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RESEARCH ARTICLE

Classification of moving coronary calcified 
plaques based on motion artifacts using 
convolutional neural networks: a robotic 
simulating study on influential factors
Magdalena Dobrolińska1,2 , Niels van der Werf3,4 , Marcel Greuter1,7 , Beibei Jiang5 , Riemer Slart1,6  and 
Xueqian Xie5*  

Abstract 

Background: Motion artifacts affect the images of coronary calcified plaques. This study utilized convolutional neural 
networks (CNNs) to classify the motion-contaminated images of moving coronary calcified plaques and to determine 
the influential factors for the classification performance.

Methods: Two artificial coronary arteries containing four artificial plaques of different densities were placed on 
a robotic arm in an anthropomorphic thorax phantom. Each artery moved linearly at velocities ranging from 0 to 
60 mm/s. CT examinations were performed with four state-of-the-art CT systems. All images were reconstructed with 
filtered back projection and at least three levels of iterative reconstruction. Each examination was performed at 100%, 
80% and 40% radiation dose. Three deep CNN architectures were used for training the classification models. A five-
fold cross-validation procedure was applied to validate the models.

Results: The accuracy of the CNN classification was 90.2 ± 3.1%, 90.6 ± 3.5%, and 90.1 ± 3.2% for the artificial plaques 
using Inception v3, ResNet101 and DenseNet201 CNN architectures, respectively. In the multivariate analysis, higher 
density and increasing velocity were significantly associated with higher classification accuracy (all P < 0.001). The clas-
sification accuracy in all three CNN architectures was not affected by CT system, radiation dose or image reconstruc-
tion method (all P > 0.05).

Conclusions: The CNN achieved a high accuracy of 90% when classifying the motion-contaminated images into 
the actual category, regardless of different vendors, velocities, radiation doses, and reconstruction algorithms, which 
indicates the potential value of using a CNN to correct calcium scores.
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Highlights

1. CNN achieved a high accuracy of 90% for classifying 
the motion-contaminated images into the actual cat-
egory.

2. The classification accuracy increases at higher veloc-
ity and higher CT density.
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3. CT system, radiation dose and image reconstruction 
kernel do not influence the classification accuracy.

Background
Noninvasive assessment of coronary artery disease 
(CAD) has gained substantial interest [1], due to large 
number of global deaths [2]. With the introduction of CT, 
the burden of coronary atherosclerosis can be expressed 
as a coronary artery calcium (CAC) score, generally 
expressed as the Agatston score, which is a strong inde-
pendent predictor of coronary events in intermediate-
risk asymptomatic patients [3–5]. Traditionally, the 
Agatston score is obtained using ECG-triggered non-
contrast CT [6].

In the US, almost 7.1 million non-ECG-triggered chest 
CT scans are performed each year [7, 8]. Because non-
ECG-triggered CT demonstrated comparable results in 
CAC detection to ECG-triggered CT, these scans also 
have the potential to assess the risk of CAD [9]. Recently, 
the Society of Cardiovascular CT and the Society of Tho-
racic Radiology recommended a CAC evaluation of every 
non-ECG-triggered chest CT examination as a Class I 
indication [10].

Whether using ECG-triggered cardiac or non-triggered 
chest scans, an accompanied limitation is the presence 
of motion artifacts, which considerably decreases the 
accuracy of CAC detection and quantification [11]. To 
decrease the motion artifacts in ECG-triggered CT, the 
temporal resolution should be shorter than 10% of one 
cardiac cycle time [12]. Even in the relatively low motion 
phase of 60–70% in the R–R interval, the velocity of the 
coronary arteries is still approximately 10 mm/s, even at 
a heart rate < 60  bpm [13]. However, 50% of ECG-trig-
gered cardiac CT scans are performed with a heart rate 
> 70 bpm [14], which implies a coronary velocity during 
the CT acquisition phase of at least 30 mm/s. Notwith-
standing, the influence of motion is even greater in a 
non-ECG-triggered chest CT, where coronary motion is 
up to 60 mm/s.

