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A B S T R A C T

Multiple sclerosis (MS) is after trauma the most important neurological disease in young adults, affecting 1
per 1000 individuals. With currently available medications, most of these targeting the immune system, sat-
isfactory results have been obtained in patients with relapsing MS, but these can have serious adverse effects.
Moreover, despite some promising developments, such as with B cell targeting therapies or sphingosine-1-
phosphate modulating drugs, there still is a high unmet need of safe drugs with broad efficacy in patients
with progressive MS. Despite substantial investments and intensive preclinical research, the proportion of
promising lead compounds that reaches the approved drug status remains disappointingly low. One cause
lies in the poor predictive validity of MS animal models used in the translation of pathogenic mechanisms
into safe and effective treatments for the patient. This disturbing situation has raised criticism against the rel-
evance of animal models used in preclinical research and calls for improvement of these models. This publi-
cation presents a potentially useful strategy to enhance the predictive validity of MS animal models, namely,
to analyze the causes of failure in forward translation (lab to clinic) via reverse translation (clinic to lab).
Through this strategy new insights can be gained that can help generate more valid MS models.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Multiple sclerosis (MS) is after trauma the commonest neurologi-
cal disease in young adults, affecting 1 per 1000 individuals. In the
vast majority of patients (80%) the disease initially follows a variable
course where episodes of neurological disability (relapse) alternate
with complete or partial recovery (remission). This relapsing-remit-
ting phase (RRMS) can last between 5 and 20 years, after which in §
60% of the cases remissions gradually disappear and symptoms
worsen progressively; i.e. secondary progressive (SP) MS [1]. In about
15% of the patients the disease is progressive from the onset, i.e. pri-
mary progressive MS. Consensus exists that the neurological symp-
toms in relapsing MS are caused by autoimmune pathology in the
central nervous system (CNS), i.e. brain and spinal cord. The cause of
progressive disease is not exactly known, but involves a neurodegen-
erative process with an important role of resident glia cells, such as
microglia and astrocytes [2].
Animal models are important tools in the translational research of
MS pathogenesis and treatment [3]. In therapy development their
importance is even strategic as they determine the selection of prom-
ising drug candidates from the development pipeline. The largest
part of current preclinical MS research is based on experimental
autoimmune encephalomyelitis (EAE) models in genetically homoge-
neous strains of specific pathogen-free (SPF)-bred laboratory mice;
rats and guinea pigs are nowadays rarely used [4]. However, despite
undeniable successes, having yielded 14 approved drugs for relapsing
MS [5], the number of drug candidates that fail to reproduce promis-
ing effects in EAE models when tested in MS patients remains disap-
pointingly high (>90%). This is not a specific problem for MS. In a
recent survey the probability of drug candidates for neurological dis-
eases to reach approval is the lowest among investigated therapeutic
areas - i.e. infectious diseases, cancer, respiratory diseases, musculo-
skeletal diseases, cardiovascular diseases and neurological diseases
[6]. This situation is not only frustrating for patients, who are eagerly
waiting for safe and effective treatments, but also a waste of valuable
resources.

The central theme in this publication is the question which hur-
dles hinder the translation of scientific concepts on disease mecha-
nisms into safe and effective treatments for MS and how these can be
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removed. Despite obvious shortcomings there is at this moment no
alternative animal model that is equally well characterized, as afford-
able and as available as the mouse. The question addressed is there-
fore not whether the mouse should be replaced as elected animal
model in drug discovery, but how shortcomings can be identified and
improved.

