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Tutorial

Social and behavioral sciences are known to be plagued 
by undersampling (Ioannidis, 2005). In the traditional 
statistical framework, even when the effect exists, under-
sampled studies yield either nonsignificant results or sig-
nificant results because of overestimating the size of the 
effect. Because nonsignificant results are less likely to 
reach publications than significant ones, results of under-
sampled studies either remain unpublished or impose a 
substantial bias on the body of published empirical find-
ings. In addition, the low informational value of unders-
ampled studies may not justify the cost or potential risk 
they induce (Halpern et  al., 2002). To mitigate these 
issues, authors are increasingly expected to plan and jus-
tify the sample size of their study (Maxwell, 2004). How-
ever, such sample-size justifications are meaningful only 
if they provide sufficient information to the readers to 
judge the adequacy of the author’s decisions.

In the statistical literature, a few methods have been 
proposed to determine and justify sample size. In prac-
tice, however, authors are short of practical guides on 
how to navigate among the different sample-size meth-
ods. The aim of our tutorial is to point out for each 

method the essential decision points that a researcher 
has to face during this process. We provide a short 
description of each method and the corresponding 
parameters, but we avoid listing their advantages and 
disadvantages. Because there are disagreements between 
the experts of the field regarding the correct use of some 
of the methods, we intentionally try to remain impartial 
and do not favor any of the presented methods. Research-
ers who want to know more about each method can 
find a number of useful references in the description of 
the methods. We also provide a collection of analysis 
code ready to use and a ShinyApp that helps researchers 
use and report the main sample-size-estimation tech-
niques for different scenarios. The tutorial is focused 
exclusively on the scenario of the comparison of two 
independent groups (i.e., the independent t-test design) 
with a one-sided test. The most important terms related 
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to sample size planning are defined in the glossary at 
the end of this article.1

Sample-Size Determination and 
Justification

A lot of factors go into the determination of the sample 
size for an independent two-group study design. In this 
section, we first provide a bird’s-eye view of the most 
important decisions. Next, we go into more detail on the 
specific inference tool that results from the combination 
of the larger choices.

It is crucial to not just state how one determined a 
planned sample size but to also give the reader insight 
into the reasons behind one’s choices. In a recent over-
view, Lakens (2021) listed six types of general approaches 
to justify sample size in quantitative empirical studies: 
(a) measure entire population, (b) resource constraints, 
(c) a priori power analysis, (d) accuracy, (e) heuristics, 
and (f) no justification. For the first approach, no quan-
titative justification is necessary, and for the second 
approach, the researcher has no freedom to increase the 
sample size. Power analysis, or more generally, the esti-
mation of true positive rate, is used when one plans to 
conduct hypothesis testing; accuracy justifications are 
used when one plans to conduct parameter estimation. 
Our tutorial mainly focuses on the resource constraints, 
a priori power analysis, and accuracy approaches and is 
aimed at providing a hands-on approach for the mechani-
cal part of the sample-size determination (i.e., the calcu-
lation). For a deeper discussion of justification of these 
approaches or for other approaches (i.e., using heuristics 
or not providing justification), see Lakens (2021).

Choosing a method in case of  
sample-size justification

In an ideal world, the choice for the number of partici-
pants would be solely determined by scientific consid-
erations, and depending on the chosen technique, the 
collection of data would continue until either the desired 
sample size or a desired outcome has been reached. In 
practice, researchers are limited by time (collecting data 
is quite demanding), money (participants or people col-
lecting the data may be paid, and the same may hold 
for renting space or equipment), or availability of par-
ticipants (the population may be relatively small and/or 
the participation rate quite low).

When constrained by limited resources, it is important 
to be transparent about those limitations. It is also 
important to be open about scientific considerations. 
Depending on the nature of the study (Perhaps it is an 
initial exploration?), small sample sizes need not be a 
deal breaker. So although more data are always preferred 
from an informational point of view, by owning the 
limitations of a study, researchers improve future readers’ 

understanding of the process leading up to the eventual 
article and also answer in advance to readers who think 
the chosen sample size was insufficient.