In a recent review, Waltz et al. concluded that the con-
volutional neural network (CNN) has expanded the role 
of automatic detection and measurement of CAC [15]. 
Šprem et al. proposed a CNN-based method to identify 
calcified plaques in-vivo that were severely affected by 
cardiac motion and reached an accuracy of 85.2% [16]. 
In a multicenter study, Eng et al. showed sensitivities of 
71–94% and positive predictive values in the range of 
88–100% to detect CAC on non-triggered chest CT [17]. 
Because motion artifacts are inevitable in the evalua-
tion of coronary calcification, researchers have started 
to use CNN to alleviate motion artifacts and improve the 
robustness of CAC scoring. In an ex-vivo experimental 

study, Zhang et  al. used CNN to correct coronary cal-
cium scores and largely reduced Agatston score varia-
tions from 38 to 3.7% [18]. However, the generalization 
ability of CNN for motion artifact recognition heavily 
depends on a variety of influential factors, besides coro-
nary motion artifacts, also on other technical factors 
such as CT vendor, radiation dose, and reconstruction 
kernel.

Before applying a CNN to correct CAC scores in clini-
cal practice in the future, we first conducted an experi-
mental study to simulate motion artifacts of moving 
coronary calcified plaques using a coronary artery chest 
phantom, and second, established three CNN archi-
tectures to classify the motion-contaminated images of 
moving coronary calcified plaques, and determined the 
influential factors for their classification performance. 
The current study is a first step towards patient-specific 
motion artifact recognition which could be used to cor-
rect CAC scores in the future.

Methods
Artificial coronary arteries containing cylindrical calcifi-
cations moved inside a water container, which was placed 
at the center of an anthropomorphic chest phantom 
(QRM-Chest, QRM, Moehrendorf, Germany) (Fig.  1). 
Inside a shell of tissue-equivalent material, this phantom 
contained a spine insert and artificial lungs. To mimic an 
average patient, an extension ring of fat-equivalent mate-
rial was placed around the phantom to increase the outer 
dimension to 400 × 300  mm (QRM Extension Ring L, 
QRM). Movement of the arteries inside the phantom was 
performed by a computer-controlled lever (QRM-Sim2D, 
QRM). In total, 7 velocities were assessed for the current 

Fig. 1 The moving robotic arm with a thoracic phantom. The 
thoracic phantom includes a a computer-controlled motion unit, b 
a water container, c a thoracic phantom, d a lever, and e an artificial 
coronary artery
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study. Each velocity was constant during the scan phase. 
The used velocities ranged from 0 to 60  mm/s with an 
increment of 10  mm/s. The movement was in the hori-
zontal x-direction, perpendicular to the scan direction. 
To acquire data during the linear motion of the artificial 
calcifications, the ECG-trigger of the robotic arm was 
used, and scans were performed at 60% of the artificial 
R–R interval. Two artificial coronary arteries were used, 
each containing two calcium hydroxyapatite (HA) cal-
cifications of equal dimensions: diameter 5.0 ± 0.1  mm 
and length 10.0 ± 0.1 mm. One artificial coronary artery 
contained two calcifications with densities of 196 ± 3 and 
380 ± 2  mgHA/cm3 (physical mass score equal 38  mg, 
74 mg respectively), whereas the other contained two cal-
cifications with densities of 408 ± 2 and 800 ± 2 mgHA/
cm3 (physical mass score equal 80  mg, 157  mg respec-
tively). This corresponded to one low, two medium, and 
one high coronary plaque burden, respectively (Addi-
tional file 1: Table S1).

CT imaging
Thoracic CT examinations were performed using four 
CT systems (CT 750 HD, GE Healthcare; Brilliance iCT, 
Philips Healthcare; Somatom Definition Flash, Siemens 
Healthineers and Aquilion One, Canon Medical Sys-
tems). In the remainder of this paper, the four CT systems 
are denoted as CT-A to CT-D, respectively (Additional 
file 1: Table S2). All images were reconstructed using fil-
tered back projection (FBP) and three levels of iterative 
reconstruction (IR). Each examination was performed at 
a clinical radiation dose. Subsequently, the radiation dose 
was reduced by 40% and 80% [19]. Each combination of 
acquisition settings was repeated five times on every CT 
scan. In between each scan, the phantom was randomly 
translated by 2 mm.

