for every µ > 0, η2 > 1 and η1 ≥ η2
here exists a value N such that if N ≥ N, with probability at
east 1 − e−Tµ2/2, (25) is feasible and its solution is such that K is
stabilizing and satisfies (28). ■

The explicit value of N can be directly computed from (41)
and, in fact, Theorem 5 is similar in spirit to Theorem 4. The main
difference with respect to Theorem 4 is that now the disturbance
is also allowed to have large magnitude since its effect can be
compensated by N . The assumption that the experiments are
carried out from the same initial state and with the same input
is used to guarantee that W0,ξ in (41) has full row rank and is
ndependent of N . This assumption can be relaxed by asking that
here exists a constant w > 0 such that σmin(W0,ξ ) ≥ w for
very N . However, in this case, it is difficult to characterize initial
tates and inputs for which σmin(W0,ξ ) is independent of N . The
onditions to verify stability and performance from data are the
ame as in Section 5.3.

. Monte Carlo simulations

.1. Random linear systems

We consider 100 systems as in (4) with n = 3 and m = 1,
nder three types of noise: white Gaussian noise (WGN), constant
9

bias and sinusoidal disturbances. In all the cases, we also consider
different levels of noise. Simulations were performed in Matlab.
For every type (and level) of noise we test (25) with α = 0.1, 1
and 10. For each experiment, we choose the entries of A and B
and of the initial state from N (0, 1) (command randn). For each
experiment, the controller is designed using T = 20 samples
generated by applying an input u ∼ N (0, 1) (by Lemma 1 con-
dition (2) requires a minimum of 7 samples). WGN is generated
by taking d ∼ N (0, σ 2I). We vary σ by considering different sce-
narios of the signal-to-noise (SNR), computed (command snr) by
comparing the data matrices [x(0) BU0] and D0 (cf. Section 5.2.1).
We included B to measure the effective magnitude of the input
signal that enters the system relative to the noise. Constant bias
is obtained by applying to each input channel a value κ from a
uniform distribution (−κ, κ). Sinusoidal disturbance is obtained
by applying to each input channel a signal κ sin(k) with κ as
above.

We have solved (25) using CVX (Grant & Boyd, 2014), consid-
ering as weight matrices Wx = I and Wu = 1. We denote by S
the percentage of times we find a stabilizing controller, and by
V the percentage of times we are able to infer stability via (43)
using a bound δ for the norm of D0. When we consider WGN,
we select δ equal to the right side of (52) with µ = 0.1. This
choice, which corresponds to a 50% overestimate of σ , gives a
correct bound for ∥D0∥ in all the experiments. As for constant
and sinusoidal disturbances, we consider a worst-case estimate
D̂0 = κ1n×T where 1n×T is the n × T matrix of all ones, yielding
δ =

√
Tnκ . For each type (and level) of noise, we let

k :=
∥T (K (k))∥2

2 − ∥T (K (k)
⋆ )∥2

2

∥T (K (k)
⋆ )∥2

2

e the performance gap in the kth experiment. We denote by
the median of Ek through all the experiments that return a

stabilizing controller, and by P the median of the estimate of Ek
btained via (44) or (46), choosing the best outcome. Each type
and level) of noise is tested with the same set of plant matrices
nd inputs. The results, reported in Table 1, can be summarized
s follows:
. Stability and stability verification. As expected, the best results
n terms of stability are obtained with α = 10 which gives very
ice results also with very low SNR, while α = 1 is a bit more
ragile but still effective. In contrast, α = 0.1 proves to be much
ore fragile. This fact could have been inferred by noting that
> 0.33 already for σ = 0.05, which gives a value δ/

