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Abstract
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical informa-
tion for the prediction of renal cell carcinoma (RCC) patients’ overall survival after partial or radical nephrectomy. Clinical 
studies of 210 RCC patients from The Cancer Imaging Archive (TCIA) who underwent either partial or radical nephrectomy 
were included in this study. Regions of interest (ROIs) were manually defined on CT images. A total of 225 radiomic features 
were extracted and analyzed along with the 59 clinical features. An elastic net penalized Cox regression was used for feature 
selection. Accelerated failure time (AFT) with the shared frailty model was used to determine the effects of the selected 
features on the overall survival time. Eleven radiomic and twelve clinical features were selected based on their non-zero 
coefficients. Tumor grade, tumor malignancy, and pathology t-stage were the most significant predictors of overall survival 
(OS) among the clinical features (p < 0.002, < 0.02, and < 0.018, respectively). The most significant predictors of OS among 
the selected radiomic features were flatness, area density, and median (p < 0.02, < 0.02, and < 0.05, respectively). Along with 
important clinical features, such as tumor heterogeneity and tumor grade, imaging biomarkers such as tumor flatness, area 
density, and median are significantly correlated with OS of RCC patients.

Keywords CT · Radiomics · Survival prediction · Machine learning · Renal cell carcinoma

Introduction

Renal cell carcinoma (RCC) accounts for 2 to 3% of all 
cancer types [1]. Worldwide, RCC is the tenth and sixth 
commonly diagnosed cancer in women and men, respec-
tively [2]. In recent decades, RCC incidence has shown an 
increasing trend for both sexes [3], which can be attributed Zahra Khodabakhshi and Mehdi Amini contributed equally to this 
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to recent advancements in imaging techniques, such as 
contrast-enhanced computed tomography (CECT) and 
magnetic resonance imaging (MRI). Besides, approximately 
more than 50% of RCC cases are diagnosed incidentally 
when abdominal imaging is performed for gastrointestinal 
disorders [4]. According to cancer statistics, the 5-year rela-
tive survival rate of RCC patients depends on the cancer 
stage at the time of diagnosis. The survival rate after 5 years 
is 93%, 69%, and 12% for localized tumors, tumors with 
regional lymph nodes metastasis, and tumors with distant 
metastasis, respectively [5]. From the clinical perspective, 
predictive and prognostic models have a pivotal role in 
treatment and management, precision medicine, and pre-
diction of the overall cancer outcome [6]. Currently, the 
most important prognostic model and commonly accepted 
staging system for RCC is The American Joint Committee 
on Cancer (AJCC) tumor-node-metastasis (TNM) staging 
[7]. This system is limited to anatomic prognostic factors. 
Yet, the rapid expansion of our understanding of cancer 
biology and the development of novel effective treatments 
along with advancements in medical imaging technology 
have pushed researchers toward looking beyond the TNM 
staging system and developing new predictive models [7]. 
Recent studies have proposed prognostic factors, including 
histologic, clinical, genomic, and imaging features [8–11].

Radiomic and radiogenomic biomarkers have gained 
increasing popularity among researchers in recent years 
for developing diagnostic, prognostic, and predictive mod-
els [12–16]. Radiomic refers to the translation of medical 
images into minable high-dimensional data and identifica-
tion of patterns from imaging data via data mining algo-
rithms to improve clinical decision support systems [12–16]. 
A number of studies have demonstrated the potential of 
radiomic analysis in survival analysis and prediction of 
treatment outcome [12–16]. Oikonomou et al. [17] investi-
gated the predictive power of radiomic features along with 
maximum standardized uptake value extracted from PET/CT 
images of lung cancer patients treated with stereotactic body 
radiotherapy (SBRT). They reported that radiomic features 
could have a complementary role in prognostication in lung 
cancer patients post-SBRT. Jiang et al. [18] reported that a 
radiomic signature containing 19 selected radiomic features 
captured from CT imaging is associated with disease-free 
survival (DFS) and overall survival (OS) in patients with 
gastric cancer. Park et al. [19] developed a radiomic nomo-
gram for patients with invasive breast cancer. The devel-
oped nomogram consisted of radiomic signatures, MRI, and 
clinico-pathological factors. It improved DFS estimation in 
comparison with radiomic signatures or clinico-pathological 
nomogram alone.

