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a b s t r a c t

This paper provides an H2 optimal scheme for reducing diffusively coupled second-order systems
evolving over undirected networks. The aim is to find a reduced-order model that not only ap-
proximates the input–output mapping of the original system but also preserves crucial structures,
such as the second-order form, asymptotically stability, and diffusive couplings. To this end, an H2
optimal approach based on a convex relaxation is used to reduce the dimension, yielding a lower
order asymptotically stable approximation of the original second-order network system. Then, a novel
graph reconstruction approach is employed to convert the obtained model to a reduced system that is
interpretable as an undirected diffusively coupled network. Finally, the effectiveness of the proposed
method is illustrated via a large-scale networked mass–spring–damper system.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Second-order network systems with diffusive couplings are
ound in a variety of applications, such as mass–spring–damper
etworks (Van der Schaft & Maschke, 2013), distributed power
rids (Dörfler, Jovanović, Chertkov, & Bullo, 2014) and electrical
ircuits (Schilders, Van der Vorst, & Rommes, 2008; Yan, Tan, &
cGaughy, 2008). With the increasing number of interconnected
nits in a network, the order of its dynamical model can easily
ecome high-dimensional, which complicates the analysis and
ynthesis in the network. It motivates the system approximation
or a reduced-order network model that captures the main fea-
ures of the original one (Cheng & Scherpen, 2021). Particularly,
or the model reduction problem of second-order networks in
his paper, we aim for two goals, namely, approximation of the
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ttps://doi.org/10.1016/j.automatica.2021.110118
005-1098/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
input–output behavior, and preservation of the network struc-
ture with diffusive couplings. The latter essentially requires to
restore a Laplacian matrix in the obtained reduced-order model.
Such a structure is crucial for describing the information or en-
ergy spreading in networks and hence determines the stability
of the entire system (Cencetti, Clusella, & Fanelli, 2018). Fur-
thermore, consensus, a widespread phenomenon in networked
systems, is also realized based on the diffusive couplings (Ren,
Beard, & Atkins, 2005), and therefore it is useful to preserve the
Laplacian structure for realizing the consensus property in the
reduced-order model.

Over the past decades, the study of structure preserving model
reduction for network systems has drawn profound interest (see
Besselink, Sandberg, and Johansson (2016), Cheng, Kawano, and
Scherpen (2017), Cheng and Scherpen (2019), Cheng, Scherpen
and Besselink (2019), Ishizaki and Imura (2015), Jongsma, Mli-
narić, Grundel, Benner, and Trentelman (2018), Monshizadeh,
Trentelman, and Camlibel (2014), Necoara and Ionescu (2020)
and the references therein). Most of these methods can be classi-
fied into two families: clustering-based methods (Besselink et al.,
2016; Cheng et al., 2017; Cheng & Scherpen, 2019; Cheng, Scher-
pen, & Kawano, 2016; Ishizaki & Imura, 2015; Ishizaki, Kashima,
Imura, & Aihara, 2013; Jongsma et al., 2018; Monshizadeh et al.,
2014) and balanced truncation methods (Cheng & Scherpen,
2017; Cheng, Scherpen et al., 2019). The balanced truncation

method has been extended to solve the structure preserving

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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odel reduction problem for first-order network systems (Cheng
Scherpen, 2017; Cheng, Scherpen et al., 2019), in which a

riori approximation error bound is guaranteed. However, it is
ot clear how balanced truncation can be applied to second-order
etwork systems. Although this method have extended to the
eneral second-order case (Chahlaoui, Lemonnier, Vandendorpe,
Van Dooren, 2006; Reis & Stykel, 2008), there is no guaran-

ee on either an error bound or network structure. Recently,
lustering-based model reduction methods (Cheng et al., 2017,
016; Ishizaki & Imura, 2015) have been extended to preserve the
etwork structure for the second-order network systems. How-
ver, how to select clusters to achieve the minimal approximation
rror is an open problem.
In this paper, we focus on convex-optimization techniques,

hich have already shown satisfactory performances for
tructure-preserving model reduction problems for e.g., bilinear
ystems (Couchman, Kerrigan, & Böhm, 2011; Qi, Jiang, & Xiao,
016), negative imaginary systems (Yu & Xiong, 2017, 2019), and
nput-to-state stable nonlinear systems (Ibrir, 2018). However,
or network systems, model reduction methods based on convex-
ptimization are rarely studied. Although a convex-optimization
pproach in Cheng, Yu, Ren, and Scherpen (2020) is proposed to
educe first-order Laplacian dynamics by optimally choosing edge
eights in a reduced-order network, there is no direct extension
f the result towards second-order networks.
In Wyatt (2012), an iterative rational Krylov-based method is

resented for reducing second-order systems. However, it does
ot guarantee a decrease in the H2 error in each iteration. In con-
rast to Besselink et al. (2016), Cheng et al. (2017), Cheng, Kawano
nd Scherpen (2019), Cheng, Scherpen et al. (2019), Ishizaki and
mura (2015), Jongsma et al. (2018), Monshizadeh et al. (2014),
u, Cheng, Scherpen and Xiong (2019), we formulate the model
eduction of second-order systems in an optimization framework,
hich is relaxed as a convex optimization problem, and thus
an be efficiently tackled. Furthermore, unlike the Riemannian
ptimization-based approach in Sato (2017) that requires an it-
rative computation of coupled Lyapunov equations, our method
ust needs to solve once a linear matrix inequality, which may
equire a lower computational cost. Compared to the method
n Cheng, Scherpen et al. (2019), a new graph reconstruction
ethod is presented which may produce a network topology that

s non-complete.
The rest of this paper is organized as follows. The problem set-

ing is introduced in Section 2, and the main results are presented
n Section 3, which includes the convex-optimization approach
or reducing second-order systems and a novel graph reconstruc-
ion scheme. In Section 4, the proposed method is illustrated
y an example and compared with the clustering-based method
n Ishizaki and Imura (2015). Finally, Section 5 makes some
oncluding remarks.
Notation: The symbol R denotes the set of real numbers. For

a given real matrix A, A−1 and A⊤ stand for the inverse and
ranspose of A, sym(A) indicates A⊤

+ A, and the columns of A⊥

orm a basis of the null space of A, that is, AA⊥
= 0. The notation

> 0 (≥ 0) means that a matrix P is positive definite (semi-
efinite). In is the identity matrix of size n, and 1n represents a
ector in Rn of all ones. ei represents the ith column of In.

