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o the Editor: 

Over the years, the shortage of suitable donor organs has chal- 

enged the transplant community in performing life-saving liver 

ransplantation (LT). Recent reports from European and American 

iver transplant registries show persistently high waitlist mortal- 

ty rates ranging between 10% and 18% [ 1 , 2 ]. To cope with this,

iver transplant surgeons are increasingly forced to transplant or- 

ans from extended criteria donors. However, it is well known 

hat these organs are more susceptible to the consequences of 

schemia-reperfusion injury (IRI), including primary non-function 

PNF) and non-anastomotic biliary strictures (NAS) after transplan- 

ation, which, by consequence, can increase the number of retrans- 

lantations, making organ shortage an endless cycle [3] . This unfa- 

orable scenario has created a fertile environment for the develop- 

ent of organ machine perfusion (MP) strategies aiming to assess 

nd optimize organs before transplantation [4] . A large amount 

f research has resulted in the development of different perfu- 

ion devices and protocols, which have been tested in preclini- 

al and clinical studies, and, more recently, in randomized clinical 

rials [5] . Currently, hypothermic oxygenated machine perfusion 

HOPE) is mainly used to improve mitochondrial status by decreas- 

ng oxidative stress and increasing cellular adenosine triphosphate 

ATP) levels [ 6 , 7 ], whereas normothermic MP is better suited for

valuation of graft quality during the perfusion session by measur- 

ng different biological and physiological parameters. 

Furthermore, MP technology opens a door to a new era in 

iver graft preservation by allowing modulation of graft function 

hrough the administration of specific therapies, such as anti- 

nflammatory drugs, vasodilators, defatting cocktails, and infusion 

f stem cells [8] . In addition, our group pioneered the use of RNA

nterference by demonstrating the uptake of small interfering RNA 

gainst pro-apoptotic genes during both ex situ normothermic and 
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ypothermic perfusion of rat liver grafts [9] . Our group started in- 

estigating the potential use of CRISPR-Cas9 (clustered regularly- 

nterspaced short palindromic repeats and CRISPR associated pro- 

ein 9) gene editing during liver MP as a promising strategy to fur- 

her explore. The CRISPR-Cas9 is a natural immune bacterial mech- 

nism against viruses, which was discovered in 2012 and it is al- 

eady considered a revolution in the way we can manipulate DNA 

y making gene editing more efficient, faster, and cheaper. Indeed, 

harpentier and Doudna, who first described the system, have just 

een awarded with the 2020 Nobel Prize in chemistry [10] . 

All in all, ex situ graft modulation/optimization is a high-speed 

esearch highway, which is opening up in the field of organ preser- 

ation. However, as with all roads, the journey can be long and, at 

ome point, misleading. Hence, we have many steps left to take 

efore reaching a safe destination. In fact, in the specific case of 

RISPR-Cas9 gene editing, its efficiency will largely depend on the 

iral delivery performance of both Cas9 nuclease and guide RNA, 

hich may limit the results of this highly sophisticated technol- 

gy. The use of CRISPR-Cas9 gene editing for graft modulation has 

ot been reported yet. 

With this in mind, we designed a proof-of-concept experiment 

n which adeno-associated virus (AAV) gene therapy was used to 

fficiently deliver genetic load during MP before liver engraftment 

n preparation to be used for CRISPR-Cas9 delivery. In brief, male 

ewis rats, weighting 220 to 260 g, were used as donors and recip- 

ents. Liver grafts were procured and transplanted using an arteri- 

lized rat transplant model [11] . Immediately after procurement, 

 liver grafts were subjected to 2 h of HOPE at 4 °C using Uni-

ersity of Wisconsin MP solution, which was perfused through the 

ortal vein as previously described [9] . At the beginning of HOPE 

reservation, a solution of 4 × 10 8 Pfu/mL of AAV (serotype 8), 

sed as a vector for the green fluorescent protein (GFP) gene, was 

dded to the perfusion solution in 2 of the 6 grafts. After MP 

reservation, controls and treated livers were immediately trans- 

lanted. All animals survived and were in good clinical conditions 

t 24 h after liver transplantation, when euthanasia was performed 
a. Published by Elsevier B.V. All rights reserved. 
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Fig. 1. Experimental design. GFP-AAV8: green fluorescent protein adeno-associated virus serotype 8. HOPE: hypothermic oxygenated machine perfusion. 