In the context of kidney cancer, most of the conducted 
radiomic studies focused mainly on differentiating benign 
tumors, such as angiomyolipoma without visible fat and 

oncocytoma from malignant renal masses like RCC sub-
types [20–22]. However, there are a limited number of stud-
ies that investigated the correlation between texture-based 
imaging features and RCC patients’ survival. Haider et al.  
[9] performed CT texture analysis on 40 RCC patients 
before and after treatment with Sunitinib to predict their 
progression-free survival (PFS) and OS. Their results 
showed that entropy from the CT texture (reflecting the 
heterogeneity in the texture) was a significant predictor of 
the patients’ overall survival for both before and after treat-
ment. Moreover size-normalized standard deviation of the 
intensities in CT images (both pre-treatment and follow-up) 
was also associated with PFS and OS [9]. The aim of this 
work is to investigate the applicability of radiomic features 
and clinical data for the prediction of RCC patients’ overall 
survival after partial or radical nephrectomy.

Materials and Methods

The workflow of the current study is illustrated in Fig. 1.

Image Acquisition

The dataset used in this work was taken from The Cancer 
Imaging Archive (TCIA) and consists of CT scans in the 
arterial phase of 210 patients who underwent either partial 
or radical nephrectomy [23–25]. The summary of clinical 
data is provided in Supplemental Table 1 and more informa-
tion could be found in previous studies [23–25]

Image Segmentation

A region of interest (ROI) delineating each tumor was 
manually drawn under the supervision of a urological sur-
geon; more information could be found in previous studies 
[23–25].

Feature Extraction

Images were interpolated to isotropic voxel spacing of 
2 × 2 × 2  mm3 using cubic interpolation to obtain rotation-
ally invariant texture features. Prior to feature extraction, 
intensity levels in images were discretized into 64 Gy-levels. 
Feature extraction was performed using The Standardized 
Environment for Radiomics Analysis (SERA) package [26]. 
This is a MATLAB-based framework for the calculation of 
standardized radiomic features compliant with the Imaging 
Biomarker Standardization Initiative (IBSI) [27, 28] used in 
multi-center standardization studies [27, 28]. In this work, 
a total of 225 radiomic features were extracted from each 
ROI including 79 first-order features (morphology, sta-
tistical, histogram, and intensity-histogram features), 136 
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three-dimensional textural features from texture matrices 
(GLCM, GLRLM, GLSZM, GLDZM, NGTDM, NGLDM), 
and 10 moment-invariant features. Supplemental Table 2 
summarizes the details of the extracted features.

Feature Selection

We used three sets of features, including radiomic, clini-
cal, and radiomic + clinical features where all sets con-
tained a large number of variables. Such high-dimensional 
data are predisposed to model overfitting, minimal-optimal 

problem, and increased computational time. Moreover, 
not all of the features are informative and even some may 
be irrelevant and do not contribute to the prediction of 
survival. Therefore, we used an elastic net penalized Cox 
regression to reduce the dimensionality of features and 
remove irrelevant features.

In medical research, one of the most commonly used 
models for investigating the association between covari-
ates and survival data is the Cox proportional hazard 
model [29]. In a Cox model, the hazard function is calcu-
lated using the following equation:

Fig. 1  The radiomic workflow 
adopted in this study. AFT: 
accelerated failure time, AIC: 
Akaike information criteria, 
BIC: Bayesian information 
criteria
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In this equation, h0(t) is a completely unspecified baseline 
hazard function, Xj defines covariates (in our study radiomic 
and/or clinical features), and �j stands for associated coef-
ficients for j = 1 … p (number of covariates or features). By 
maximizing the Cox partial likelihood function, the vector 
of coefficients � can be approximated by