. Preliminaries & problem formulation

Consider an undirected graph G that consists of a node set
:= {1, 2, . . . , n} and an edge set E ⊆ V × V . G is weighted

f each edge, an unordered pair of elements in V , is assigned a
ositive value (weight). Let ωij > 0 be the weight of edge (j, i),
nd ω = 0 if (j, i) /∈ E . An weighted undirected graph G can be
ij

2

haracterized by the so-called Laplacian matrix L ∈ Rn×n defined
s

ij =

{ ∑n
j=1,j̸=i ωij i = j,

−ωij otherwise. (1)

he Laplacian matrix L of a connected undirected graph has the
ollowing properties: (i) L⊤

= L and L1 = 0; (ii) Lij ≤ 0 if i ̸= j,
nd Lij > 0 otherwise; (iii)L ≥ 0 and has only one zero eigenvalue.
onversely, a real square matrix satisfying the above conditions
s the Laplacian matrix of a connected undirected graph.

In this paper, the following second-order network system is
tudied:

:

{
ẍ + Dẋ + Kx = Fu,

y = Hx,
(2)

ith D ∈ Rn×n, K ∈ Rn×n positive definite, called the damping
nd stiffness matrices, respectively. F ∈ Rn×p and H ∈ Rq×n are

the input and output matrices. The diffusive coupling among the
nodes is represented by an undirected weighted graph, and the
stiffness matrix is formed as K = V +L, with L a Laplacian matrix,
and V a diagonal matrix with non-negative diagonal elements
representing self-loops. To ensure K to be positive definite, we
require at least one diagonal entry of V being strictly positive.
Moreover, we assume a proportional damping, i.e.,

D = αIn + βK , (3)

with α and β positive scalars. Such a damping is also known as
Rayleigh damping or classical damping, which has been studied in
various applications (Gondolo & Guevara Vasquez, 2014; Scruggs,
2009). In this paper, the proportional damping assumption is
essential for the reconstruction of a reduced second-order net-
work. There are two key properties of the system Σ : (1) Σ is
asymptotically stable owing to the positive definiteness of D and
K (Bernstein & Bhat, 1995), and (2) both D and K are symmetric
and diagonally dominant M-matrices.

A variety of physical networks can be modeled in the second-
order form (2), such as linearized swing equation in power
grids (Dörfler et al., 2014), spatially discretized flexible beams
(Casella, Locatelli, & Schiavoni, 2000) and RLCK circuits (Yan et al.,
2008).

Example 1. A mass–spring–damper network is shown in Fig. 1,
where each node has the same mass and damping, and the nodes
are interconnected by springs. The system can be written in the
form of (2) with D = I , and

K =

⎡⎢⎣ 4 − 1 0 − 2
−1 4 − 2 − 1
0 − 2 3 − 1

−2 − 1 − 1 4

⎤⎥⎦ , F =

⎡⎢⎣1
0
0
0

⎤⎥⎦ ,

where K = V + L with

V = diag{1, 0, 0, 0}, and L =

⎡⎢⎣ 3 − 1 0 − 2
−1 4 − 2 − 1
0 − 2 3 − 1

−2 − 1 − 1 4

⎤⎥⎦ ,

where L is a Laplacian matrix associated with an undirected graph
and indicates the strength of diffusive coupling among the nodes
connected by the springs in Fig. 1.

The model reduction problem for second-order network sys-
tems is then formulated as follows.

Problem 1. Given a second-order systemΣ in (2), find a reduced
second-order network model

Σ r :

{
ẍr + Dr ẋr + Krxr = Fru, (4)
yr = Hrxr ,
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Fig. 1. A simple mass–spring–damper network.

ith xr ∈ Rr , yr ∈ Rq, and dimension 1 ≤ r < n, such that Σ r
preserves the network structure, and the reduction error ∥η(s) −
ηr (s)∥H2 is as small as possible, where η(s) = H(s2In+sD+K )−1F ,
and ηr (s) = Hr (s2Ir + sDr + Kr )−1Fr .

We say the reduced-order model is network structure-
preserving, if Dr ∈ Rr×r and Kr ∈ Rr×r are positive definite and
remain symmetric and diagonally dominant M-matrices. With
this structural property, Kr can be written as Kr = Vr + Lr , where
Vr is a non-negative diagonal matrix, and Lr is an undirected
graph Laplacian matrix and thus preserves diffusive couplings
among the nodes in the reduced network. This property also
applies to the reduced damping matrix Dr . In this case, this
reduced second-order model preserves the network structure
with diffusive couplings.

3. Main results

A two-step approach is presented in this section, where the
second-order network system is first reduced by using a convex-
optimization approach, and then the resulting reduced-order
model is converted into a network system via a graph reconstruc-
tion procedure.