Cross‑validation
Since the heterogeneity of the images mainly originated 
from different vendors of CT, as well as different acqui-
sition protocols, including dose levels and image recon-
struction kernels, we conducted a k-fold cross-validation 
across each of these variables. K-fold cross-validation is 
a widely used resampling procedure to evaluate machine 
learning models [20]. The k parameter of this process 
represents the number of groups into which all images 
are divided. In this study, 4 CT systems were used. In the 
4 deep learning processes, CT images of 3 CT systems 
were selected as the training dataset, and the images of 
the remaining CT were used as the test dataset. In the 
same way, we performed a threefold cross-validation 
for dose level and a fourfold cross-validation for image 
reconstruction kernel. The classification performance 

of the model is the average performance of these 
cross-validations.

Data preparation and image processing
The CT images were categorized into four classes, each 
corresponding to one calcified plaque, and they included 
images with different vendors, velocities, radiation doses, 
and reconstruction algorithms. We remapped the images 
using a mediastinum window setting (window width 
350HU and window level 40HU) to make the images 
optimal for observation. After defining the calcified 
plaque manually in CT images, the patch images of calci-
fied plaques were automatically cropped by an in-house 
developed script based on imcrop function of the Image 
Processing Toolbox (MATLAB R2020b, MathWorks) and 
resized to 299 × 299.

Before training the CNN, we first augmented the 
images using an embedded function to increase the 
number of training images. The data augmentation was 
achieved by performing geometric transformations in 
order to train a robust model, which was invariant to 
such transformations. Each image was randomly rotated 
from 0 to 359 degrees, zoomed on with a random aspect 
ratio ranging from 0.9 to 1.1, translocated from − 30 to 
30 pixels, and flipped vertically and/or horizontally with 
a probability of 0.5. In this way, each original image was 
augmented to 30 images, resulting in 4 (plaques) × 4 
(vendors) × 7 (velocities) × 3 (doses) × 4 (kernels) × 5 
(repetitions) × 30 (augmentation) = 201,600 images in 
total.

Training algorithm and environment
Three deep CNN architectures were used, i.e., Incep-
tion v3, ResNet101, and DenseNet201 (Additional file 1: 
Tables S3–S5), which are representative in deep learning. 
The network architectures consisted of 316, 347, and 709 
layers, respectively. We adopted the inception and resid-
ual architectures because they increase the accuracy by 
using efficient and deep networks compared to the pre-
vious serial CNN architectures [21, 22]. The DenseNet 
architecture is a logical extension that optimizes the net-
works by connecting each layer to every other layer in a 
feed-forward fashion to strengthen feature propagation 
[23].

We replaced the original classifier layer consisting 
of 1000 categories by adapting it to the ImageNet data-
set with four categories and subsequently fine-tuned 
the parameters with our training dataset using a back-
propagation method across all layers to optimize the 
networks. The mini-batch sizes were 60, 50, and 25 for 
these three CNN architectures, respectively, depending 
on the graphical memory footprints of the computer. The 
number of training epochs was 15 for the three models, 
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at which point the training accuracy was close to the 
upper limit. The training dataset was shuffled between 
each epoch. We used stochastic gradient descent with 
momentum for the mini-batch gradient descent, which 
is an iterative method to minimize the result of the loss 
function of the CNN architectures; thus, it can be used 
to find suitable and optimized values of network param-
eters. All layers of the network were fine-tuned using the 
same global learning rate of 0.0003.

We performed the training and testing procedure using 
the Deep Learning Toolbox (MATLAB R2020b, Math-
Works). The program was implemented on a workstation 
with a graphics processing unit (RTX 2080Ti, Nvidia).

Inference method
The CNN inference result for each image of calcified 
plaque consisted of a one-dimensional numeric series 
with a length of four, representing the matching prob-
ability of the four classifications. Since the length of each 
artificial calcified plaque was 10 mm, it encompassed at 
least 3 CT slices at a slice thickness of 3 mm. The three 
central slices of each calcification were selected manu-
ally by a radiologist with 20 years of experience in cardiac 
imaging. In the test dataset, the average matching proba-
bility of these three images was considered as the match-
ing probability of this plaque. Among the four matching 
probabilities for the four calcifications, the classification 
of the highest matching probability was considered as the 
CNN’s classification category.