In the above equation, Xi = (Xi
1
,… ,Xi

p
)
T is the vector of 

covariates for the ith patient, Ri is the set of patients at risk 
at the time ti , and if the event has been observed for the ith 
patient, then �i = 1 . This regression model with many pre-
dictors may have high variance. To circumvent this problem, 
we can add a penalty term to log the partial likelihood of 
Cox model [30]. We used the elastic net penalty, which is a 
combination of ridge and LASSO penalties. By adding this 
penalty to the log partial likelihood, we get

In the above equation, l(�) = log(L(�)) is the log-partial-
likelihood [31]. In this work, the optimal hyper-parameter 
( �) and the tuning parameter (λ) were determined using a 
ten-fold cross-validation. This process was implemented 
using the “glmnet” R package [30].

Model Development and Survival Analysis

The two most important regression models in the context of 
survival analysis are Cox proportional hazard model [32] 
and accelerated failure time (AFT) model [33]. Unlike the 
Cox model which assumes that the effect of a covariate is to 
multiply the hazard by some constant, AFT models provide a 
linear relationship between the log of the failure time and the 
covariates and are favorable to studies in which some covari-
ates may accelerate or decelerate the expected failure time 
[34]. The regression form of the AFT model is given by:

where Ti denotes the failure time for the ith subject, x1 … xp 
are covariates with �1 … �p coefficients, � is the scale param-
eter, and �i is a random variable. In the above equation, the 
failure time can have different distribution patterns, such as 
Weibull, log-normal, exponential, gamma, and log-logistic. 
Most of the survival analyses assume that the study popula-
tion is homogeneous and all subjects are under the same 
risk. However, this assumption is often incorrect since the 
response to a specific treatment may be different among 

(1)h
(
t;X1,X2,…Xp

)
= h0(t)exp

(
�1X1 +⋯ + �pXp

)

(2)L(�) = Πi=1…nS.t.�i=1

exp(�TXi)
∑

l∈Ri
exp(�TXl)

�

(3)�̂ = �argmaxl(�) − �(�||�||1 +
1 − �

2
||�||2

2
)

(4)logTi = �0 + �1xi1 +… �pxip + ��i

individuals [35, 36]. With respect to the aforementioned 
issue, the shared frailty survival model is one of the basic 
approaches that introduce random effects and unobserved 
heterogeneity into the model. Whenever the frailties become 
common between the clusters of subjects, shared frailty can 
be used to describe a random effect model [37]. By introduc-
ing the frailty to the AFT model, we are given by

Here, Tij denotes the lifetime of jth individual in the ith 
cluster or group, and exp�i is the random frailty distributed 
within a cluster which can have different distributions [34].

To analyze the effects of the selected features on the over-
all survival time, we used accelerated failure time (AFT) 
with the shared frailty model. To identify the best model, we 
fitted AFT with shared frailty models with different baseline 
and frailty distributions to our data. The best model was 
selected according to the Akaike information criteria (AIC) 
[38] and the Bayesian information criteria (BIC) [39]. AIC 
and BIC are defined by the following equations:

In the above equations, k is the number of parameters 
estimated by the model, L̂ is the maximized value of the like-
lihood function of the model, and n is the number of obser-
vations. In the statistical analysis, a model with the lowest 
AIC and BIC is preferred. Following the identification of 
the optimum AFT shared-frailty model, we performed “sur-
vival” and “frailtypack” R packages with 1000 bootstrapping 
samples to reach a robust estimation of standard errors of 
regression coefficients [40, 41].

Results

Feature Selection

Based on the results of the elastic net penalized Cox regres-
sion with ten-fold cross-validation and the fixed value of the 
hyper-parameter (α = 0.5), the identified optimal value of the 
tuning parameter ( � ) was 0.01986259. For example, Fig. 2a 
presents the plot of our ten-fold cross-validation for the iden-
tification of optimal Log (λ) based on the minimization of 
partial likelihood deviance error for image features. The plot 
of features with non-zero coefficients (e.g. selected features) 
against the L1 norm is provided in Fig. 2b.