3.1. Model reduction of second-order systems via convex optimiza-
tion

We make this subsection self-contained. To reduce the inter-
connected second-order system (2), we present an H2 method
based on convex optimization. It is worth emphasizing that
the method proposed in this subsection is applicable to gen-
eral second-order systems without the proportional damping
assumption in (3).

Before proceeding, the following lemma is provided to char-
acterize the existence of an optimal reduced second-order model
of Σ r in terms of the H2 reduction error.

Lemma 1. Consider the interconnected second-order system (2)
with positive definite matrices D and K . If there exist positive definite
matrices Kr , Dr ∈ Rr×r , P ∈ R2(n+r)×2(n+r), and a non-null matrix
Fr ∈ Rr×p, such that the following optimization problem is solvable

min
P,Kr ,Dr ,Fr ,Hr

tr(HP11H⊤
− 2HrP⊤

21H
⊤

+ HrP31H⊤

r )

s.t. P =

⎡⎢⎣P11 P12 P21 P22
P⊤

12 P13 P23 P24
P⊤

21 P⊤

23 P31 P32
P⊤

22 P⊤

24 P⊤

32 P33

⎤⎥⎦ > 0,

PA⊤

e + AeP + BeB⊤

e = 0, (5)

with

Ae =

⎡⎢⎣ 0 In 0 0
−K − D 0 0
0 0 0 Ir

⎤⎥⎦ , Be =

⎡⎢⎣0
F
0

⎤⎥⎦ , (6)
0 0 − Kr − Dr Fr D
3

then the output matrix Hr := HP21P−1
31 minimizes the reduction error

∥η(s) − ηr (s)∥H2 .

Proof. Let Ge(s) = Ce(sI − Ae)−1Be with Ae, Be defined in (6), and
Ce =

[
H 0 −Hr 0

]
. We have ∥η(s) − ηr (s)∥H2 = ∥Ge(s)∥H2 .

As D, K > 0, and Dr , Kr > 0, the two systems (2) and (4) are
asymptotically stable (Shieh, Mehio, & Dib, 1987). Therefore, Ge(s)
is asymptotically stable, and

∥Ge∥
2
H2

= tr(CePC⊤

e )

= tr(HP11H⊤
− 2HrP⊤

21H
⊤

+ HrP31H⊤

r ),

According to Propositions 10.7.2 and 10.7.4 (Bernstein, 2009), the
gradient of the above function can be given as

∂tr(CePC⊤
e )

∂Hr
= −2P⊤

21H
⊤

+ 2P31H⊤

r .

The optimal Hr that minimizes ∥Ge(s)∥2
H2

is obtained when the

radient of the above function satisfies ∂tr(CePC⊤
e )

∂Hr
= 0, which

follows that Hr = HP21P−1
31 , since P31 > 0. ■

Lemma 1 implies that if we can find matrices Dr , Kr , Fr in (4),
and Hr = HP21P−1

31 satisfying conditions (5), then (4) is an optimal
reduced-order model in terms of the H2 norm. However, finding
matrices Dr , Kr , Fr , and P as the optimal solution of the problem
(5) is not straightforward, since the constraints are nonlinear and
thus difficult to be tackled numerically. The following theorem is
then provided to relax the optimization problem (5), which can
be solved efficiently as a convex-optimization problem.

Theorem 1. Given the interconnected second-order system (2). If
there exist matrices P̂11 = P̂⊤

11 > 0, P̂11 ∈ Rn×n, P̂12 ∈ Rn×n,
P̂13 = P̂⊤

13 > 0, P̂13 ∈ Rn×n, P̂31 = P̂⊤

31 > 0, P̂31 ∈ Rr×r , a full column
rank matrix P̂21 ∈ Rn×r , a scalar γ > 0, such that the following
optimization problem is solvable

min
P̂>0

γ (7a)

s.t. tr
(
H(P̂11 − 2X)H⊤

)
< γ , (7b)

Π =

[
sym(P̂12) Π12

⋆ Π22

]
< 0, (7c)

Φ =

[
sym(P̂12) Φ12

⋆ Φ22

]
< 0, (7d)

Ξ = P̂11 − 2X > 0, (7e)

P̂ =

⎡⎢⎢⎣
P̂11 P̂12 P̂21 0
P̂⊤

12 P̂13 0 0
P̂⊤

21 0 P̂31 −P̂31
0 0 −P̂31 2P̂31

⎤⎥⎥⎦ > 0, (7f)

where X = P̂21P̂−1
31 P̂⊤

21, rank(X) ≤ r,

Π12 = P̂13 − P̂11K − P̂12D,

Π22 = sym(−KP̂12 − DP̂13) + FF⊤,

Φ12 = −P̂11K − P̂12D + P̂13 + 2XK ,

Φ22 = sym(−KP̂12 − DP̂13),

hen the reduced second-order model

ˆ r :

{
¨̂xr + D̂r

˙̂xr + K̂r x̂r = F̂ru,

ŷr = Ĥr x̂r ,
(8)

ith

K̂r = P̂−1
31 P̂⊤

21KP̂21P̂
−1
31 , F̂r = P̂−1

31 P̂⊤

21F ,

ˆ ˆ−1 ˆ⊤ ˆ ˆ−1 ˆ ˆ ˆ−1
(9)
r = P31 P21DP21P31 , Hr = HP21P31
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s asymptotically stable. Moreover, the H2 approximation error has
he following upper-bound

Σ − Σ̂ r∥H2 < γ . (10)

The detailed proof is found in the Appendix. Theorem 1
hows that a reduced second-order system (8) can be obtained by
olving the optimization problem (7), which actually achieves a
ocal optimum that minimizes the H2 reduction error. Compared
ith the original problem (5), the structure constraint on matrix

ˆ in the optimization problem (7) is more strict, yielding a tighter
easible solution set. Thus, it may not produce an optimal solution
o minimize the error ∥Σ − Σ̂ r∥H2 . Instead, it gives an upper
ound γ for this error, as given in (10).
In Theorem 1, the reduced subspace is captured by P̂21P̂−1

31 ,
which leads to the reduced second-order model (8) satisfying the
following property.