Statistics
The ground truth of the CNN algorithms was the physi-
cal artificial calcified plaque. It was considered as true 
positive if the CNNs correctly classified the motion-con-
taminated images into the actual plaque, that had gen-
erated blurred images. We evaluated the classification 
accuracy and F1 score to represent CNN’s classification 
performance. The F1 score is a weighted average of the 
precision and recall, where an F1 score reaches its best 
value at 1 and worst at 0. Precision, also called the posi-
tive predictive value, is the proportion of positive results 
that truly are positive. Recall is also called sensitivity.

The ROC curve of the CNN’s classification of the calci-
fied plaques with motion artifacts and the area under the 
curve (AUC) were calculated to access the CNN’s clas-
sification performance. The CNN’s matching probability 
was used as an index variable and the CNN’s classifica-
tion correctness was used as a reference variable. A mul-
tivariate linear regression model was used to synthesize 
the results of three CNN models [24].

The association between the correctness and poten-
tially associated factors (plaque density, CT vendor, 
motion velocity, dose level, and reconstruction method) 

was evaluated using Spearman’s correlation coefficients. 
Because the classification accuracy was analyzed simul-
taneously with other variables (density, CT vendor, veloc-
ity, dose, and reconstruction algorithm), multivariate 
analysis was also used to access the association between 
the correctness and these factors.

The normally distributed outcome parameters are given 
as the mean values with standard deviations, and non-
normally distributed parameters were given as median 
values with 95% confidence intervals. A p value < 0.05 was 
considered statistically significant. Statistical analyses 
were performed using a software package (MedCalc 15.8, 
MedCalc Software).

Results
Subjective observation
The representative motion artifacts for the different CT 
systems, velocities, radiation doses, and reconstruction 
methods are shown in Figs.  2 and 3. Increased blurring 
was observed as the velocity increased and radiation dose 
decreased. For each CT scanner, the use of IR resulted in 
decreased blurring. The smallest blurring was presented 
by CT-C.

Cross‑validation
In the fourfold cross-validation on CT system, the accu-
racy and F1 scores of CNN in the classification of 4 arti-
ficial plaques were high but variable (Additional file  1: 
Tables S6–S9). The accuracies ranged from 84.8 to 
95.3%, 83.8 to 95.7%, and 83.4 to 96.8% for Inception v3, 
ResNet101, and DenseNet201, respectively. The F1 scores 
ranged from 0.849 to 0.966, 0.859 to 0.969, and 0.883 to 
0.969, respectively.

In the threefold cross-validation on dose level, the 
accuracy and F1 scores of CNN were also high but vari-
able. The accuracies ranged from 86.1 to 93.7%, 83.2 to 
94.6%, and 85.2 to 94.4%, and the F1 scores ranged from 
0.871 to 0.959, 0.881 to 0.967, 0.886 to 0.956. In the four-
fold cross-validation on reconstruction kernel, the accu-
racies ranged from 85.9 to 96.1%, 84.9 to 95.9%, 83.3 to 
96.0%, and the F1 scores ranged from 0.893 to 0.963, 
0.871 to 0.963, and 0.867 to 0.966.

Overall agreement between actual and predicted labels
The overall accuracy of the CNN classification for all 
four artificial plaques was 90.2 ± 3.1%, 90.6 ± 3.5%, 
and 90.1 ± 3.2% for inception v3, ResNet101 and 
DenseNet201 CNN, respectively. The low-density 
plaque showed the highest accuracy of 93.3 ± 1.6%, 
92.4 ± 2.8% and 92.7 ± 2.8%, respectively; and F1 scores 
of 0.950 ± 0.012, 0.947 ± 0.020 and 0.945 ± 0.019, respec-
tively (Table  1). The AUCs were 0.982 (95% CI 0.976–
0.986), 0.981 (0.974–0.992) and 0.986 (0.982–0.994), 



Page 5 of 10Dobrolińska et al. BMC Med Imaging          (2021) 21:151  

respectively (Table 2 and Fig. 4). The medium-density-1 
plaque showed the lowest accuracy of 88.0 ± 3.0%, 
87.1 ± 2.3% and 87.7 ± 2.9%, respectively; F1 scores 
of 0.901 ± 0.022, 0.896 ± 0.020 and 0.897 ± 0.021, 
respectively; and AUCs of 0.951 (0.970–0.962), 0.955 
(0.943–0.981) and 0.962 (0.951–0.972), respectively. An 
ensemble of three CNN models by a multivariate linear 
regression model slightly increased the AUC to 0.990 
(0.982–0.998).