Whether or not authors have limited resources, two 
important choices need to be made: (a) whether they 
are interested in statistical testing or in parameter esti-
mation and (b) whether they want to conduct their 
statistical inference within the frequentist framework or 
within the Bayesian framework. Starting with the first 
decision, statistical testing is the primary framework 
when one is interested in establishing whether an under-
lying population effect is equal to, different from, larger 
than, or smaller than a certain value. In essence, statisti-
cal testing lends itself to binary decision-making.  
Typically, testing is concerned with a fixed-point null 
hypothesis (e.g., there is no difference between two 
groups), although using intervals for testing is also pos-
sible. Alternatively, one might be interested in parameter 
estimation that is less interested in establishing the exis-
tence of a difference and instead is concerned with 
establishing the magnitude of the difference.

The second important decision concerns the statistical 
framework. Choosing to conduct statistical tests within 
a frequentist framework, one is usually interested in 
balancing the Type I (false positive) and Type II (false 
negative) error rates. Practitioners choosing to conduct 
statistical tests within a Bayesian framework are typically 
interested in being able to quantify the relative probabil-
ity of hypotheses or models being true given the data 
and in including prior information.

Within the realm of statistical testing, there are some 
other factors that affect the preferred inference tool: Do 
you prefer to test for equivalence (no difference in mean) 
or for superiority (mean of one group larger than mean 
of other group), are you interested in calculating a 
required sample size for a specific hypothetical effect 
size or for a range of possible values, and do you wish 
to employ sequential testing (applicable to Bayesian test-
ing)? In case of testing, some of the methods are designed 
to find support for the null hypothesis (e.g., two one-
sided tests [TOST], region of practical equivalence 
[ROPE]), whereas others are designed to find support for 
the alternative hypothesis (e.g., traditional null hypoth-
esis testing), and some methods are designed to find 
support for either (e.g., Bayes’s factor design analysis 
[BFDA]). For frequentist estimation, the preferred infer-
ence tool might differ depending on whether one evalu-
ated uncertainty for each group separately or jointly. We 
describe these specific factors when we go into detail 
about each of the preferred methods. A flow chart rep-
resenting all of these choices is given in Figure 1.

How to use this guide

In the next section, we illustrate the specific inference 
tools and resulting sample-size calculations in more 
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detail using a ShinyApp and an R package we have 
developed. Throughout this section, we recurrently use 
two terms that have different meanings for different tech-
niques. These are the true positive rate (TPR) and the 
equivalence band (EqBand). The TPR reflects the long-
run probability of concluding there is an effect, given 
that it does exist. For traditional null hypothesis testing, 
this is typically referred to as power, but related concepts 
exist for different inference tools. The EqBand refers to 
an effect size region, typically around zero, that is 
deemed clinically insignificant or irrelevant. Different 
names are given to this region depending on the tech-
nique that employs them, such as statistical effect size 
of interest (SESOI) or ROPE. For both TPR and EqBand, 
we explain the specific meaning in context of the rele-
vant inference tool below.

For each method, only the main parameters can be 
adjusted with a certain range of values in the ShinyApp 
by using a slider. These parameters are presented in the 
text in bold. Other parameters are set to preset values 
in the application but can be adjusted in the accompany-
ing R package to any sensible value. These parameters 
are highlighted in italics in the tutorial. Both the app 
and the package allow the users to save or copy a text 
template with the results of the sample-size determina-
tion. We offer a list of possible justifications at the deci-
sion points for each method (indicated between 
brackets), but users are able to provide their own justi-
fication as free text. Note that the listed justifications are 
meant to provide guidance for the user, and they are not 
sufficient without further details provided by the 
researcher in the context of the given study. For exam-
ple, previously reported values should always be accom-
panied by a theoretical justification of why these values 
make sense. The provided justification text could serve 
as a stub for the description of the chosen sample size 
in an article, a preregistration or registered report, or a 
grant proposal.