After fitting the model for radiomic, clinical, and clini-
cal + radiomic data, features with non-zero coefficients were 
listed according to their importance value. The results are 

(5)logTij = �i + X
′

ij
� + ��ij

(6)AIC = 2k − 2log(L̂)

(7)BIC = k ∗ log(n) − 2log(L̂)
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presented in Fig. 3. From 225 radiomic features, 59 clinical, 
and 284 combined features, 11, 12, and 13 features were 
respectively selected based on their non-zero coefficients 
and were ranked by their importance value. According to 
Fig. 3, malignancy had the highest importance value (62%) 
among the selected clinical features. Besides, almost half of 
the selected clinical features are associated with comorbidi-
ties. Among the selected radiomic features, large zone high 
gray level emphasis, area density (convex hull), and area 
density (MVEE) had the highest importance values (49%, 
48%, and 47%, respectively). For the combination of radi-
omic and clinical features, malignancy, phatology T-stage, 

and area density-convex hull had the highest importance 
values (80%, 75%, and 66%, respectively).

Model Selection and Survival Analysis

Table 1 summarizes the results of fitting the AFT shared 
frailty models to the radiomic, clinical, and radiomic + clini-
cal features. According to this table, the model with Gamma 
frailty distribution and Weibull baseline distribution has the 
optimal performance for the radiomic signatures. The corre-
sponding AIC and BIC values are 171 and 215, respectively 
(identified in bold). The same distributions also apply for the 

Fig. 2  (a) Plot of the ten-fold cross-validation for identification of the optimal lambda (tuning parameter) based on minimizing the partial likeli-
hood deviance error for our image features. (b) Plot of non-zero coefficients or the selected image features against the L1 norm penalty
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clinical and radiomic + clinical signatures corresponding to 
the lowest (AIC and BIC) values of (183, 230), and (160, 
203), respectively.

The results of AFT Weibull shared-frailty model 
with bootstrapping are presented in Table  2. Accord-
ing to these results, tumor ISUP (International Soci-
ety of Urologic Pathologists) grade, tumor malignancy, 
body mass index, and pathology t-stage were the most 
significant predictors of OS among the clinical features 
(p < 0.002, < 0.02, < 0.05, and < 0.02, respectively). The 
most significant predictors of OS between the selected 
radiomic features were flatness, area density (MVEE), 
and median (p < 0.02, < 0.02, and < 0.05, respectively). 
For radiomic + clinical model, a combination of all afore-
mentioned features is a significant predictor of overall sur-
vival. According to Table 2 for multivariable models for 

the selected features, the model based on selected radiomic 
features has better prognostic power in comparison with 
the clinical model. The AIC and BIC for radiomic model 
were 171 and 215, whereas they were 183 and 230 for the 
clinical model, respectively. A combination of clinical and 
radiomic features resulted in a better prognostic model 
with AIC and BIC of 160 and 203, respectively, which is 
significantly better than the clinical model (Table 2).

The Kaplan Meier plot of significant radiomic and clini-
cal features for OS are shown in Figs. 4 and 5, respectively. 
According to Fig. 4, lower values of median (median 77) 
and flatness (median 0.74) and higher values of area den-
sity (median 1.03) are correlated with poor OS. Figure 5 
indicates that malignant lesions or lesions with higher 
isup grade, lower body mass index, and higher pathology 
T-stage are significantly associated with poor survival rate.