1.1. Concise overview of the current MS therapy landscape

The prevalent MS pathogenic concept and main basis of therapy
development is the EAE model. The vast majority of current preclini-
cal MS research data comes from EAE models in a few genetically
homogeneous and immunologically naïve (SPF-bred) mouse strains,
such as C57BL6, SLJ/J or Biozzi ABH. EAE is usually induced in young
adolescent mice (10�12 weeks of age) from genetically susceptible
specific pathogen-free (SPF)-bred strains by sensitization against
myelin antigens [7]. The ensuing autoimmune pathogenic process
involves CNS infiltration of CD4+ T helper (Th)1 and Th17 cells that
evoke CNS inflammation and opening of the blood brain barrier [8].
By interaction with resident antigen presenting cells (APC), which
locally sample antigens, the T cells elicit a cascade of pathophysiolog-
ical events culminating in a combined cellular (macrophages, cyto-
toxic T cells) and humoral (antibodies, complement) autoimmune
attack on myelinated axons and oligodendrocytes (Fig. 1). Insights
into the exact pathogenic role of CD4+ T cells comes from a highly
elegant adoptive transfer rat EAE model [9]. In such adoptive transfer
EAE models T cells from animals with actively induced EAE are trans-
ferred via intravenous injection into a naïve major histocompatibility
complex (MHC)-compatible recipient.

The first approved drug for MS was b-interferon (IFN). Based on the
observation that MS relapses are triggered by an infection, the antiviral
cytokine b-IFN was tested in patients with RRMS [10]. The clinical
effect was generally modest, although radiological assessment of lesion
inflammatory activity with contrast-enhanced magnetic resonance
imaging (MRI) showed encouraging beneficial effects. Follow-up studies
in the EAE model revealed that the beneficial effect of b-IFN was likely
due to its immunomodulatory effects, such as the suppression of IL-12,
a cytokine held responsible for skewing T cell differentiation towards a
pro-inflammatory phenotype [11].

Despite the limited clinical potency of this drug, it kindled the cur-
rent dogma that MS is primarily a neuroimmunological condition,
which can best be treated via suppression or modulation of immuno-
logical processes.

The second drug is Copaxone a.k.a. glatiramer acetate, which was
developed in the EAE model [12]. It is a mixture of randomly synthe-
sized polymers from the amino acids L-glutamic acid, L-alanine,
L-lysine, and L-tyrosine. The working mechanism involves the modu-
lation of (auto)immune) processes relevant to MS pathogenesis [13].
The drug showed a modest beneficial clinical effect despite marked
reduction of contrast-enhancing MRI lesions, provided that it was
given early when neurological symptoms are still mild [10].

More potent immunotherapies developed in subsequent years
showed beneficial activity in relapsing MS but had limited or no
effect in progressive disease. Ablation of the immune system’s patho-
genic role through treatment with the anti-CD52 monoclonal anti-
body (Ab) alemtuzumab, the anti-a4b1 integrin mAb natalizumab or
reprogramming of the immune system through hematopoietic stem
cell transplantation have a profound suppressive effect in relapsing
MS. Available data indicate that intervention with these robust medi-
cations early in the disease process, may also have an effect on (con-
version to) progressive disease [14]. Moreover, drugs preventing the
release of activated T cells from the lymphoid organs where they are
activated, e.g. the sphingosine-1-P modulator fingolimod, or drugs
intervening with sustained activation of T cells, e.g. the IL-2 receptor
blocking monoclonal antibody (mAb) daclizumab, mitigate relapsing
MS, but have no marked effect on progressive disease. Collectively,
these treatments confirm the central pathogenic role of the immune
system in relapsing MS, but also indicate that the immune system’s
pathogenic role may be exchanged for other, currently unknown,
pathological processes around the conversion to progressive dis-
ease [15].

The sustained immune suppression with these broad-acting inter-
ventions can come with serious adverse side-effects. Hence, preclini-
cal researchers worked on the identification of the important cells
and factors in the pathogenic process and the development of sophis-
ticated methods to eliminate them functionally or physically. These
treatments start from the concept that activation of the autoimmune
pathogenic process occurs in peripheral lymphoid organs, where it is
accessible for intervention with agents injected into the blood
stream.