Throughout, we use the example story of Mary, the 
educational psychologist. Mary has come up with a new 
set of games that challenge spatial insight. She would 
like to test whether distributed and targeted engagement 
with these games for a period of 6 months for children 
in the age range of 8 to 12 will lead to lasting improve-
ments on their IQ score as measured through Raven’s 
progressive matrices test (population mean = 100, SD = 
15). Mary collects data for a control sample that gets 
regular education and for an experimental sample and 
plans to compare those samples. Mary has good reason 
to be skeptical about the effectiveness of training on 
increasing performance because there are several studies 
questioning the existence of such effects (Owen et al., 
2010; Simons et al., 2016). For illustrative purposes, in 
some of the upcoming examples, Mary expects a null 
effect, and in others, Mary expects a positive effect  

to highlight the different research scenarios for each 
 sample-size-planning method. We also present a justifi-
cation text for each sample-size-planning method based 
on Mary’s choices described in the example research 
scenario for the given method.

The ShinyApp is available on https://martonbalazs 
kovacs.shinyapps.io/SampleSizePlanner, and the R pack-
age can be installed by running the following command 
in R devtools::install_github(“marton-balazs-kovacs/
SampleSizePlanner”). There is more information about 
the R package and the ShinyApp at https://github.com/
marton-balazs-kovacs/SampleSizePlanner or https://
marton-balazs-kovacs.github.io/SampleSizePlanner/.

Testing

Effect size = 0

Two one-sided tests (TOST).
Study context. Mary would like to know what sample 

size she needs for a power of .80 to study whether the 
mean IQ score of the experimental group’s population is 
practically equivalent to the mean IQ score of the control 
group. She tests this assumption in a frequentist frame-
work and considers a population effect size between −0.2 
and 0.2 to be “practically equivalent” to no difference. This 
would correspond to IQ scores between 97 (100 + 15 × −.2)  
and 103 (100 + 15 × .2).

Description. TOST is a frequentist equivalence testing 
approach that adopts two one-sided hypotheses to desig-
nate an interval hypothesis (Schuirmann, 1987). The lower 
and upper boundaries of the interval are determined by 
the EqBand (i.e., SESOI) around the expected popula-
tion effect size (e.g., 0). Lakens et al. (2018) listed several 
methods that can be used to determine the SESOI. In case 
of TOST, the two null hypotheses state that the effect size 
is equal to the lower and upper EqBand values, whereas 
the alternative hypotheses state that the effect size is sig-
nificantly smaller than the upper EqBand value and sig-
nificantly larger than the lower EqBandvalue. In case both 
one-sided tests reject the null hypothesis at a given signifi-
cance level, the group means are considered to be practi-
cally equivalent. See Lakens et al. (2018) for further reading.

Parameters.

Delta: The expected population effect size. In most 
cases, this value will be zero.

TPR: The desired long-run probability of obtaining 
a significant result with TOST, given delta.

EqBand: The chosen width of the region for practical 
equivalence (i.e., the SESOI).

Alpha: The level of significance. The α level in the 
application is preset to .05.

https://martonbalazskovacs.shinyapps.io/SampleSizePlanner
https://martonbalazskovacs.shinyapps.io/SampleSizePlanner
https://github.com/marton-balazs-kovacs/SampleSizePlanner
https://github.com/marton-balazs-kovacs/SampleSizePlanner
https://marton-balazs-kovacs.github.io/SampleSizePlanner/
https://marton-balazs-kovacs.github.io/SampleSizePlanner/
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How to use the package. To use this method in R, 
run the following code: SampleSizePlanner::ssp_
t o s t ( t p r  = 0 . 8 ,  e q _ b a n d  = 0 . 2 ,  
delta =  0).

How to report your sample-size estimation. To calcu-
late an appropriate sample size for testing whether the 
two groups are practically equivalent, we used the TOST 
(Schuirmann, 1987) method. We used an α of .05. We set 
the aimed TPR to be 0.8 because [1) it is the common 
standard in the field; 2) it is the journal publishing require-
ment]. We consider all effect sizes below 0.2 equivalent to 
zero because [1) previous studies reported the choice of a 
similar equivalence band; 2) of the following substantive 
reasons: . . . ]. The expected delta was 0 because [1) we 
expected no difference between the groups]. Given these 
parameters, a sample size of 429 per group was estimated 
to reach a TPR of 0.8 with our design.