√
α > 1

hat can be regarded too high for the SDP (25) to be effective
gainst noise (cf. Section 5.2.1). This also confirms the fragility
f the certainty-equivalent solution (15) corresponding to α = 0,
hich, for WGN, achieves a score S = 76% already for σ = 0.1.
he gap between S and V was expected and becomes more and
ore evident as the SNR gets larger. This gap is due to replacing

he noise matrix D0 in (18) with its norm bound δ, which we use
n (43) to derive a stability test verifiable from data. Condition
18) is in fact much less conservative than (43). For instance, for
GN with σ = 0.1, (18) is verified in 77% of the cases with
= 1 indicating that the theoretical condition for stability is not

o conservative. Nonetheless, also (43) gives acceptable results
or a medium–high SNR (≥ 20). Simulations also confirm that
obustness increases if we decrease Wu (cf. Section 5.2.2). For
nstance, for WGN with σ = 0.1, a choice Wx = I and Wu = 0.01
eturns S = 96% and V = 48% using α = 1.
. Performance and performance verification. In this case the best
esults are obtained for α = 1 which thus provides a good
alance between robustness and performance with median error

below 5% even for σ = 0.3. As expected, α = 10 results in
lower performance for high SNR, a case where large values of
α are indeed not needed. We also see that α = 0.1 performs
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able 1
imulation results for 100 random systems using (25) with Wx = I and Wu = 1 (if V = 0% we write ×to denote that the performance cannot be estimated). For
GN, the last three rows report simulation results with averaging.

WGN WGN WGN WGN WGN Constant bias Constant bias Sine wave Sine wave
σ = 0.01 σ = 0.03 σ = 0.05 σ = 0.1 σ = 0.3 κ = 0.05 κ = 0.1 κ = 0.05 κ = 0.1
SNR = 33.4 (dB) SNR = 23.9 SNR = 19.4 SNR = 13.4 SNR = 3.9 SNR = 24.7 SNR = 18.7 SNR = 30.2 SNR = 24.1

S for α = 0.1 96% 91% 89% 82% 77% 95% 91% 96% 94%
α = 1 100% 97% 95% 91% 83% 97% 96% 98% 96%
α = 10 100% 98% 97% 96% 90% 98% 97% 100% 100%
V for α = 0.1 86% 43% 17% 0% 0% 14% 1% 17% 2%
α = 1 92% 76% 52% 11% 0% 36% 8% 38% 7%
α = 10 92% 77% 53% 16% 0% 42% 13% 42% 13%
M for α = 0.1 1e−4 0.0069 0.0183 0.0516 0.1231 0.0019 0.0083 0.0012 0.0042
α = 1 0.0011 0.0022 0.0052 0.0137 0.0469 0.0024 0.0055 0.0017 0.0025
α = 10 0.0274 0.0303 0.0333 0.0380 0.0533 0.0254 0.0282 0.0272 0.0303

P for α = 0.1 1.3954 2.5980 12.4329 × × 11.6236 12.3443 4.5470 5.5054
α = 1 1.4631 2.2209 3.9421 4.8283 × 4.6175 9.0106 4.4997 5.0295
α = 10 1.6143 2.5319 3.4542 4.3980 × 5.0817 8.6347 4.8935 7.6219

Save for α = 1 100% 100% 100% 100% 96%
Vave for α = 1 100% 99% 97% 94% 70%
Mave for α = 1 0.0012 0.0013 0.0013 0.0014 0.0034
Pave for α = 1 1.1345 1.2801 1.3380 1.6097 2.6603
(
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worse than α = 1 for low SNR. This is because for low SNR there
re many instances where the solution with α = 0.1 is close to
nstability, resulting in poor performance. The gap between M
and P is similar to the one between S and V . We note that for
ow SNR the best results for P are often obtained with α = 10.
he explanation is that for low SNR the best value for P is often
he one coming from (44) which depends on η1, and η1 is smaller
hen α is large. In fact, large values of α lead to small values of
r(M), making (43) easier to fulfil even with small values of η1.
. Averaging. For WGN, robustness can be increased by averaging
ata from multiple experiments (cf. Section 6.2). This is advanta-
eous with respect to increasing α because no performance loss
s introduced. To emphasize this point, the last three rows of
able 1 report the results for α = 1 with N = 100 experiments
or each system. As expected, the improvement is significant. We
ote that M does not converge to zero. This is consistent with
he fact that, due to α > 0, the solution does not match the
ptimal one even when D0 = 0. To improve performance, we
ust decrease α which does not bring issues in this case. For

nstance, for σ = 0.01 a choice α = 0.01 returns S = V = 100%
long with M = 1e–6 and P = 0.8803. Very small values of P
re possible in this case since the best values for P are now those
esulting from (46).