Corollary 1. Consider the interconnected second-order system (2)
with positive definite matrices D and K . Then, the reduced second-
order model (8) obtained by solving the optimization problem (7) is
asymptotically stable with positive definite matrices D̂r and K̂r .

Proof. Note that P̂21 is imposed to have full rank, that is
rank(P̂21) = r . Thus, the matrix W := P̂21P̂−1

31 ∈ Rn×r has full
column rank with rank(W ) = rank(P̂21) = r , due to invertible
P̂−1
31 . As a result, the matrices D̂r = W⊤DW and K̂r = W⊤KW

are positive definite as D > 0 and K > 0. The stability of
second-order model (8) then follows immediately from Shieh
et al. (1987). ■

The optimization problem (7) is not convex due to the rank
constraints on P̂21 and X . Next, we present an numerical al-
gorithm to efficiently solve the optimization problem (7), see
Algorithm 1.

Algorithm 1 Convex-optimization approach for reducing the
nterconnected second-order system Σ

Input: D, K , F , H , reduced-order r .
Output: D̂r , K̂r , F̂r , Ĥr in (9).
1: Solve the following convex optimization problem w.r.t. γ > 0,

P̂11 > 0, P̂12, P̂13 > 0, and X1 > 0:

min γ

s.t. X = blkdiag{X1, 0} ≥ 0,

(7b)–(7f), X1 ∈ Rr×r .

(11)

2: Take the Schur decomposition X1 = UZU⊤, with a unitary
matrix U and quasi-triangular matrix Z .

3: Let P̂21 =

[
U

0(n−r)×r

]
, P̂31 = Z−1.

4: Compute D̂r , K̂r , F̂r , Ĥr using (9).

Note that the optimization problem (11) is convex and thus
an be efficiently solved. Moreover, P̂21 is guaranteed to have full
rank, and rank(X) ≤ r . The key ingredient for the algorithm is
a structured X in the form of blkdiag{X1, 0}. This consideration
s inspired by Ibrir (2018), which deals with linear first-order
ystems. With the structured X , the equation X = P̂21P̂−1

31 P̂⊤

21
is simplified to a Schur decomposition. Furthermore, X is not
unique, as P̂21 can be changed as long as HsP̂21 ̸= 0 holds.

Remark 1. Both Theorem 1 and Algorithm 1 can be applied
to more general second-order systems with a positive definite K
and a proportional damping matrix D. Moreover, our approach
4

can preserve the proportional damping structure in the reduced-
order model, i.e., D̂r is again a proportional damping matrix. To
obtain a better reduced-order model, the Riemannian optimal
model reduction method (Sato, 2017) requires an iterative com-
putation of coupled Lyapunov equations and the optimization
of the initial point, which yields a high computational cost if
the system dimension is large. Furthermore, the iterative ratio-
nal Krylov-based method in Wyatt (2012) does not guarantee a
decrease in the H2 error in each iteration. In contrast, our method
can obtain a local optimal reduced-order model can be obtained
by solving a convex optimization problem.

3.2. Reconstruction of diffusive couplings

With Algorithm 1, we obtain the reduced second-order model
Σ̂ r as in (8). However, the matrices D̂r and K̂r may not be
used to present a network with diffusive couplings, and thus
the reduced-order model as in (8) is not in a network form. In
this subsection, we find a reduced-order network model with
diffusive couplings that has the same input–output mapping as
the reduced second-order system as in (8).

Note that the eigenvalues of K̂r are positive real. Thus, K̂r can
be rewritten as

K̂r = λr Ir + Lr , (12)

where λ(Lr ) = {λ1 − λr , . . . , λr−1 − λr , 0} are non-negative real,
and Lr has exactly one zero eigenvalue with λ1 ≥ λ2 ≥ · · · ≥

λr−1 > λr > 0. However, Lr is not a Laplacian matrix, and
hus it cannot interpret diffusive couplings. According to Cheng,
cherpen et al. (2019, Them. 12), since the eigenvalues of Lr are
on-negative real and Lr has exactly one zero eigenvalue, there
lways exists a Laplacian matrix Lr similar to the matrix Lr in
12), namely, Lr and Lr have the same eigenvalues. This implies
hat there always exists a linear transformation Kr = Ur K̂rU⊤

r
uch that Kr is a stiffness matrix, which represents the diffusive
ouplings of the reduced second-order system. However, in terms
f network reconstruction, Cheng, Scherpen et al. (2019) only pro-
ide a procedure to construct a non-sparse graph representation
here the vertices in the reduced network are fully connected.
In contrast, this paper provides an alternative graph recon-

truction method that may induce a non-complete reduced net-
ork. This essentially requires a similarity transformation of K̂r ,
hich results in a matrix Kr with the same eigenvalues of K̂r

but having a network interpretation. The feasibility of this novel
graph reconstruction method is guaranteed in the following the-
orem.