Equivalence interval Bayes’s factor.
Study context. Mary would like to know what sample 

size she needs to have a long-run probability of .80 of 
obtaining a Bayes’s factor (BF) larger than 10. Mary would 
like to test whether the mean IQ score of the experimental 
group’s population is practically equivalent to the mean IQ 
score of the control group. Mary hypothesizes that there is 
no difference (i.e., H0 is true). Mary tests this assumption 
in a Bayesian framework. Mary considers a population 
effect size between −0.2 and under 0.2 to be practically 
equivalent. This would correspond to IQ scores between 
97 (100 + 15 × −.2) and 103 (100 + 15 × .2).

Description. Equivalence interval BFs contrast an equiv-
alence hypothesis to a nonequivalence hypothesis and 
quantify the evidence with BFs. Typically, H0 constitutes 
the equivalence interval (comparable with SESOI in the 
TOST framework), and Ha constitutes the complementary 
nonequivalence regions. Formally, the BF is calculated 
by dividing the fraction posterior area inside the interval/ 
posterior area outside the interval (i.e., the posterior odds) 
by the fraction prior area inside the interval/prior area out-
side the interval (i.e., the prior odds). The resulting value 
quantifies how much more likely it is that the data occurred 
under a population effect size deemed equivalent relative 
to the data having occurred under a population effect size 
deemed nonequivalent. The current implementation uses a 
default Cauchy prior on effect size with the possible scale 
parameters of medium (r = 1/ 2), wide (r = 1), or ultra-
wide (r = 2). For further reading, see Morey and Rouder 
(2011), Ravenzwaaij et al. (2019), and Linde et al. (2020).

Parameters.

Delta: The expected population effect size.

TPR: The desired long-run probability of obtaining 
a BF at least as high as the threshold, given delta.

EqBand: The chosen width of the equivalence region.

PriorScale: The scale of the Cauchy prior distribu-
tion. The PriorScale in the application can be set to 
1/ 2, 1, and 2.

Threshold: Critical threshold for the BF. The threshold 
level in the application can be set to 10, 6, or 3.

How to use the package. To use this method in R, 
run the following code: SampleSizePlanner::ssp_ 
eq_bf(tpr =  0.8, delta = 0, eq_band = 0.2,  
thresh = 10, prior_scale = 1/sqrt(2)).

How to report your sample-size estimation. To estimate 
the sample size, we used the interval equivalent BF (Morey 
& Rouder, 2011; Ravenzwaaij et  al., 2019) method. We 
used a Cauchy prior distribution centered on 0 with a scale 
parameter of 1/ 2. We set the aimed TPR at 0.8 because 
[1) it is the common standard in the field; 2) it is the jour-
nal publishing requirement]. We consider all effect sizes 
below 0.2 equivalent to zero because [1) previous studies 
reported the choice of a similar equivalence region; 2) of 
the following substantive reasons: . . . ]. The expected delta 
was 0 because [1) we expected no difference between the 
groups]. Our BF threshold for concluding equivalence was 
10. Given these parameters, a minimal sample size of 144 
per group was estimated to reach 0.8 TPR for our design.

Effect size >0 (frequentist)

Classical power analysis.
Study context. Mary would like to know what sample 

size she needs for a power of .80 to study whether the 
mean IQ score of the experimental group’s population is 
significantly higher than the mean IQ score of the control 
group. She tests this assumption in a frequentist frame-
work for a hypothetical population effect size of 0.5. This 
corresponds to a mean IQ score of 107.5 in the experi-
mental group (100 + 15 × .5), assuming a mean IQ score 
of 100 in the control group.

The classical power analysis approach allows one to 
calculate the required sample size to obtain a significant 
result for the null hypothesis test a certain proportion 
of times in the long run given an assumed population 
effect size.

Parameters.

Delta: The expected population effect size.

TPR: The desired long-run probability of obtaining 
a significant result with a one-sided t test, given delta.

Maximum N: The maximum number of participants 
per group (both groups are assumed to have equal 
sample size).