Fig. 3  Selected radiomic and clinical features (non-zero coefficients) by elastic-net penalized Cox regression, “glmnet” R package (hyperparam-
eter alpha = 0.5), with the tenfold cross-validation method (a) Clinical features. (b) Radiomic features. (c) Radiomic + clinical features

1091Journal of Digital Imaging  (2021) 34:1086–1098

123456789)1 3



Discussion

Radiomic analysis has emerged as a promising tool in the 
diagnosis, management, and survival time prediction of dif-
ferent types of cancer. A number of studies focused on the 
use of this tool for prognostication and survival prediction. 
Recently, Bologna et al. reported that MRI-based radiom-
ics in patients with nasopharyngeal cancer can improve 
the prognostic capability when added to the clinical fea-
tures [42]. Another study also concluded that there is the 
possibility to use extracted radiomic features of locally 
advanced non-small cell lung cancers to predict PFS [43]. 
Other studies have confirmed the use of radiomic features 
for determining OS in a variety of cancers, including pan-
creatic and hepatic cancers [44, 45]. In this work, we built 
prognostic models based on clinical, radiomic, and clini-
cal + radiomic features for survival analysis of surgically 
treated RCC patients. Three radiomic features belonging to 
morphological and first-order statistical features and four 
clinical features were significant predictors of overall sur-
vival. Our findings suggest that the model based on radiomic 
features alone has better prognostic power compared with 

the clinical model and adding radiomic features to clinical 
features resulted in the best performance.

A limited number of studies investigated the association 
between CT texture features and OS or PFS in RCC patients 
[46]. Goh et al. [47] investigated the predictive power of CT 
texture features in the assessment of response to targeted 
therapy in metastatic renal cell carcinoma. Based on their 
results, both entropy and uniformity before the treatment 
and the percentage of change in uniformity were associ-
ated with time-to-progression. However, their study used a 
small sample size consisting of 39 patients. Lubner et al. [48] 
extracted CT texture features from images of 157 untreated 
RCC patients. They used Cox proportional hazard regres-
sion for time-to-event response. According to their results, 
an increase in the mean of positive pixels is associated with 
a shorter survival time. They also included different subtypes 
of RCCs but the type of treatment was not specified. Haider 
et al. [9] conducted a CT texture analysis for the prediction 
of OS and PFS in patients with clear cell RCC treated with 
Sunitinib. Their results demonstrated a significant association 
between entropy/size-normalized standard deviation and OS. 
However, the study population was small and included only 
40 patients. In a study conducted by Nazari et al. [49], per-
formance of radiomic models through renal cell carcinoma 
prognostication was investigated. However, patients were 
divided into high and low- risk groups (data was dichoto-
mized) based on 5-year follow-up rather than a continuous 
time-to-event survival analysis. The best classifier based on 
a combination of clinical and radiomic features achieved an 
area under the receiver operating curve and accuracy with 
95% confidence interval of 0.95–0.98 and 0.93–0.98, respec-
tively. In a recent study, Li et al. [50] investigated the con-
founding factors of radiomic signature for predicting survival 
outcome in patients with clear cell RCC. They reported that a 
radiomic signature model independent of tumor size and CT 
slice thickness-related features is more reliable for survival 
analysis in RCC patients.

To the best of our knowledge, our study is the first one 
exploring the contribution of radiomic features in the prog-
nosis of overall survival in RCC patients treated with partial 
or radical nephrectomy. Elastic-net penalized Cox regression 
was applied for dimensional reduction of the features by 
removing irrelevant features to handle the minimal-optimal 
problem. Owing to the lack of a homogeneous population 
and since all patients are not subject to the same risk, the 
results of the Cox proportional hazard model are unreliable 
and biased. Hence, the AFT model is a suitable alternative 
to the proportional hazard model to assess the effect of the 
selected radiomic and clinical features on OS [51]. More-
over, a frailty model is a robust tool to introduce random 
effects shared by subjects in the same group to the model, 
in correlated or clustered survival time data. It also induces 
dependence among the correlated or clustered failure time 

Table 1  Comparison of AFT shared-frailty models by AIC and BIC 
(Bold cell for AIC and BIC indicated the best AFT shared-frailty 
model for radiomic and clinical data)