Intensively investigated targets are:

� T cells: the most important T cell subsets in the human immune
system are CD4+ T helper cells, CD8+ cytotoxic T cells and T regu-
latory (Treg) cells. In contrast to the central pathogenic of CD4+ T
cells in mouse EAE models, the dominant T cell type in MS lesions
is CD8+ [16]. Unsurprisingly, procedures aimed at mitigating CD4
+ T cell activation, e.g. with checkpoint inhibitors or antigen-
mediated tolerization, are effective in EAE models, but have not
been approved for treatment of MS. The current lack of well-char-
acterized mouse MS models in which CD8+ T cells have a domi-
nant pathogenic role hampers the development of therapies
targeting this subset. Attempts to restrain the autoimmune pro-
cess by enforcing deficient activity of Treg cells seem successful in
EAE [7], but have not (yet) been successful in the clinic.

� B cells: the unexpected discovery that depletion of B cells with
mAbs binding the pan B cell marker CD20 have a profound and
long-lasting effect on relapsing MS [17] and a less albeit beneficial
effect in progressive MS [18] has dramatically changed the domi-
nant T-cell centered MS concept. Although the beneficial effect of
this treatment is still incompletely understood, it is clear that it
does not involve depletion of autoantibody producing plasma cells,
which lack CD20 expression, but more likely affects other B cell
functions, such as cytokine production or antigen presentation [19].

� Macrophages: The pathology of newly forming MS lesions shows
besides microglia activation also marked macrophage infiltration,
while infiltrating lymphocytes are rare (if at all present). Although
the pathogenic role of macrophages in the EAE model and MS has
been intensively studied [20], they are not a favorite therapy tar-
get in MS.

In summary, despite several successes in the translation of thera-
pies from the mouse EAE model to the MS patients, there is an unde-
niable large translational gap. This indicates that although in both
diseases the immune system has a pathogenic role, the exact immu-
nopathogenic mechanisms may differ substantially.

1.2. Why do immunotherapies fail?

The two main reasons for failure in translational drug develop-
ment are unforeseen toxicity and lack of efficacy [6]. A notorious
example of unexpected detrimental effects of an MS drug candidate
that showed encouraging effects in the EAE model [21] is the occur-
rence of fatal PML in a clinical trial of natalizumab, an a4b1-integrin
antagonist that prevents leukocyte infiltration into the CNS [22]. An
example of an unexpected lack of efficacy is the anti-IL-12p40 anti-
body ustekinumab; [23]. Obviously, only the animal model can be
blamed for the failed translation of an EAE-based pathogenic concept
into a therapy. These failures therefore emphasize that selection of the
appropriate animal model for selection of drug candidates is a strategi-
cally important decision.



Fig. 1. The autoimmune attack on oligodendrocytes and myelinated axons. The central
process in the pathology of relapsing MS is the infiltration of peripherally induced
immune factors. These undertake a combined humoral (antibodies) and cellular
(T cells, macrophages) on axon-enwrapping myelin-sheaths and myelin-forming oligo-
dendrocytes. Paradoxically, myelin pathology in MS does not start at the myelin sheath
surface, as in EAE models, but at the innermost lamellae that contact the axon. CDC:
complement-dependent cytotoxicity, ADCC: antibody-dependent cellular cytotoxicity.
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A set of useful criteria to assess the validity of an animal model for
translational research into a given human disease is given in Table 1
[24]. Remarkably, animal models used by scientists in Academia and
R&D units of Pharma and Biotech companies are often selected on
completely different, more pragmatic criteria, such as low costs, uni-
form performance between individual animals, stable performance
over time and between laboratories, and reproducibility of results.
Ironically this is achieved by excluding the very biological factors
that determine the risk to develop MS, namely genetic diversity and
environmental cues. It can be asked whether the same models would
have been chosen when their selection had been based on the valid-
ity criteria in Table 1.