Alpha: The level of significance. Alpha is preset to .05 
in the application.
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How to use the package. To use this method in R, 
run the following code: SampleSizePlanner::ssp_
power_tradi tional(tpr = 0.8, delta = 0.5, 
max_n = 5000, alpha = 0.05).

How to report your sample-size estimation. We used a 
power analysis to estimate the sample size. We used an α 
of .05. We set the aimed TPR at 0.8 because [1) it is the 
common standard in the field; 2) it is the journal publish-
ing requirement]. The expected delta was 0.5 because [1) 
previous results published in . . . ; 2) of the following sub-
stantive reasons: . . . ]. Given these parameters, a minimal 
sample size of 51 per group was estimated to reach 0.8 
TPR for our design.

Power curve.
Study context. Mary would like to know what sample 

size she needs for a power of .80 to study whether the 
mean IQ score of the experimental group’s population is 
significantly higher than the mean IQ score of the control 
group. She tests this assumption in a frequentist frame-
work. However, she is reluctant to commit to a single 
hypothetical population effect size a priori, preferring to 
calculate required sample size for a range of hypothetical 
deltas between 0.1 and 0.9.

The power curve method is similar to a classical 
power analysis, but instead of calculating the appropri-
ate sample size for one hypothesized population effect 
size, the method calculates the required sample size for 
a range of plausible population effect sizes.

Parameters.
Delta: A range of hypothetical population effect sizes.

TPR: The desired long-run probabilities of obtaining 
a significant result with a one-sided t test, given each 
value of delta.

Maximum N: The maximum number of participants 
per group (both groups are assumed to have equal 
sample size).

Alpha: The level of significance. Alpha is preset to .05 
in the application.

How to use the package. To determine the sample  
sizes for each delta, see curve_data <- SampleSize-
Planner::ssp_power_curve(tpr = 0.8, delta = 
seq(0.1, 0.9, 0.01), max_n = 5000).

To plot the power curve, see SampleSizePlanner:: 
plot_power_curve(delta = curve_data$delta, 
n1 = curve_data$n1, animated = FALSE).

How to report your sample-size estimation. We used a 
power analysis to estimate the sample size. We used an α 
of .05. We set the aimed TPR at 0.8 because [1) it is the 
common standard in the field; 2) it is the journal publish-
ing requirement]. Because [1) we have no clear expecta-
tion of the magnitude of delta 2) we expected the delta to 
be around . . . ], we include power calculations for delta 
ranging from 0.1 to 0.9. Given these parameters, minimal 
sample sizes per group for different hypothetical effect 
sizes to reach 0.8 TPR can be found in Figure 2.

Effect size >0 (Bayesian)

Predetermined sample size with Bayes’s factor.
Study context. Mary would like to test whether the 

mean IQ score of the experimental group’s population 
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Fig. 2. The resulting power curve created by the application. The x-axis shows the range of 
deltas from the example, and the y-axis shows the corresponding sample sizes determined 
by the power curve method.
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is higher than the mean IQ score of the control group. 
She would like to know what sample size she needs to 
have for a long-run probability of .80 of obtaining a BF 
larger than 10. Mary plans to collect all her data in one 
batch without testing sequentially. Mary expects the 
population effect size to be 0.5. This corresponds to a 
mean IQ score of 107.5 (100 + 15 × .5) in the experi-
mental group, assuming a mean IQ score of 100 in the 
control group.

The present method calculates the corresponding 
default BF for a t-test statistic with Cauchy prior distribu-
tion centered on 0 with scale parameter of either 1/ 2, 
1, or 2 for several sample sizes (the so-called Jeffrey-
Zellner-Siow BF; see e.g., Rouder et al., 2009). The func-
tion returns the optimal sample size needed to reach the 
TPR for a given BF threshold to detect an expected 
population effect size. If a range of possible population 
effect sizes are plausible under the given hypothesis, the 
function can calculate the optimal sample sizes for the 
given range of effect sizes and present the results in a 
figure (analogous to the Power Curve method). This 
method is designed to determine the sample sizes for 
the existence of an effect (i.e., delta > 0).

Parameters.