Model Baseline distribu-
tion

Frailty distribu-
tion

AIC BIC

Radiomics Exponential Gamma 172 215
Inverse Gaussian 173 216

Weibull Gamma 171 215
Inverse Gaussian 173 220

Lognormal Gamma 176 219
Inverse Gaussian 174 221

Log-logistic Gamma 172 216
Inverse Gaussian 173 218

Clinical Exponential Gamma 184 233
Inverse Gaussian 183 231

Weibull Gamma 183 230
Inverse Gaussian 184 232

Lognormal Gamma 189 239
Inverse Gaussian 190 240

Log-logistic Gamma 184 234
Inverse Gaussian 185 234

Radiomic + Clini-
cal

Exponential Gamma 162 208
Inverse Gaussian 164 210

Weibull Gamma 160 203
Inverse Gaussian 167 211

Lognormal Gamma 166 210
Inverse Gaussian 164 212

Log-logistic Gamma 164 209
Inverse Gaussian 168 213
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Table 2  The accelerated failure time (AFT) Weibull shared-frailty (Gamma distribution) multivariable model for the selected features by the 
“survival” and “frailtypack” R packages with 1000 bootstrap samples

Feature Selected variables Feature type Adj. p-value Coefficient (SE) Log likelihood (p-value) AIC, BIC

Radiomics Flatness Morphological 0.013 9.28 (3.72) −72.87 (0.009) 171,215
Area density (AABB) Morphological 0.139 −10.77 (7.25)
Area density (MVEE) Morphological 0.019 −6.51 (2.76)
Area density (convex hull) Morphological 0.587 −3.09 (5.69)
Median Statistical 0.032 0.026 (0.012)
Difference variance (co-occurance 

matrix, 3D, averaged)
Texture 0.113 0.098 (0.062)

Energy (co-occurance matrix, 3D, 
averaged)

Texture 0.239 6.55 (5.56)

Low gray level zone emphasis (size 
zone matrix, 3D)

Texture 0.253 2.12 (2.35)

Large zone high gray level empha-
sis (size zone matrix, 3D)

Texture 0.823 −2.1 (9.41)

Small distance low gray level 
emphasis (distance zone matrix, 
3D)

Texture 0.694 −1.99 (2.64)

Zone distance non uniformity (dis-
tance zone matrix, 3D)

Texture 0.650 0.0003 (0.0006)

Alpha - - 0.784 (0.146)
Frailty - - 0.03 (0.006)

Clinical Body mass index Clinical 0.034 −0.081 (0.038) −80.844 (0.003) 183,230
Age at nephrectomy Clinical 0.135 0.026 (0.017)
comorbidities__connective_tis-

sue_dise (yes vs. no)
Clinical 0.803 −3.01 (12.07)

comorbidities__diabetes_mellitus 
(yes vs. no)

Clinical 0.825 −0.138 (0.624)

comorbidities__hemiplegia_from_
stroke (yes vs. no)

Clinical 0.745 −3.0 (12.01)

comorbidities__malignant_lym-
phoma (yes vs. no)

Clinical 0.724 −3.02 (8.55)

comorbidities__mild_liver_diseas 
(yes vs. no)

Clinical 0.596 −3.08 (5.81)

intraoperative_complications__
injury_to_surrounding_organ (yes 
vs. no)

Clinical 0.703 −3.02 (7.93)

Malignant (yes vs. no) Clinical 0.017 3.14 (1.48)
pathology_t_stage (4 vs. 1) Clinical 0.018 8.87 (4.22)
tumor_isup_grade 4 vs. 1) Clinical 0.001 3.58 (1.05)
positive_resection_margins (yes 

vs. no)
Clinical 0.327 1.55 (3.46)