With respect to different CT vendors, the accuracy 
was similar, and ranged from 89.8 ± 2.7% to 91.8 ± 0.8%, 
88.0 ± 5.3% to 92.2 ± 2.3%, and 89.3 ± 5.6% to 92.0 ± 1.8% 

for inception v3, ResNet101 and DenseNet201 CNN, 
respectively (Table 3). Regarding the velocity, the plaques 
at rest showed relatively lower accuracies of 80.3 ± 1.3%, 
85.4 ± 1.4%, and 89.2 ± 1.2%, respectively (Fig. 5). When 
the velocity increased to 60 mm/s, the accuracy increased 
to 93.8 ± 1.3%, 95.1 ± 1.6%, and 96.1 ± 1.5%, respectively.

Univariate association between influencing factors 
and CNN’s classification
Lower plaque density and increasing velocity were sig-
nificantly associated with higher classification accuracy 
in all three CNN architectures (all P < 0.001). However, 

Fig. 2 Representative images of the motion artifacts for all CT systems at all velocities, clinical full radiation dose and FBP. Window center was 90 HU 
and window width was 750 HU. *For each CT system. FBP filtered back projection;
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other factors (CT system, radiation dose and reconstruc-
tion method) had no significant influence on the accu-
racy of CNN classification (all P > 0.05) (Table 4).

Multivariate analysis for factors associated with CNN’s 
classification
In the multivariate analysis, a higher density and an 
increasing velocity were significantly associated with a 
higher classification accuracy for all three CNN archi-
tectures (all P < 0.001). The classification accuracy for all 

three CNN architectures was not affected by CT system, 
radiation dose or reconstruction method (all P > 0.05) 
(Table 5).

Discussion
In this experimental study, we applied three widely-
used deep CNN architectures in medical image analysis 
[25–27] to classify the CT images of calcified coronary 
plaques with motion artifacts into the correct category 
with a high accuracy, regardless of different CT vendors, 
velocities, radiation doses, and image reconstruction 
algorithms. The overall classification accuracy of these 
CNNs reached 90%.

ECG-triggered CT and non-ECG-triggered CT are 
vulnerable to a great variety of artifacts. The most com-
mon cause of artifacts is motion [28]. Typical motion 
artifacts are blurring, ghosting, or windmills, which influ-
ence accurate CAC classification [29]. The severity of the 
motion artifacts depends not only on the heart rate and 
temporal resolution of the CT scanner but also on the 
specific coronary artery. The mean velocity of the right 
coronary artery is significantly higher than that of the left 
anterior descending and circumflex coronary artery [30]. 
In our study, all the CNN architectures resulted in higher 
classification accuracy at higher velocities. In contrast to 
the plaques at rest, which showed no motion artifacts, 
the plaques showed spatially more dispersed motion arti-
facts caused by increasing velocities (Fig. 2). The magni-
tude of the artifact means that more image features that 
can be recognized and used for classification by a CNN.

Fig. 3 Representative images of the motion artifacts for all CT 
systems at the minimum and maximum velocity, clinical full and 
80% reduced radiation dose and FBP and IR. Window center was 90 
HU and window level was 750 HU. *For each CT system, the highest 
available level of IR was used. FBP filtered back projection, IR iterative 
reconstruction

Table 1 Classification accuracy and F1 scores of Inception v3, ResNet101 and DenseNet201 convolutional neural networks on 
calcified plaques with motion artifacts of four densities

Variables are displayed as mean ± standard deviation

Plaque density Inception v3 ResNet101 DenseNet201

Accuracy F1 score Accuracy F1 score Accuracy F1 score

High 88.8 ± 2.3% 0.917 ± 0.024 90.2 ± 2.8% 0.922 ± 0.027 89.3 ± 2.9% 0.919 ± 0.023