Yet another complication that has only rarely been discussed thus
far is that the mouse EAE-based pathogenic concept of MS on which
therapy developments are projected may inaccurately reflect the sit-
uation in MS [16,25,26]. Several lines of evidence show that autoim-
munity in MS is triggered by infection of a genetically susceptible
host with an (thus far) unidentified microbe, leading to the activation
of autoreactive CD4+ T cells in peripheral lymphoid organs [27]. The
mouse EAE model shows that intervention in this peripheral activa-
tion process is feasible and clinically effective, but this may be differ-
ent in MS. An unbiased study of the scientific literature revealed that it
is well possible, if not more likely, that the root cause of MS is not an
exogenous factor, but rather a process inside the CNS, i.e. instability of
myelinated axons [28]. Building on this new insight we proposed in
Table 1
Criteria for the validity assessment of animal models.

Face validity Reflects the degree of similarity in clinical and pathologi-
cal presentation of the animal model with the human
disease.

Construct validity Reflects the degree of similarity in disease mechanisms
between the animal model and the human disease.

Predictive validity Reflects the extent to which the animal model correctly
predicts the clinical success of an experimental therapy.

External validity Reflects whether the animal model produces comparable
results in different research facilities.
recent publications that autoimmune pathogenic mechanisms in MS
may result from immune hyper-reactivity against critical antigens
released from injured axon-myelin complexes [29,30].

In summary, the face validity and/or construct validity of cur-
rently used disease models in preclinical research needs substantial
improvement to achieve more reliable predictors of clinical success
for drug candidates.

1.3. How can improvement of EAE models be achieved?

We posit that translational research should not be unidirectional
(from lab to clinic), but rather a cyclic, iterative learning process
(Fig. 2). When forward translation (from EAE to MS) fails, the cause of
failure should be examined through reverse translation (from MS
back to EAE), so that factors limiting the predictive validity of the
model can be corrected [31,32].

Unfortunately, results from failed clinical trials are often not pub-
lished. This leaves the false impression that forward translation is
often successful and discourages critical reflection on the validity of
the used animal model(s). A failure in forward translation, e.g. lack of
efficacy or toxicity of a promising new treatment in the patient,
essentially implies an expensive lesson that the animal model gave
the wrong information. However, when the reason of the failure is
not investigated and results of reverse translation are not used for
improving the predictive validity of the animal model, the risk that
translation fails also in subsequent trials is real.

The selection of a useful animal model for reverse translation
experiments should be guided by the validity criteria explained in
the previous paragraph (i.e. face, construct, predictive and external
validity). The ideal model should be able to bridge the gap between
the patient and the mouse EAE model. This is the case in common
marmosets, a small-bodied Neotropical primate. Despite an evolu-
tionary distance of 30 Myrs, the immune systems of marmosets and
humans are sufficiently alike for testing pharmacological effects of
biopharmaceuticals [6]. Importantly, the development of brain
pathology in the model can be visualized and quantitated with Mag-
netic Resonance Imaging techniques that are also used in the clinic.
This technology enabled a pseudo-clinical trial design for efficacy
testing of new therapeutic agents in the marmoset model [33].

The marmoset EAE model combines essential characteristics of
MS and the mouse EAE model [4]. The mouse face of the model com-
prises an experimentally induced classical mouse-like pathogenic
mechanismmediated by CD4+ T helper 1 cells, evoking inflammation,
and autoantibodies, mediating demyelination (Fig. 1). The human
face of the model comprises a novel pathogenic mechanism that
emerges from the combined activity of two viral MS risk factors:
cytomegalovirus (CMV) [34] and Epstein Barr Virus (EBV) [35]. More
specific, B cells infected with the EBV-related g1-herpesvirus CalHV3
activate CD8+CD56+CD28null effector memory cytotoxic T cells (EM-
CTL) that are specific for a mimicry epitope shared by the major cap-
sid protein of CMV (ORF UL86) and the myelin antigen MOG
(reviewed in [36]). The combined activity of CD8+ EM-CTL and
CalHV3 infected B cells evokes CNS pathology in white and (cortical)
grey matter that strikingly resembles MS [37]. Evidence suggests that
these T cells are activated by APC presenting MOG released from
myelin damaged by the initial CNS attack by CD4+ T cells and anti-
bodies [38].