Theorem 2. Consider any positive definite matrix K̂r whose
eigenvalue decomposition is given as K̂r = UΛU⊤, with Λ̂ =

iag{λ1, . . . , λr−1, λr}. Define a matrix

=

[
1

√
r − 1⊤

r−1T
1

√
r 1r−1 T

]
, (13)

ith T ∈ R(r−1)×(r−1) a non-singular matrix satisfying

TT⊤
= Ir−1 −

1
r
1r−11

⊤

r−1. (14)

he elements of T fulfill TijTsj ≤ 0 for i ̸= s, j ∈ {1, . . . , r − m − 1},
and TijTsj ≥ 0 for i ̸= s, j ∈ {r−m, . . . , r−1} with 1 ≤ m ≤ (r−2).
Then,

Ur = VU⊤ (15)

is a unitary matrix, and Kr = Ur K̂rU⊤
r is a symmetric and diagonally

dominant M-matrix.
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roof. We first prove that Ur is unitary if matrices V , U and T
re constructed as in Theorem 2. It is verified from (13) and (14)
hat VV⊤

= Ir . Moreover, U is unitary due to the eigenvalue
ecomposition of a symmetric matrix K̂r . Therefore, we obtain
rU⊤

r = Ir . Next, we show that Kr = Ur K̂rU⊤
r is a symmetric and

iagonally dominant M-matrix.
It follows from (12) and UrU⊤

r = Ir that

r = Ur K̂rU⊤

r = λr Ir + VΛV⊤, (16)

which is a symmetric and diagonally dominant M-matrix if the
positive semi-definite matrix L̂ := VΛV⊤ is an undirected graph
aplacian. Note that L̂ shares the same spectrum as Λ, and it
ollows from (13) that

ˆ1r =

[
1T
r−1TΛr−1T⊤1r−1 ⋆

−TΛr−1T⊤1r−1 TΛr−1T⊤

]
1r = 0, (17)

where Λ = diag{0, Λr−1} with Λr−1 = diag{λ1 − λr , . . . , λr−1 −

λr}. That means the row and column sums of L̂ are zero.
To further show that L̂ represents an undirected graph Lapla-

cian matrix, then we show that L̂ (i) has all positive diagonal
elements and (ii) non-positive off-diagonal entries. The first point
is not hard to see, as TΛr−1T⊤ in (17) is strictly positive definite.
Now, we prove that the off-diagonal entries of L̂ are either
negative or zero.

From the property of T in (14), we obtain that

r−1∑
j=1

T 2
ij = 1 −

1
r
,

r−1∑
j=1,i̸=s

TijTsj = −
1
r
,

r−1∑
j=1

T 2
ij +

r−1∑
s=1,s̸=i

⎛⎝ r−1∑
j=1

TijTsj

⎞⎠ =
1
r
,

(18)

or any i, s ∈ {1, . . . , r − 1}. This further implies that

r−m−1∑
j=1,i̸=s

TijTsj = −
1
r

−

r−1∑
j=r−m,i̸=s

TijTsj ≤ 0,

r−1∑
j=r−m,i̸=s

TijTsj = −
1
r

−

r−m−1∑
j=1,i̸=s

TijTsj ≥ 0,

rom which, we have
r−1∑
j=1

(λj − λr )T 2
ij ≥ (λr−1 − λr )(1 −

1
r
) > 0,

r−1∑
=1,i̸=s

(λj − λr )TijTsj =

r−m−1∑
j=1,i̸=s

(λj − λr )TijTsj

+

r−1∑
j=r−m,i̸=s

(λj − λr )TijTsj

≤ −
1
r
(λr−m − λr ) < 0.

Therefore, L̂(i+1)(s+1) ≤ 0 for i, s ∈ {1, . . . , r − 1}, i ̸= s. Moreover,
ccording to (17), it holds that

ˆ(i+1)1 = −

r−1∑
j=1

(λj − λr )T 2
ij

−

r−1∑ ⎛⎝ r−1∑
(λj − λr )TijTsj

⎞⎠ ,
s=1,s̸=i j=1,i̸=s

5

hich leads to

ˆ(i+1)1 ≤ −(λr−1 − λr )(1 −
1
r
) +

(r − 2)
r

(λr−1 − λr )

= −
1
r
(λr−1 − λr ) < 0.

As a result, we have shown that L̂ii > 0, L̂ij ≤ 0, ∀ i ̸= j, implying
that L̂ in (16) is regarded as a Laplacian matrix associated with an
undirected weighted graph. This further yields Kr as a symmetric
and diagonally dominant M-matrix. ■

With the matrix Ur , the transformed matrix Kr possesses the
structural property that allows Kr to be interpreted as an undi-
rected weighted network with the diffusive couplings. In this
sense, a reduced graph can be reconstructed. Besides, there is
a freedom in constructing Ur by choosing different T . By this
means, a sparse Kr may be obtained with a particular T under
some constraints, see Example 2. But we should note that it
does not always find non-complete graphs with this approach.
Whether we can succeed to find a non-complete graph or not is
determined by the prescribed eigenvalues.

Theorem 2 shows a sufficient condition for T to produce a
Laplacian matrix, but it does not explicitly state how to choose
T , particularly to have zeros in the new stiffness matrix Kr . We
suggest an ad hoc algorithm to do so. Suppose that we intend to
enforce K (ij)

r = K (ji)
r = 0. Then, a nonlinear constraint is formed as

e⊤

i Krej = e⊤

i (λr Ir + VΛV⊤)ej = 0, (19)

where ei denotes the ith column of the identity matrix. Then a set
of nonlinear equations is obtained by combining (19) and (14) in
Theorem 2. Note that this set of equations does not always give a
solution, depending on the prescribed eigenvalues and how many
zero elements are enforced. But when it is solvable, we obtain a
non-complete reduced graph, as illustrated in Example 2.

Remark 2. Note that we may also use the Householder transfor-
mation to construct a tridiagonal Kr . It has been shown in Ishizaki
et al. (2013) that there exists a unique Householder transforma-
tion Ur such that Kr = Ur K̂rU⊤

r becomes a symmetric tridiagonal
M-matrix. However, this tridiagonal Kr is not necessary diag-
onally dominant. Although we can write Kr = Vr + Lr with
Lr representing an undirected chain graph, the diagonal ma-
trix Vr may contain negative elements, which losses a physical
interpretation.