Alpha - - 0.769 (0.144)
Frailty - - 0.143 (0.071)
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data. Conversely, the bootstrapping resampling method is 
a good strategy for robust inference of AFT shared-frailty 
regression coefficients. Therefore, we used AFT shared-
frailty model with 1000 bootstrapping samples to assess the 
effects of selected features on overall survival time. In this 
work, we demonstrated that imaging biomarkers, including 

tumor flatness and area density which belong to morpho-
logical features and median from the statistical category, 
are predictive of overall survival after partial or radical 
nephrectomy. In addition, among clinical features, tumor 
ISUP grade, malignancy, pathology t-stage, and body mass 
index are statistically significant predictors of OS. Among 

Table 2  (continued)

Feature Selected variables Feature type Adj. p-value Coefficient (SE) Log likelihood (p-value) AIC, BIC

Radiomic + Clinical malignant 0.017 3.14 (1.48) −70.01 (0.006) 160,203

pathology_t_stage Clinical 0.018 8.87 (4.22)

Body mass index Clinical 0.014 −0.083 (0.038)

positive_resection_margins Clinical 0.359 1.14 (3.16)

tumor_isup_grade Clinical 0.002 3.19 (1.08)

Area density (convex hull) Morphological 0.285 −3.18 (5.60)

Area density (MVEE) Morphological 0.019 −6.51 (2.76)

Area density (AABB) Morphological 0.073 −10.53 (7.25)

Large zone high gray level empha-
sis (size zone matrix, 3D)

Texture 0.823 −2.1 (9.41)

Low gray level zone emphasis (size 
zone matrix, 3D)

Texture 0.181 2.14 (2.35)

Zone distance non uniformity (dis-
tance zone matrix, 3D)

Texture 0.650 0.0003 (0.0006)

Flatness Morphological 0.021 7.56 (3.72)

intraoperative_complications__
injury_to_surrounding_organ

Clinical 0.703 −3.02 (7.93)

Median Statistical 0.004 0.032 (0.012)

Alpha - - 0.788 (0.150)

Frailty - - 0.103 (0.056)

Alpha is the shape parameter in the Weibull model. Frailty (sigma) is the standard deviation of gamma distribution in the Weibull AFT shared-
frailty gamma model
Adj. p-value p-value adjusted by Benjamini and Hochberg method, SE standard error, AIC Akaike information criteria, BIC Bayesian informa-
tion criteria

Fig. 4  Kaplan Meier plot of the significant radiomic features
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all significant image biomarkers and clinical features, tumor 
ISUP grade is more correlated with OS (p < 0.002). One of 
the highlights of our study with respect to previous studies 
investigating the correlation between imaging biomarkers 
and OS in RCC patients is that our study population was 
significantly larger. Furthermore, previous studies only con-
sidered a limited number of CT texture features, whereas our 
study was more comprehensive as we explored the potential 
predictive power of 225 radiomic features.

Our findings seem to indicate that three radiomic features 
belonging to morphological and statistical features category, 
including flatness, median, and area density, were significant 
predictors of OS for patients with RCC. Flatness (the square 
root of the ratio of least and major axis lengths) refers to the 
flatness of a volume relative to its length. One and near 1 
values indicate that the volume is non-flat or spherical [28]. 
Higher values of flatness, i.e., more sphericity, are associated 

with better survival outcome (Fig. 4). Several studies con-
firmed that sphericity and features derived from spheric-
ity are significant prognostic factors for different cancer 
types. Davey et al. [52] investigated the correlation between 
sphericity and other clinical prognostic factors in non-small 
cell lung cancer patients. They reported that sphericity is 
strongly associated with overall survival and correlates with 
clinical factors, such as tumor volume, N stage, and T-stage. 
Low sphericity is associated with large tumor volume and 
consequently worse prognosis. Moreover, sphericity is lower 
for higher T and N stages compared to T1 and N0, and nodal 
involvement within GTV results in more complex shape and 
lower sphericity. This is in agreement with previous studies 
which reported significant correlation between sphericity 
and treatment outcome or overall survival for esophageal 
cancer [53], meningioma [54], breast cancer [55], and glio-
blastoma [56].