Fig. 2. Delivery of GFP-AAV8 transduces liver graft hepatocytes. Representative histology and immunohistochemistry scale bars 100 μm . Black arrows show GFP positive 

cells. GFP-AAV8: green fluorescent protein adeno-associated virus serotype 8. 
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or samples collection ( Fig. 1 ). Immunohistochemistry analysis per- 

ormed on samples of treated grafts showed 2.0 0 0 ± 1.563 GFP 

ositive cells per × 20 field ( Fig. 2 ), demonstrating transduction of 

iver graft cells 24 h after transplant. With this proof-of-principle 

tudy, we show for the first time adenoviral-mediated delivery of 

enetic cargo during ex situ HOPE liver perfusion and transplan- 

ation. Successful integration of viral gene therapy during ex situ 

achine preservation provides an opportunity to potentially intro- 

uce a therapeutic cargo to ameliorate or reduce IRI. As such, viral 

ene therapy could be employed to deliver and induce temporary 

verexpression of cytoprotective, anti-apoptotic, or immunoregula- 

ory genes [12] . 
504 
Similarly, viral gene therapy could be employed to deliver gene- 

diting technologies, (i.e., CRISPR-Cas9) to knockout and reduce ex- 

ression of pro-ischemic, pro-apoptotic, and/or pro-inflammatory 

layers. Indeed, CRISPR-Cas9 ex situ graft editing will depend heav- 

ly on the efficiency of viral delivery of both Cas9 nuclease and 

uide RNA, guide RNA design, and frequency of potential off-target 

ffects, including unexpected translocations, deletions, inversions, 

nd exon skipping [13–15] . We are currently trying to apply the 

RISPR-Cas9 gene-editing platform in our ex situ rat liver perfusion 

odel. 

AAV vectors have been demonstrated to have robust safety pro- 

les clinically. Further, AAV-delivered genetic material does not 
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ntegrate into the genome. AAV vectors come in a variety of 

erotypes with different therapeutic profiles. Here we used AAV 

erotype 8, which demonstrated to be a promising candidate for 

epatic gene therapy clinically [13] . However, for ex situ perfusion 

nd transplantation specifically, future studies will be needed to 

ompare the efficiency of various AAV serotypes and to improve 

he robustness of transduction. 

There are several important caveats to viral gene therapy that 

ust be considered [15] . The first is packaging size of the vec- 

or. For most AAV vectors, the upper limit is around 5 kilobases 

kb) [13] . As such, when considering future studies to use CRISPR- 

as9 to knockout genes that promote IRI, Cas9 and the guide RNA 

ould likely need to be packaged into and delivered by sepa- 

ate AAV vectors. Additionally, targeted transduction of liver cell 

ubtypes, i.e., cholangiocytes, will likely require studies evaluat- 

ng multiple serotypes. Finally, while generally well tolerated, not 

nlike other viral vectors, AAV delivery can induce an immune 

esponse [ 14 , 15 ]. However, in adult mice, adenoviral delivery of 

RISPR-Cas9 still generated efficient editing, despite presence of an 

mmune response [13] . Nevertheless, the potential for AAV delivery 

f CRISPR-Cas9 or other genetic cargo strategy during HOPE can 

licit a detrimental immune response requiring further investiga- 

ion. In the same way, the number of virally transduced hepato- 

ytes to produce a therapeutic benefit (whether overexpressing a 

rotein of interest or editing for knock-out) and confirmation of 

ff-target effects require more research. 

In conclusion, here we show in a preliminary proof-of-concept 

tudy that AAV administration during organ machine perfusion was 

ble to deliver genetic load to liver grafts, leading to transduc- 

ion in liver grafts 24 h after transplantation. Further experimental 

tudies using AAV as vectors to deliver CRISPR-Cas9 during organ 

erfusion are underway to investigate the potential use of this ge- 

etic tool to edit genes (addition/knockout) associated with post- 

ransplant ischemia/reperfusion injury with the goal of improving 

ost-transplantation organ function. 
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