.2. Case study of Dean et al. (2020)

We tested our method on the Laplacian system considered in
ean et al. (2020) under the same setting of input and noise in
(0, I) (SNR= 0). There, the authors consider an indirect method,

alled Coarse-ID control, that estimates a model from multiple
xperiments (called rollouts) and then designs a controller using
oth the model and uncertainty estimate. In Dean et al. (2020,
ection 6), this method is tested for different choices of the
umber N of rollouts and the rollout length T using a bootstrap
rror estimate, which is validated empirically. A total of ≈ 300
amples are shown to be sufficient to have a good trade-off
etween robustness and performance, namely S = 100% and

≈ 1 over 100 trials with T ≈ 60 and N = 6 (Dean et al., 2020,
igure 8). The value M ≈ 1 is good since the LQR weight matrices
re selected as Wx = 10−3I and Wu = I , which gives a small
ptimal cost ≈ 0.1373. The performance loss further decreases
p to M ≈ 0.6 for T = 100. Similar results but with slightly
orse performance are obtained by increasing N and decreasing
, namely S = 100% and M ≈ 2 using T = 6 and N = 100 (Dean
t al., 2020, Figure 2).
10
As for our method, we consider T = 20 (by Lemma 1 condition
2) requires at least 15 samples). The results are in line with those
n Section 7.1, namely large values of α give more robustness but
ower performance, while small values of α have opposite effect.
e report the results for α = 1. With this choice we obtain
= 100% and M = 0.5766 already with N = 8 over 100 trials

btained by randomly varying input and noise, hence with less
han 200 samples (N > 1 is needed here given the extremely low
NR). Thus we can conclude that, although originally devised to
ackle deterministic noise, our method is equally suited for the
tochastic case. As noted in Section 7.1.3, for large values of N
ne can further improve the performance by decreasing α. For
nstance, N = 100 returns S = 100% and M = 0.2787 using
α = 0.1. We finally point out that, at least for our method,
Wx = 10−3I and Wu = I is not the best choice in terms of
robustness (cf. Section 5.2.2). For instance, for α = 1, a choice
of the LQR weights equal to Wx = I and Wu = 10−3I returns

= 100% and M = 0.6270 already with N = 1.

.3. Nonlinear inverted pendulum

Consider the Euler discretization of an inverted pendulum. The
ystem is as in (47) with

(x, u) =

⎡⎣x1 + ∆x2
∆g
ℓ

sin x1 +

(
1 −

∆ν

mℓ2

)
x2 +

∆

mℓ2
u

⎤⎦
where ∆ is the sampling time, m is the mass, ℓ is the distance
from the base to the centre of mass of the balanced body, ν

is the coefficient of rotational friction, and g is the acceleration
due to gravity. The states x1, x2 are the angular position and
velocity, while u is the applied torque. The system has an unstable
equilibrium in (x, u) = (0, 0) corresponding to the pendulum
pright position, hence δx = x and δu = u. We assume that the
arameters are ∆ = 0.01, m = ℓ = 1, ν = 0.01, and g = 9.8.
We made 100 experiments by considering initial conditions

n N (0, 0.1), corresponding to an initial displacement from the
quilibrium of about ±10◦, and u ∼ N (0, 1). The results are in
ine with the previous ones. In particular, when ξ = 0 (the only
isturbance source is the nonlinearity) we obtain S = 100% with

= 0.035 using (25) with trajectories of length T = 20. We also
onsidered the case of WGN noise affecting the velocity dynamics,
amely u replaced by u + ξ with ξ ∼ N (0, σ ). In this case, we
btain S = 100% for σ ≤ 0.1 (SNR ≥ 20) up to S = 12% for σ = 1
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SNR ≈ 0). Just like for linear systems, at the expense of reducing
he performance, robustness can be enhanced by decreasing Wu
r by increasing α (for instance, with α = 10 we have S = 64%
or WGN with σ = 1).