In the following example, we demonstrate how to implement
our graph reconstruction method in Theorem 2, which is com-
pared with the one in Cheng, Scherpen et al. (2019) and the
Householder transformation in Ishizaki et al. (2013).

Example 2. Let {0, 0.4384, 2, 4.5616, 7} be the prescribed eigen-
values, and we aim to create a diagonally dominant M-matrix
Kr whose eigenvalues match the prescribed ones, and Kr has
some zero elements, indicating a non-complete graph. Suppose
K (14)
r = K (34)

r = 0. By solving (14) in Theorem 2 and the following
equations

e⊤

1 (λr Ir + VΛV⊤)e4 = e⊤

3 (λr Ir + VΛV⊤)e4 = 0

with λr = 0.4384, we obtain a solution as

T =

[
−0.8235 0 0.2682
0.1481 0.7071 − 0.4776
0.5273 0 0.6870

]
,

which leads to

Kr =

⎡⎢⎣ 3 −1 −1.5614 0
−1 5 −1 −2.5615

−1.5614 −1 3 0

⎤⎥⎦ . (20)
0 −2.5615 0 3
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Fig. 2. (a) The undirected graph corresponding to Kr in (20). (b) The complete
graph corresponding to K̄r obtained by the procedure in Cheng, Scherpen et al.
(2019).

Moreover, Kr represents an undirected network with diffusive
couplings and the topology is shown in Fig. 2(a).

For comparison, we implement the procedure used in the
proof of Cheng, Scherpen et al. (2019, Them. 12) and obtain an
alternative graph representation of K̂r as K̄r = 0.4384Ir + L̄r with
L̄r a Laplacian matrix

L̄r =

⎡⎢⎣ 4.5365 − 1.2443 − 0.3904 − 2.4635
−1.2443 3.3173 − 0.3904 − 1.2443
−0.3904 − 0.3904 1.6096 − 0.3904
−2.4635 − 1.2443 − 0.3904 4.5365

⎤⎥⎦
that represents a complete graph, see Fig. 2(b). Furthermore, we
use the Householder transformation suggested in Ishizaki et al.
(2013, Them. 1) and obtain a tridiagonal matrix

K̃r =

⎡⎢⎣ 5 − 2.4495 0 0
−2.4495 2.6667 − 1.8856 0

0 − 1.8856 4.3333 0
0 0 0 2

⎤⎥⎦ ,

which is not diagonally dominant and thus losses a network
interpretation.

For the reduced-order model Σ̂ r in (8), which has the propor-
tional damping, i.e. D̂r = αIr + βK̂r with α > 0, β > 0. Applying
the coordinate transformation xr = Ur x̂r to Σ̂ r then leads to a
reduced second-order model Σ r in the form of (4) with

Kr = Ur K̂rU⊤

r , Dr = Ur D̂rU⊤

r ,

Fr = Ur F̂r , Hr = ĤrU⊤

r . (21)

Recall the proportional damping assumption in (3), the obtained
Dr from the transformation will be Dr = αIr + βKr . Thus, the
reduced model with coefficient matrices in (21) possesses the
same structure as the original second-order network Σ in (2),
and it can be interpreted as a second-order network with reduced
number of nodes. Furthermore, the approximation error between
the systems Σ and Σ r is evaluated as follows.

Theorem 3. Consider the original diffusively coupled second-order
network Σ in (2) and its reduced second-order network model Σ r
with the matrices in (21). Then, we have ∥Σ −Σ r∥H2 < γ , where
γ is the scalar in (7b).

This result follows immediately from that Σ r with the ma-
trices in (21) is obtained by the coordinate transformation from
Σ̂ r in (8), and thus they have the same input–output transfer
matrices, and Σ r is also a solution of Problem 1.

Although this paper focuses on asymptotically stable second-
order network systems, the proposed method can also be easily
extended to semi-stable networks studied in Cheng et al. (2017,
2016), Yu, Cheng, Scherpen and Emma (2019), where K is positive
semidefinite. The extension can be made by using a system sepa-
ration as in Besselink et al. (2016), Cheng, Scherpen et al. (2019).
Taking into account the kernel space of K , we have the following
6

decomposition K = S blkdiag{0m, K̄ } S⊤, where S is unitary, and
m is the algebraic multiplicity of the zero eigenvalues of K . Here,
S can be partitioned as S =

[
S0 S1

]
with KS0 = 0. By defining

z = S−1x = [za z⊤
s ]

⊤, with za ∈ Rm and zs ∈ Rn−m, the original
system (2) is decomposed into two parts:

z̈a + αża = S⊤

0 Fu, ya = HS0za, (22)

and

z̈s + D̄żs + K̄ zs = S⊤

1 Fu, ys = HS1zs, (23)

where D̄ = S⊤

1 DS1, and K̄ = S⊤

1 KS1 are positive definite, imply-
ing that the system (23) is asymptotically stable. By using the
proposed H2 optimal model reduction approach in Section 3.1,
we can obtain a reduced second-order model for the system (23).
Then combining this reduced model with the system (22) results
in semi-stable reduced model in the second-order form. Note that
the proportional damping is retained in (23), i.e., D̄ = αI + βK̄ .
Thereby, the graph reconstitution in Theorem 2 can be applied to
restore a interconnection structure of diffusive couplings in the
reduced model.

4. Illustrative example

In this section, we demonstrate the effectiveness of the pro-
posed model reduction method through an example of complex
networks.