Delta: The expected population effect size or a range 
of expected effect sizes.

TPR: The long-run probability of obtaining a BF at 
least as high as the critical threshold favoring superi-
ority, given delta.

Maximum N: The maximum number of participants 
per group (both groups are assumed to have equal 
sample size).

PriorScale: The scale of the Cauchy prior distribu-
tion. The PriorScale in the application can be set 
to:1/ 2, 1, and 2.

Threshold: Critical threshold for the BF. Three 
threshold levels are available in the app: 3, 6, and 10.

How to use the package. To use this method in R, run 
the following code: SampleSizePlanner::ssp_bf_
predetermined(tpr = 0.8, delta = 0.5, thresh =  
10, max_n = 5000, prior_scale = 1/sqrt(2)).

How to report your sample-size estimation. The follow-
ing explains how to report your sample-size estimation: 
We used the Jeffrey-Zellner-Siow BF method to estimate 
the sample size. We used a Cauchy prior distribution cen-
tered on 0 with a scale parameter of 1/ 2. We set the 
aimed TPR at 0.8 because [1) it is the common standard 
in the field; 2) it is the journal publishing requirement]. 
The expected delta was 0.5 because [1) previous results 
published in . . . ; of the following substantive reasons: . . . ].  
Our evidence threshold was 10. Given these parameters, 

a minimal sample size of 105 per group was estimated to 
reach a 0.8 TPR for our design.

Bayes’s factor design analysis (BFDA).
Mary would like to know what sample size she needs 

to have a long-run probability of .80 of obtaining a BF 
larger than 10. Mary would like to test whether the mean 
IQ score of the experimental group’s population is 
higher than the mean IQ score of the control group in 
a Bayesian framework. Mary plans to collect all her data 
incrementally and thus is interested in using the advan-
tage of not testing more than strictly necessary offered 
by sequential testing in her Bayesian analysis. Mary 
expects the population effect size to be 0.5. This cor-
responds to a mean IQ score of 107.5 in the experimen-
tal group (100 + 15 × .5), assuming a mean IQ score of 
100 in the control group.

The description of the BFDA method is functionally 
identical to the one provided in the Predetermined Sam-
ple Size With BF section but gains in TPR because of 
the addition of sequential testing. In the app, H0 and Ha 
indicate the proportion of times sequential testing leads 
to BFs providing evidence with the given threshold for 
the null hypothesis and for the alternative hypothesis, 
respectively. Users of the Shiny app and R package 
should set delta to 0 if they wish to determine the suf-
ficient sample size for rejecting an effect and use delta 
> 0 if they wish to find support for the existence of  
an effect. For further reading, see Schönbrodt and 
Wagenmakers (2018) and Schönbrodt et al. (2017).

The parameters include the following:

Delta: The expected population effect size.

TPR: The long-run probability of obtaining a BF at 
least as high as the critical threshold favoring superi-
ority, given delta.

PriorScale: The scale of the Cauchy prior distribu-
tion. The PriorScale in the application can be set to 
1/ 2, 1, and 2.

Threshold: Critical threshold for the BF. Three 
threshold levels are available in the app: 3, 6, and 10.

To use this method in R, run the following code: 
SampleSizePlanner::ssp_bfda(tpr = 0.8, 
delta = 0.5, thresh = 10, n_rep = 10000, 
prior_scale = 1/sqrt(2)).

The following explains how to report your sample-
size estimation: We used the BFDA method to estimate 
the sample size. We used a Cauchy prior distribution 
centered on 0 with a scale parameter of 1/ 2. We set 
the aimed TPR at 0.8 because [1) it is the common stan-
dard in the field; 2) it is the journal publishing require-
ment]. The expected delta was 0.5 because [1) previous 
results published in . . . ; 2) of the following substantive 
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reasons: . . . ]. Our evidence threshold was 10. Given 
these parameters, a minimal sample size of 81 per group 
was estimated to reach a 0.8 TPR for our design.

Estimation

Frequentist

Accuracy in parameter estimation (AIPE).
Study context. Mary would like to know what sample 

size she needs so that the 95% confidence interval for the 
population effect size has an expected width of 0.4. She 
estimates the population effect size to be 0.2.