. Concluding remarks

The design of (optimal) controllers from noisy data is a very
hallenging and largely unsolved problem. In this paper we took
ome steps in this direction for the LQR problem. By resorting
o a convex SDP formulation of the LQR problem, we proposed
wo novel methods that explicitly account for noise through an
ugmented cost function which favours noise-robust solutions.
oth methods provide finite sample stability guarantees, and do
ot require specific noise models such as the noise being white.
A great leap forward would come from extending the ideas

f this paper to incorporate state and input safety constraints
Wabersich & Zeilinger, 2018). At the moment of writing, we
im at tackling this challenge using concepts and tools from set-
nvariance control. For stabilization problems with no optimality
equirements, recent results have shown that data-based formu-
ations of set-invariance properties can be efficiently cast as linear
rograms, and they can handle noisy data (Bisoffi, De Persis,
Tesi, 2019). Another important research venue is the case of

artial state information. We have addressed this problem in the
ontext of stabilization (De Persis & Tesi, 2020a), and the exten-
ion to optimality constraints seems doable although it requires
onsideration of several technical aspects.

ppendix

roof of Lemma 2. The proof follows the same logical steps
s Scherer and Weiland (2019, Proposition 3.13) given for the
odel-based approach. Here, we consider a data-based version.
ince X0Q = P and K = U0QP−1 we have

K
I

]
=

[
U0
X0

]
QP−1

= W0QP−1

his implies A + BK = (X1 − D0)QP−1. Hence, the first constraint
n (11) is equivalent to S ⪯ 0 where

:= (A + BK )P(A + BK )′ − P + I (A.1)

ence K is stabilizing. As for the second part of the claim, since
⪯ 0 there exists a matrix Ξ such that S + ΞΞ ′

= 0. Thus, P
coincides with the controllability Gramian of the extended system[
x(k + 1)
z(k)

]
=

⎡⎣ A + BK
[
I Ξ

][
W 1/2

x

W 1/2
u K

]
0

⎤⎦[x(k)d(k)
ξ (k)

]
(A.2)

ith ξ an additional input. Let us call Te(K ) the transfer function
f (A.2). By definition of H2-norm,

∥Te(K )∥2
2 = tr (WxP) + tr

(
WuKPK ′

)
= tr (WxP) + tr

(
WuU0QP−1Q ′U ′

0

)
≤ tr (WxP) + tr (WuL)

n turn, this implies ∥T (K )∥2
2 ≤ tr (WxP) + tr (WuL) because

e(K ) = [T (K ) TΞ (K )], where TΞ (K ) is the transfer function of
A.2) from ξ to z. ■

roof of Lemma 3. Consider any stabilizing controller and de-
ote by P the controllability Gramian associated with the closed-
oop system (5), which solves S = 0 with S as in (A.1). Consider
11
he system of equations (12) in the unknown G, which has a
olution under (2). In particular, pick

+ := W †
0

[
K
I

]
here A† denotes the right inverse of a full row rank matrix A.
ow, define Q := G+P , L := U0QP−1Q ′U ′

0 and γ := tr(WxP) +

r(WuL). Thus (γ ,Q , P, L) is feasible for (11), and K = U0QP−1

hich shows the first part of the claim. The second part of the
laim follows from

T (K )∥2
2 = tr (WxP) + tr

(
WuKPK ′

)
= tr (WxP) + tr (WuL)

hich concludes the proof. ■
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