Medium-1 88.0 ± 3.0% 0.901 ± 0.022 87.1 ± 2.3% 0.896 ± 0.020 87.7 ± 2.9% 0.897 ± 0.021

Medium-2 90.7 ± 2.5% 0.939 ± 0.024 92.9 ± 2.9% 0.942 ± 0.028 90.7 ± 2.0% 0.937 ± 0.018

Low 93.3 ± 1.6% 0.950 ± 0.012 92.4 ± 2.8% 0.947 ± 0.020 92.7 ± 2.8% 0.945 ± 0.019

Table 2 The area under receiver operating characteristic curves of convolutional neural network’s classification on calcified plaques 
with motion artifacts

The data is expressed as area under the curve (95% confidence interval)

Plaque density Inception v3 ResNet101 DenseNet201

High 0.952 (0.939–0.964) 0.972 (0.962–0.980) 0.970 (0.960–0.978)

Medium-1 0.951 (0.939–0.962) 0.955 (0.943–0.965) 0.962 (0.951–0.972)

Medium-2 0.980 (0.970–0.989) 0.974 (0.969–0.981) 0.976 (0.970–0.982)

Low 0.982 (0.976–0.986) 0.981 (0.974–0.992) 0.986 (0.982–0.994)
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Motion artifacts appear when the temporal resolu-
tion is insufficient to warrant data acquisition during the 
time the coronary arteries exhibit the least motion. The 
temporal resolution can be improved by a shorter gantry 

Fig. 4 Receiver operating characteristic curves of convolutional neural network’s classification on calcified plaques with motion artifacts

Table 3 Classification accuracy of Inception v3, ResNet101 and 
DenseNet201 convolutional neural network on calcified plaques 
with motion artifacts on four CT systems

Variables are displayed as mean ± standard deviation

Inception v3 ResNet101 DenseNet201

CT-A 90.2 ± 3.1% 92.2 ± 2.3% 92.0 ± 1.8%

CT-B 89.8 ± 2.7% 88.0 ± 5.3% 89.3 ± 5.6%

CT-C 91.0 ± 2.8% 90.9 ± 2.6% 90.7 ± 2.4%

CT-D 91.8 ± 0.8% 91.2 ± 3.6% 91.1 ± 2.6%

Fig. 5 Classification accuracy of Inception v3, ResNet101, and 
DenseNet201 convolutional neural network on calcified plaques with 
motion artifacts in the velocity from 0 to 60 mm/s
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rotation time, or dedicated acquisition and reconstruc-
tion protocols [31]. It has been demonstrated that plaque 
classification also depends on the density and size, where 
relatively small and soft calcified plaques may remain 
undetected [32]. Van der Werf et  al. found that at an 
increased heart rate, the Agatston scores of low-density 
calcified plaques were similar to the reference scores but 
that the Agatston scores of medium- and high-density 
calcified plaques were increased by up to 50% [11]. In our 
study, all CNN architectures gained the highest classifica-
tion accuracy for plaques with low density.

Another difficulty that a CNN encounters during 
plaque motion artifact classification is increased noise in 
low-dose CT scans. Currently, IR algorithms can be used 
for CT image reconstruction to reduce the noise in low-
dose CT scans [33, 34]. In a phantom study, increased IR 
levels resulted in decreased CAC scores [19]. In clinical 
practice for CAC scoring, a soft kernel is used in which 
the noise is less prominent. However, in non-contrast 
and non-ECG-triggered CT scans performed for other 
diagnostic purposes, generally, sharper kernels are used. 
Recently, it was found that if a CNN is trained on both 
soft and sharp kernels, the accuracy of the CNN in 
CAC scoring is similar to that of soft kernel CT scans 
[35]. In our study, both reconstruction methods did not 

influence the accuracy of all three CNN architectures. 
Furthermore, a lower radiation dose also did not affect 
the CNN’s classification.