For comparison, we borrowed the following second-order net-
work in (2) evolving over the Holme–Kimmodel composed of 100
nodes (Ishizaki & Imura, 2015), and the interconnection topology
is shown in Fig. 3. In this paper, we select the stiffness matrix
K ∈ R100×100 as

Kij =

{
1 −

∑100
j=2 K1,j, i = 1;

−
∑100

j=1,j̸=i Ki,j, i ̸= 1.

and a proportional damping as D = αI100+βK with α = 0.97 and
β = 0.15. The output and output matrices are chosen as F = e1001
and H = K − diag{e1001 }, respectively.

We reduce the dimension of the second-order network system
by two different methods, the clustering-based model reduc-
tion method in Ishizaki and Imura (2015) and the proposed
convex-optimization based model reduction method in this pa-
per. Moreover, the reduced-order ranges from 4 to 84 with in-
crements of 4. The H2-norm of the original network system is
1.2661, and the H2 approximation errors between the original
system and the reduced second-order models obtained by Al-
gorithm 1 and the method (Ishizaki & Imura, 2015) are shown
in Fig. 4. It can be seen from Fig. 4 that the obtained reduced
second-order model can approximates the original second-order
system well and the H2 approximation error decay as the order
of the reduced second-order model increases. Moreover, the pro-
posed method preserves the second-order network structure and
achieves smaller approximation error.

To illustrate the effectiveness of our network reconstruction
procedure, we consider the obtained reduced model with dimen-
sion 4 as an example, which has the H2 approximation error
equal to 0.4371, and the eigenvalues of K̂4 are given by λ(K̂4) =

{9.5631, 7.727, 5.1027, 4.1776}. Based on Theorem 2, we select

T =

[ 0.5 − 0.1845 0.6826
0.5 0.1845 − 0.6826

−0.5 − 0.6826 − 0.1845

]
,

which leads to a sparse Laplacian matrix as

K4 =

⎡⎢⎣ 6.246 0 − 0.4625 − 1.6059
0 7.039 − 2.3989 − 0.4625

−0.4625 − 2.3989 7.039 0

⎤⎥⎦ , (24)
−1.6059 − 0.4625 0 6.2460



L. Yu, X. Cheng, J.M.A. Scherpen et al. Automatica 137 (2022) 110118

n

w

K

r
s

o

c
K
p
n

a

U
x
w
i

5

m
n
f
e
i
r
a
i
i
T
o
m

A

P
Σ
D
u
K
P
t
i
P

w
e
Σ
t
m
0
o
o

n
P
r

Fig. 3. Interconnection topology of the original second-order network (100
odes).

Fig. 4. H2 approximation errors obtained by the proposed model reduction
method and clustering-based model reduction method (Ishizaki & Imura, 2015).

Fig. 5. (a) The undirected graph corresponding to K4 in (24). (b) The complete
graph corresponding to K̃4 in (25).

that has the same spectrum as K̂4, and the corresponding inter-
connection topology is shown in Fig. 5(a). Alternatively, we can
choose a different T matrix as

T =

[ 0 0.309 − 0.809
−0.809 0 0.309
0.309 − 0.809 0

]
,

hich then yields

¯4 =

⎡⎢⎣ 6.6426 − 1.6301 0.4579 − 1.2928
−1.6301 8.0412 − 1.3463 − 0.8873
0.4579 − 1.3463 5.2973 − 0.2313

−1.2928 − 0.8873 − 0.2313 6.5889

⎤⎥⎦ , (25)

epresenting a complete network with interconnection topology
hown in Fig. 5(b).
It can be concluded that the reduced second-order model

btained by the proposed convex-based optimization approach
 G

7

an approximate the original network well. Moreover, a sparse
r may be obtained by using the similarity transformation pro-
osed in Theorem 2. That is, a Laplacian matrix associated to an
on-complete graph with sparse interconnection is obtained.
Moreover, it can be verified that K4 in (24) can be rewritten

s Kr = U1diag{9.5631, 7.727, 5.1027, 4.1776}U⊤

1 with a unitary
matrix U1, which implies Kr = U1U2K̂rU⊤

2 U⊤

1 with Ur = U1U2,
rU⊤

r = I . Thus, by applying the coordinate transformation
ˆr = Urxr to the obtained 4-order model, a second-order net-
ork system with diffusive couplings can be obtained, and the

nterconnection topology is shown in Fig. 5(a).

. Conclusion

We have developed a novel convex-optimization-based H2
odel reduction method for diffusively coupled second-order
etwork systems. A numerical algorithm has been developed to
ind a local optimal reduced second-order model. It is worth
mphasizing that this algorithm is computationally efficient, as
t is constrained by only linear matrix inequalities that can be di-
ectly solved by using efficient convex optimization toolboxes. In
ddition, by using a new similarity transformation that provided
n this paper, the resulting reduced second-order model can be
nterpreted as an undirected network with diffusive couplings.
he main advantage of the proposed method is that a local
ptimal reduced-order system can be guaranteed in the sense of
inimizing the H2 approximation error bound.

ppendix. Proof of Theorem 1

roof. Firstly, we prove that the reduced second-order model
ˆrs as in (4) is asymptotically stable with system matrices Kr ,
r , Fr , Hr given in (9). It follows from P̂31 > 0, and full col-
mn rank of P̂21 that P̂21P̂−1

31 is a full column rank matrix. Since
,D > 0, we obtain that Dr = P̂−1

31 P̂⊤

21DP̂21P̂
−1
31 > 0, and Kr =

ˆ−1
31 P̂⊤

21KP̂21P̂
−1
31 > 0. According to Bernstein and Bhat (1995),

he reduced second-order system Σ r with system matrices given
n (9) is asymptotically stable. Note that if there exist matrices
ˆ > 0, Kr , Dr , Fr , Hr satisfy the following optimization problem:

min
P̂>0,γ>0

γ (A.1a)

s.t. tr
(
CeP̂C⊤

e

)
< γ , (A.1b)