Description. Accuracy in parameter estimation (AIPE) 
aims to determine the sufficient sample size to obtain 
a confidence interval with a desired width (precision) 
around the expected effect size (Kelley & Rausch, 2006). 
Note that the width of the calculated confidence interval 
will depend on the sample variance. As a result, it is possi-
ble that the variance is relatively large for a given sample, 
which leads to a resulting confidence interval that is larger 
than the width of the desired interval for a given sample. 
Thus, the AIPE method aims to establish the expected 
value of the calculated confidence interval, which can be 
thought of as the 50% long-run probability of obtaining 
a confidence interval no wider than the provided width.

Parameters.

Delta: The expected population effect size.

Width: The desired width of the confidence interval, 
given delta.

Confidence level: The desired level of confidence.

How to use the package. To use this method in R, run 
the following code: SampleSizePlanner::ssp_aipe 
(delta = 0.5, width = 0.2, confidence_level =  
0.8).

How to report your sample-size estimation. To esti-
mate the sample size, we used the accuracy in parameter 
estimation [AIPE; Kelley and Rausch (2006)] method. We 
aimed for a 95% confidence level because [1) it is the 
common standard in the field; 2) it is the journal publish-
ing requirement]. The desired width was 0.4 because [1) 
previous studies reported the choice of a similar region of 
practical equivalence; 2) of the following substantive rea-
sons: . . . ]. We expected an underlying population effect 
size of 0.3 because [1) previous results published in . . . ; 
2) of the following substantive reasons: . . . ]. Given these 
parameters, a minimal sample size of 195 per group was 
estimated for our design.

A priori precision (APP).
Study context. Mary would like to know the sample 

size for which she will have a 95% long-run probability 

that the sample means in both the experimental and the 
control group lie within 0.2 SD (3 IQ points) of the true 
population mean.

Description. A priori precision (APP) aims to determine 
the sample size needed to have a certain long-run prob-
ability of both sample means being within a certain range 
of their respective population means, expressed in terms 
of standard deviations (Trafimow & MacDonald, 2017). As 
a result, APP is not reliant on the expected effect size.

Parameters.

Closeness: The desired closeness of the sample mean 
to the population mean defined in standard 
deviation.

Confidence: The desired probability of obtaining the 
sample mean with the desired closeness to the popu-
lation mean.

How to use the package. To use this method in R, run 
the following code: SampleSizePlanner::ssp_app 
(closeness = 0.2, confidence = 0.95).

How to report your sample-size estimation. To esti-
mate the sample size, we used the a priori precision [APP;  
Trafimow and MacDonald (2017)] method. Before data 
collection, we wanted to be 95% confident that both 
 sample means lie within 0.2 SD of the true population 
means. Given these parameters, the resulting minimum 
sample size was 126 per group for our design.

Bayesian testimation

Region of practical equivalence (ROPE).
Study context. Mary would like to conduct parame-

ter estimation to see whether the mean IQ score of her 
experimental group’s population is practically equivalent 
to 100. She would like to know what sample size she 
needs to have a long-run probability of .80 of obtaining a 
95% highest density interval (HDI) that is contained within 
her predefined ROPE. Mary hypothesizes that there is no 
difference (i.e., H0 is true). She considers a population 
effect size between −0.2 and under 0.2 to be practically 
equivalent. This would correspond to IQ scores between 
97 (100 + 15 × −.2) and 103 (100 + 15 × .2).

Description. The HDI-ROPE (often referred to as just 
ROPE) shares some features with the equivalence interval BF 
procedure. Both define an equivalence interval, construct a 
prior for the population effect size, and update to a posterior 
after the data come in. The equivalence interval BF proce-
dure then focuses on the posterior and prior odds under 
complementary hypotheses. The ROPE procedure, on the 
other hand, identifies the 95% HDI (other percentages are 
permissible as well) and determines whether the HDI is fully 
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contained within the equivalence interval. For further read-
ing, see Kruschke (2018) and Kruschke (2011).

Parameters.

Delta: The expected population effect size.