So far, for CAC classification in non-contrast and ECG-
triggered CT scans, different machine-learning-based 
techniques have been studied to improve the diagnostic 
management in everyday practice. Most of these meth-
ods focused on calcium detection and coronary artery 
calcium scoring [35–37]. In contrast, the method pre-
sented in the current study was based on training CNNs 
on motion artifacts, which are one of the main limitations 
in accurate CAC score measurement. Motion artifact 
recognition methods based on motion correction algo-
rithms have shown their value in the image improvement 
of coronary CT angiography (CCTA) [38]. Furthermore, 
a CNN was used to estimate the artifact motion vectors 
from CCTA images and the method improved the qual-
ity and showed potential to be applied in clinical practice 
[39]. In our study, CNNs were solely used for motion arti-
fact recognition from non-contrast and ECG-triggered 
CT scans to enhance the assessment of CAC scores in 
the future. Since phantoms were used for the current 
study, the increase of the motion artifacts as heart rate 
increased was known. This led to enhanced accuracy 
of CNNs since motion artifact features increased as the 

Table 4 Spearman’s correlation coefficients (rho) for the univariate association between influencing factors and convolutional neural 
network’s classification on calcified plaques with motion artifacts

High, medium-1, medium-2, and low-density plaque were coded as 1–4, respectively, four CT systems (CT-A to CT-D) as 1–4; velocities from 0 to 60 mm/s coded as 
0–6; dose level 40%, 80% and full dose coded as 1–3; recon method FBP, IR1 to IR3 coded as 1–4

FBP filtered back projection, IR iterative reconstruction

Inception v3 ResNet101 DenseNet201

rho (95% CI) p value rho (95% CI) p value rho (95% CI) p value

Density 0.139 (0.083, 0.195) < 0.001 0.199 (0.061, 0.337) < 0.001 0.194 (0.074, 0.314) < 0.001

CT vendor 0.031 (− 0.017, 0.079) 0.249 − 0.049 (− 0.151, 0.053) 0.210 − 0.102 (− 0.192, − 0.012) 0.107

Velocity 0.191 (0.105, 0.277) < 0.001 0.169 (0.029, 0.309) < 0.001 0.163 (0.024, 0.302) < 0.001

Dose − 0.028 (− 0.081, 0.025) 0.518 0.028 (− 0.052, 0.108) 0.477 0.046 (− 0.010, 0.102) 0.239

Reconstruction 0.019 (− 0.031, 0.069) 0.312 0.118 (0.030, 0.206) 0.230 0.134 (0.023, 0.245) 0.222

Table 5 Multivariate analysis for the influencing factors associated with CNN’s classification on calcified plaques with motion artifacts

High, medium-1, medium-2, and low-density plaque were coded as 1–4, respectively, four CT systems (CT-A to CT-D) as 1–4; velocities from 0 to 60 mm/s coded as 
0–6; dose level 40%, 80% and full dose coded as 1–3; recon method FBP, IR1 to IR3 coded as 1–4

FBP filtered back projection, IR iterative reconstruction

Inception v3 ResNet101 DenseNet201

Coefficient p value Coefficient p value Coefficient p value

Density 0.033 < 0.001 0.024 < 0.001 0.319 < 0.001

CT vendor 0.012 0.147 − 0.025 0.091 − 0.038 0.102

Velocity 0.027 < 0.001 0.017 < 0.001 0.015 < 0.001

Dose − 0.009 0.601 − 0.011 0.159 0.002 0.779

Reconstruction 0.009 0.126 0.010 0.112 0.012 0.099
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heart rate increased. Although this is of course not fea-
sible in daily practice, our results indicated that a CNN 
may play an important role in clinical coronary calcium 
classification in the near future.

The main limitation of this study is the linear move-
ment of artificial arteries, their relatively high diam-
eters, and the regular shape of calcifications, which do 
not reflect the movement and shape of coronary arteries 
in vivo. Additionally, a variety of body habitus were not 
also included.

In this experimental study, the CNN achieved a high 
accuracy of 90% at classifying motion-contaminated 
images into the actual category, regardless of different 
influential technical factors. This study validated the first 
step towards patient-specific motion artifacts recogni-
tion which could be used to correct CAC scores in the 
future. Interestingly, the classification accuracy increased 
at higher velocities because the magnitude of the artifact 
had more image features that may be recognized and 
used for classification by a CNN, which inspires us to 
optimize the calcium score correction method in cases of 
heavily motion-contaminated images.
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