P̂A⊤

e + AeP̂ + BeB⊤

e < 0, (A.1c)

P̂ =

⎡⎢⎢⎣
P̂11 P̂12 P̂21 P̂22
⋆ P̂13 P̂23 P̂24
⋆ ⋆ P̂31 P̂32
⋆ ⋆ ⋆ P̂33

⎤⎥⎥⎦ > 0, (A.1d)

ith Ae, Be, Ce given in (6). Then, it follows that the approximation
rror between the original interconnected second-order system
in (2) and the reduced second-order model Σ r in (4) satisfies

he upper bound given in (10). Now, we prove that if there exist
atrices P̂11 > 0, P̂12, P̂13 > 0, P̂31 > 0, P̂31, P̂21, and X ≥

, such that the optimization problem (7) is solvable, then the
ptimization problem (A.1) is also solvable. That is, the solution
f optimization problem (7) is also a solution of the problem (A.1).
In the sequel, we prove that the inequalities (7b)–(7e) are the

ecessary and sufficient conditions for the problem (A.1) when
ˆ has the form of (7f). Note that the inequality (A.1c) can be
ewritten as

⊤

+ sym(K1YK2 ) < 0, (A.2)
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w

K

here

G =

⎡⎢⎢⎢⎣
sym(P̂12) −P̂11K − P̂12D + P̂13 0 0 0

⋆ sym(−KP̂12 − DP̂13) − KP̂21 0 F
⋆ ⋆ 0 0 0
⋆ ⋆ ⋆ 0 0
⋆ ⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎦ ,

K1 =

⎡⎢⎢⎢⎣
0 0
0 0
I 0
0 I
0 0

⎤⎥⎥⎥⎦ , K2 =

⎡⎢⎢⎢⎢⎣
P̂21 0 0
0 0 0
P̂31 −P̂31 0

−P̂31 2P̂31 0
0 0 I

⎤⎥⎥⎥⎥⎦ , Y =

[
0 Ir 0

−Kr −Dr Fr

]

and the orthogonal complements of the matrices K1, K2 are given
by

K⊥

1 =

[ I 0 0 0 0
0 I 0 0 0
0 0 0 0 I

]
,

⊥

2 =

[
I 0 − 2P̂21P̂−1

31 − P̂21P̂−1
31 0

0 I 0 0 0

]
.

According to the Finsler’s lemma, the inequality (A.2) is equiva-
lent to K⊥

1 G(K⊥

1 )⊤ < 0, K⊥

2 G(K⊥

2 )⊤ < 0, where the first inequality
is equivalent to[
sym(P̂12) Π12

⋆ Π22

]
< 0,

as given in (7c), and the second inequality is equivalent to Φ < 0,
as given in (7d).

Next, we prove that (7b) is a necessary condition of inequality
(A.1b). Suppose that R = R⊤ > 0 satisfies R − CeP̂C⊤

e > 0.
Therefore, tr(R) < γ 2 implies tr(CeP̂C⊤

e ) < γ 2. By using Schur

complement, R − CeP̂C⊤
e > 0 is equivalent to

[
R CeP̂
⋆ P̂

]
> 0,

which can be rewritten as

Ω − sym(Υ
[
Hr 0

]
Z⊤) > 0, (A.3)

where

Ω =

⎡⎢⎢⎢⎢⎣
R HP̂11 HP̂12 HP̂21 0
⋆ P̂11 P̂12 P̂21 0
⋆ ⋆ P̂13 0 0
⋆ ⋆ ⋆ P̂31 −P̂31
⋆ ⋆ ⋆ ⋆ 2P̂31

⎤⎥⎥⎥⎥⎦ , Υ =

⎡⎢⎢⎢⎣
I
0
0
0
0

⎤⎥⎥⎥⎦ ,

Z =

[
0 P̂⊤

21 0 P̂31 − P̂31
0 0 0 − P̂31 2P̂31

]⊤

.

The orthogonal complements of matrices Υ , Z are

Υ ⊥
=

[
0 I 0 0 0
0 0 0 2I I

]
,

Z⊥
=

⎡⎣ I 0 0 0 0
0 I 0 − 2P̂21P̂−1

31 − P̂21P̂−1
31

0 0 I 0 0

⎤⎦ .

According to the Finsler’s lemma, (A.3) is equivalent to
Υ ⊥Ω(Υ ⊥)⊤ > 0, Z⊥Ω(Z⊥)⊤ > 0, which can be rewritten as
inequality (7e) and⎡⎣R HP̂11 − 2HX HP̂12

⋆ P̂11 − 2X P̂12
⋆ ⋆ P̂13

⎤⎦ > 0.

The above inequality leads to[
R HP̂11 − 2HX

ˆ

]
> 0. (A.4)
⋆ P11 − 2X
8

By using Schur complement, (A.4) is equivalent to

R − H(P̂11 − 2X)H⊤ > 0.

Thus, tr
(
H(P̂11 − 2X)H⊤

)
< γ 2 appears as a necessary condition

to satisfy H(P̂11−2X)H⊤ < R, and tr(R) < γ 2. Note that the rank of
P̂21 ∈ Rn×r could not exceed r since the projection matrix P̂21P̂−1

31
must have full column rank, that is, rank(P̂21P̂−1

31 ) = r . Therefore,
the rank of X = P̂21P̂−1

31 P̂⊤

21 satisfies rank(X) ≤ r . This completes
the proof of Theorem 1. ■
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