A complication of the marmoset model that is inherent to the out-
bred nature and the conventional housing conditions is high interin-
dividual variability in the response to EAE induction and to a
therapeutic agent [39]. As an example, for a placebo-controlled effi-
cacy assessment of a mAb directed against CD127, the IL-7 receptor,
we selected 7 twins from our outbred marmoset colony [40]. We
observed that 1 twin did not develop clinically evident EAE during
the 22 weeks observation period; 3 twins developed fast progressing
EAE and 3 twins developed slow progressing EAE. Intriguingly, the



Fig. 2. Translational research as an iterative learning cycle. A central aim of translational research into pathogenic mechanisms of MS is to convert discoveries in the laboratory into
effective treatments for patients. Once a drug shows promising effects in the animal model it is selected for clinical testing (forward translation). When promising effects observed
in the animal model are also reproduced in the patient approval from the various regulatory authorities (FDA, EMA, MHRA, PDMA etc.) will be sought. When translation fails, devel-
opment of the drug is usually stopped (scenario A). We propose that when a negative result is obtained in the clinic, the reason why translation failed should be investigated with
the aim to adjust predictive shortcomings of the animal model (reverse translation) (scenario B).
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anti-CD127 mAb showed efficacy only in the twins with fast pro-
gressing disease. This experiment confirmed the important patho-
genic role of anti-MOG CD8+CD56+CD127+ EM T cells in the EAE
model observed in earlier studies [41], that is reminiscent to observa-
tions in MS by Bielekova et al. [42]. However, as the heterogeneity in
clinical and therapeutic response precluded statistical evaluation, we
experienced great difficulty in getting this study published. Ironically,
a heterogeneous response to treatment is not uncommon in MS clini-
cal trials [18,43] and even a highly successful biological drug like the
anti-TNFa mAb infliximab lacks clinical activity in a relevant propor-
tion (30%) of rheumatoid arthritis patients. It remains an open ques-
tion why in preclinical research statistical significance is often found
more important than clinical relevance [44,45].

1.4. Lessons learned from reverse translation analysis of failed MS
treatments

We believe that clinical trials should be treated as scientific
experiments and that failures are equally informative as successes for
gaining important insights into the autoimmune pathogenic process
in MS.

To illustrate the power of reverse translation analysis, we used the
marmoset EAE model for investigating the paradoxical effects of B
cell depletion therapies in MS. The reason for testing the clinical
effect of the anti-CD20 mAb rituximab (RTX) in relapsing MS was to
abolish the production of demyelination-mediating autoantibodies
evidenced in the EAE model [46]. However, detailed investigation of
the unexpected long-lasting beneficial effect of RTX revealed that
this was not mediated by the depletion of the antibody factories
(plasma cells), because these do not express CD20. Moreover, serum
antibody levels were unaffected in the patients [17]. Adding to the
mystery was the observation that treatment with atacicept, a chime-
ric protein that captures cytokines that B cells need for their survival
and differentiation (BLyS, APRIL) worsened lesion activity, although
CD20+ B cells were depleted from the circulation [47].

In the marmoset model we used a clonal variant of the anti-CD20
mAb ofatumumab (HuMab7D8), which displayed good cross-reactiv-
ity with marmoset B cells. As atacicept was not available for research
we used mAbs for capturing BLyS and APRIL. In summary, we found
that treatment of marmosets with anti-CD20 antibody had a similar
profound and lasting clinical effect as ofatumumab in MS, which was
caused by profound depletion of all CD20 expressing B cells from the
circulation and tissues [48]. We also found that capture of BLyS and
APRIL exerted a modest clinical effect despite profound B cell
depletion [49]. The explanation of this paradox was that in the latter
case a small fraction of CD20+ B cells that is infected with the EBV-
related g1-herpesvirus CalHV3 was not depleted [50] [51].

The important lesson from this and subsequent experiments was
that the EBV-infected B cell may have a crucial role in ongoing MS
[52]. This finding may shed a new light on the still elusive relation of
EBV with MS risk [36] and warrants the development of therapies for
functional or physical elimination of the cell type (e.g. [53,54]). As the
standard SPF-bred laboratory mouse lacks an EBV-related virus this
discovery could not have been made in classical mouse EAE models.