TPR: The desired long-run probability of having the 
HDI fully contained within the ROPE interval, given 
delta.

EqBand: The chosen ROPE interval.

PriorScale: The scale of the Cauchy prior distribu-
tion. The PriorScale in the application can be set to 
1/ 2, 1, and 2.

How to use the package. To use this method in R, run the 
following code: SampleSizePlanner::ssp_rope(tpr = 
0.8, delta = 0.5, eq_band = 0.2, prior_scale = 
1/sqrt(2)).

How to report your sample-size estimation. To estimate 
the sample size, we used the region of practical equiva-
lence (Kruschke, 2018) method. We used a Cauchy prior 
distribution centered on 0 with a scale parameter of 1/ 2. 
We set the aimed TPR at 0.8 because [1) it is the common 
standard in the field; 2) it is the journal publishing require-
ment]. We consider all effect sizes below 0.2 equivalent to 
zero because [1) previous studies reported the choice of a 
similar region of practical equivalence; 2) of the following 
substantive reasons: . . . ]. The expected delta was 0 because 
[1) we expected no difference between the groups]. Given 
these parameters, a minimal sample size of 517 per group 
was estimated to reach a 0.8 TPR for our design.

Summary

Justifying the decisions made during the sample-size 
planning process presents valuable information when 
one evaluates the inferences drawn from a study. The 
Shiny app and R package presented in this article aim 
to help researchers to choose and employ their sample-
size estimation method. In addition, the tool provides 
assistance in reporting the process and justification 
behind sample-size choices. We encourage users and 
experts of the field to provide feedback and recommen-
dations toward further developments.
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Note

1. A glossary of terms is provided below.
Accuracy in parameter estimation (AIPE): A sample-size- 

estimation method used for parameter estimation. The approach 
aims to find the required sample size such that the confidence 
interval has a certain expected width.

A priori procedure (APP): The approach aims to plan a sam-
ple size according to how close the researcher wishes both sam-
ple means to be to their respective population parameter and 
how confident the researcher wants to be in this.

Bayesian inference: A general framework for updating one’s 
prior beliefs in light of new data.

Bayes’s factor design analysis (BFDA): This technique pro-
vides an expected sample size such that compelling evidence 
in the form of a Bayes’s factor can be collected for a given 
effect size with a certain long-run probability when allowing for 
sequential testing.

Testing/estimation: Two schools of inference focusing on 
establishing whether an effect exists as opposed to establishing 
the magnitude of an effect, respectively.

Equivalence band (EqBand): The region of effect sizes con-
sidered practically equivalent to zero. In our article, statistical 
effect size of interest (SESOI) and region of practical equivalence 
(ROPE) are subsumed under EqBand.

Frequentist inference: A general framework in which prob-
abilities are defined as frequencies in hypothetical repeated 
events. In the context of statistical testing, frequentist infer-
ence is concerned with long-run error rates of rejecting the null 
hypothesis for the observed or more extreme parameters in a 
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given design when the model assumptions (e.g., independence 
of observations) are true.

Statistical power: The long-run probability of finding a signifi-
cant effect given a certain population effect size.

True positive rate (TPR): The long-run probability of finding 
evidence for an effect, given that it exists. In our article, statistical 
power is subsumed under TPR.

Classical power analysis: This method is used to estimate the 
minimum sample size that a design needs to reach a certain 
level of statistical power given a desired significance level and 
expected effect size.

Power curve: This curve shows how changes in effect size 
modify the statistical power of a test.

Region of practical equivalence (ROPE): The region of effect 
sizes considered practically equivalent to zero under the highest 
density interval (HDI) ROPE method.

Smallest effect size of interest (SESOI): The region of effect 
sizes considered practically equivalent to zero under the TOST 
method.

Sequential testing: The practice of incrementally testing as 
data come in, typically until some predetermined level of evi-
dence is obtained.

Two one-sided tests (TOST): A frequentist statistical test-
ing approach aimed at establishing equivalence between two 
groups.

Equivalence interval BF: A Bayesian statistical testing app-
roach aimed at establishing equivalence between two groups.
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