Fig. 5  Kaplan Meier plots of the significant clinical features

1095Journal of Digital Imaging  (2021) 34:1086–1098

123456789)1 3



Median intensity is another significant radiomic fea-
ture highlighted in our results. As can be seen in Fig. 4, 
a higher median intensity is associated with better prog-
nosis. Higher intensities in contrast-enhanced CT images 
can be related to angiogenesis. In the context of renal cell 
carcinoma, the relation between angiogenesis and over-
all survival is controversial. Several studies investigated 
the correlation between microvascular density, which is a 
surrogate of histomorphologic marker of tumor angiogen-
esis, and overall survival in RCC patients. Some of these 
reports have shown that higher tumor vascularity has no 
correlation with RCC patients’ overall survival [57, 58]. 
Other studies reported that higher microvascular density 
is associated with poor survival [59, 60]. In a more recent 
study by Zhu et al. [61], the correlation between tumor 
enhancement and Fuhrman grade was investigated on con-
trast enhanced CT images of 255 patients who underwent 
partial or radical nephrectomy. Tumor enhancement on 
corticomedullary phase is correlated with microvascular 
density [62]. The results of this study showed that lower 
tumor enhancement is associated with higher tumor grade. 
This is in line with our results regarding lower median 
intensity, which is correlated with poor survival. One 
reasonable explanation for inverse association between 
median intensity and survival is the presence of histologic 
necrosis within the tumor. Tumor histologic necrosis is 
hypovascular regions containing dead cells and is corre-
lated with tumor aggressiveness, poor prognosis, higher 
tumor size, stage, and grade [63, 64].

Another significant morphological feature is area density-
mvee. Area density is the fraction of ROI surface area and 
the surface area of the smallest ellipsoid enclosing the ROI 
[28]. Higher area density is associated with worse overall 
survival (Fig. 4). Area density can be correlated with tumor 
size and a number of studies confirmed that tumor size is 
a strong and independent predictor of overall survival in 
patients with renal cell carcinoma [63, 65, 66].

Among clinical features, body mass index (BMI) is one 
of the significant predictors of overall survival. Higher 
BMI is correlated with better prognosis (Fig. 5). Although 
obesity is one of the risk factors of RCC, a higher BMI is 
associated with better postoperative survival in patients who 
underwent radical or partial nephrectomy [67]. One possible 
explanation is that overweight patients can better deal with 
post-surgery stress due to better metabolic state, energy, and 
nutritional reserves. Also, a higher level of adiponectin in 
RCC patients with lower BMI is associated with poor sur-
vival and aggressive cell proliferation [68].

Pathological T-stage is another significant clinical feature 
and a higher pathology T-stage is correlated with poor prog-
nosis (Fig. 5). In fact, higher T-stages relate to larger tumor 
or more amount of spread to nearby tissues, which results in 
worse survival outcome. This is in line with previous studies 

which investigated the correlation between tumor grade and 
overall survival in RCC patients [69].

Tumor ISUP grade is also a significant predictor of 
overall survival in patients with RCC. ISUP grade 4 has 
the worse prognosis in comparison to ISUP grades 1 to 3 
(Fig. 5). However, overall survival for ISUP grades 1 to 3 
is somewhat similar. In a study by Li-Yan et al. [70] on 842 
RCC patients, it has been shown that there is a significant 
association between tumor ISUP grade 4 and decreased 
overall survival but there is no significant difference in out-
come for tumors of ISUP grades 1 to 3.

The main limitation of the current study was the retro-
spective nature of the study and data heterogeneity since 
image acquisitions were performed at referring institutions 
with different scanners and acquisition protocols. Some stud-
ies have reported that different scanners, image acquisition 
protocols, and reconstruction techniques may lead to radi-
omic features variability [71, 72].

Conclusions

Along with important clinical features, e.g., tumor hetero-
geneity and the ISUP grade, which are routinely used as a 
predictor of OS, we demonstrated that imaging biomarkers, 
such as tumor flatness, area density, and median, are signifi-
cantly correlated with OS of RCC patients treated by partial 
or radical nephrectomy.
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