In a second set of reverse translation experiments we tested why
mAb-mediated neutralization of the pro-inflammatory cytokines IL-
12 and IL-23 is clinically effective in mouse EAE models [55], but not
in MS patients [23]. Reverse translation analysis of the mAb in mar-
moset EAE revealed that early treatment with the clinical mAb uste-
kinumab (anti-IL-12p40) in the marmoset MS model completely
abolished disease by inhibiting the mouse EAE-like initiation mecha-
nism that is mediated by Th1/17 cells [56]. However, in a pseudo-
clinical trial design where treatment was started once presence of
MRI-detectable brain lesions was observed, it was observed that
although inflammation and enlargement of cerebral white matter
lesions was suppressed, onset of neurological symptoms was only
temporarily delayed [57]. The important lessons from these experi-
ments were: 1. That CNS lesion formation and clinical symptoms
seem to be induced by different pathogenic mechanisms, and 2. That
intervention with the anti-IL-12p40 mAb mitigates the mouse EAE-
like EAE activation mechanisms but has no effect on the pathogenic
mechanism driving EAE progression.

1.5. Future perspectives on translation in drug development

At this moment there is no alternative for the mouse as preclinical
MS model that is equally well-characterized, equally affordable and
equally available. Although the marmoset EAE model scores high on
face- and construct validity, widespread usage is precluded by high
costs, the need of specialized facilities for housing and care and
increasing ethical constraints. Moreover, despite promising develop-
ments in animal-free systems, such as organoids or diseases on a
chip, these will not (completely) replace animals in drug discovery in
the foreseeable future. Overlooking the many failures in translation,
contrasting with only few successes, a critical reflection on EAE in
young adolescent immunologically naïve mice as conceptual plat-
form for development of MS therapies is certainly justified. In retro-
spect, the conclusion is warranted that the mouse EAE model has
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yielded a broad collection of treatments with which key pathological
hallmarks of EAE, autoimmune-driven inflammation and demyelin-
ation in the white matter, can be successfully treated. However, these
hallmarks represent only part of the complex MS pathology [26].

To enhance the success of translational MS research the concep-
tual framework on which most therapy development is projected
needs adjustment at multiple levels.

The trigger of autoimmunity: Overlooking the decades of intensive
MS research we deem it highly unlikely that if an exogenous trigger
of the MS pathogenic process exists, it could still not have been iden-
tified. Notice that for the peripheral demyelinating disease Guillain-
Barr�e syndrome, a causal agent (Campylobacter jejuni) has been found
already two decades ago, followed in subsequent years by evidences
for additional triggers (e.g. Mycoplasma pneumoniae, Zika virus) [58].
In MS the debate is still on possible microbe-disease associations
without solid proof of causation (guilt by association?).

Mounting evidence in support of an internal trigger should there-
fore not be ignored. Reports on blistering of myelinated axons [29],
microglia nodules [59] and subtle myelin lipid polarity changes [60]
document clear abnormalities in the MS brain preceding the autoim-
mune attack. Discovery of the reason why myelinated axons blister,
why myelin constituents are post-translationally modified and why
microglia cluster will open new research avenues towards novel
therapeutic interventions, which may also be relevant for progressive
MS. These therapies should act beyond the usual suspects in the
immune system, but rather address the injury that feeds the autoim-
mune pathogenic mechanisms with (post-translationally modified)
antigens [29].

The concept that autoreactive T cells are naïve: As discussed else-
where [61] the question whether the MS trigger comes from outside
or inside the body is not trivial as it directly ties in with the question
whether autoreactive T cells in MS are naïve or antigen-experienced.
It is therefore somewhat naïve to ignore the mounting evidence that
the immune systems of a young adolescent SPF-bred laboratory
mouse and a human adult differ fundamentally and that these differ-
ences can have an enormous impact on the construct validity of ani-
mal disease models [62-64].

Intriguingly, the immune system of MS patients shows evidence
of premature aging on the basis of accelerated telomere attrition [65]
as well as disrupted neuronal development [66]. A prominent feature
of immune aging is the oligoclonal expansion of CD4+ and especially
of CD8+ T cells with a phenotype suggesting clonal exhaustion
(CD28nullCD161+). This phenomenon has been attributed to replica-
tive stress caused by recurrent exacerbation of latent CMV infection
[67]. CD28null T cells in MS and RA are relatively insensitive to T regu-
latory cells [68], whereas the same cell type in chronic inflammatory
lung diseases is resistant to adrenocorticoid hormones due to upre-
gulation of chaperonins and down-regulation of glucocorticoid
receptors [69]. This is just one example of a pathogenically important
cell type in human autoimmune disease that is completely absent in
SPF-bred mice. However, a similar cell type is present in marmosets
[70]. The phenotype, specificity and MHC-E restriction of the highly
autoaggressive T cells that drive EAE progression in marmosets
resemble anti-CMV memory cells [71] that expand in the aging
human immune system [72].

The overvaluation of CD4+ T-cell mediated inflammation as primary
therapy target: The current EAE-inspired research focus on the
immune system seems to disregard the strong neurodegenerative
component in MS, which is particularly pronounced in the progres-
sive phase but is already present at disease onset [28]. Through hori-
zontal translation, therapies showing positive effects in other
neurodegenerative diseases were tested with varying efficacy in pro-
gressive MS [5]. Examples of such repurposed treatments, for which
the mode of action in the pathogenic process is often not exactly
known, are: the tyrosine kinase inhibitors masitinib and evobrutinib,
the phosphodiesterase inhibitor ibudilast and the glutamate release
inhibitor riluzole [42]. However, well-validated animal models for
progressive MS in which therapies can be developed are currently
lacking.

The immune status of animal models. As most therapies target dis-
ease mechanisms, improvement of the construct validity of animal
models should have the highest priority. Encouraging attempts are
now undertaken to give laboratory mice a more human-like immune
system. Several lines of evidence demonstrate the important influ-
ence of gut microbiota on human biology and neurological disease
and these insights are now transferred to mouse MS models [73-77].
Another promising development is that by cohousing of SPF-bred
laboratory mice with dirty mice from the field or pet shop they
acquire a more human-like immune system, with more pronounced
activity of CD8+ T cells [78].

Yet another interesting development is the accommodation of the
crucial pathogenic role of EBV B cells in the MS autoimmune patho-
genic process in the EAE model. Horwitz et al. introduced the mouse
g-herpesvirus 68 strain in his EAE models and documented a similar
effect on the disease as we observed in the marmoset EAE model
[79]. Moreover, humanized mouse models have been developed in
which pathogenic aspects of EBV infection can be investigated [80].

These are all important developments, which will hopefully
improve the predictive validity of mouse MS models. If the necessary
changes discussed here can be made, the mouse may become a more
reliable workhorse for MS therapy development as it has been for
decades in basic immunology research. This would be very good
news for all stakeholders involved in MS research, not in the least for
the patients.
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Outstanding questions

An important question for future research is to find the Achilles
heel of the pathogenic process. This search could be directed by
investigating the biological basis of environmental MS risk factors,
which likely are in some way connected to rate-limiting steps in the
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pathogenic process. An interesting candidate emerging from the mar-
moset EAE model is the EBV-infected B cell. The next question will be
whether therapies can be developed that selectively target EBV-
infected B cells. These could replace currently applied broad-acting
immune-modulatory treatments and limit their adverse side-effects.
The success of this research will obviously depend on whether valid
animal models can be developed.

Search strategy and selection criteria

Data for this review have been collected from Pubmed using
search themes: multiple sclerosis, experimental autoimmune
encephalomyelitis, translation, (immune)therapy. Articles published
in the timeframe 1970�2021 have been used.
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