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ABSTRACT: Covalent organic frameworks (COFs) are crystalline porous organic structures
with two- or three-dimensional (2D or 3D) features and composed of building blocks being
connected via covalent bonds. The manifold applications of COFs in optoelectronic devices,
energy conversion and storage, adsorption, separation, sensing, organocatalysis, photocatalysis,
electrocatalytic reactions, and biomedicine are increasing because of their notable intrinsic
features such as large surface area, porosity, designable structure, low density, crystallinity,
biocompatibility, and high chemical stability. These properties have rendered 2D and 3D
COF-based materials as desirable entities for drug delivery, gene delivery, photothermal
therapy, photodynamic therapy, combination therapy, biosensing, bioimaging, and anticancer
activities. Herein, different reactions and methods for the synthesis of 2D and 3D COFs are
reviewed with special emphasis on the construction and state-of-the-art progress pertaining to
the biomedical applications of 2D and 3D COFs of varying shapes, sizes, and structures.
Specifically, stimuli-responsive COFs-based systems and targeted drug delivery approaches are
summarized.

KEYWORDS: COFs, porous materials, biomedical application, drug delivery, gene delivery, biosensing, photodynamic therapy

1. INTRODUCTION

Covalent organic frameworks (COFs) make up a class of porous
organic structures with tunable pore size, high crystallinity,
unique molecular architecture, and large specific surface area
and are constructed by diverse covalent bonds among light
elements (e.g., H, B, C, N, and O). These structures were
initially introduced by Yaghi and colleagues in 20051 and have
been prepared in two-dimensional (2D-COFs) and three-
dimensional forms (3D-COFs) or weaving frameworks (Figure
1).1−3 In addition, COF crystallites have been reported in
varying shapes such as sheets, fibers, foams, cubes, belts,
platelets, spheres, and rectangular prisms.4−8

Several reactions have been deployed for the construction of
COFs including Schiff base condensation,9 hydrazine10 and
imide formation,2 Knovenagel condensation,11 amide bond
formation via the reaction between amine and acyl chloride,12

phenazine formation,13 aromatic nucleophilic substitution,14

and the formation of spirobrate,15 benzoxazole,16 benzothia-
zole,17 and benzimidazole,18 multicomponent reaction based on
the Strecker reaction,19 three-component one-pot Povarov
reactions,19 three-component reactions for the construction of
imidazole via Debus-Radziszewski reaction,20 Michael addition
reaction,21 aminal formation,22 self-condensed of boronic acids
to six-membered boroxine,1 co-condensation of boronic acids
with dialcohols to five-membered boronate ester,1,23 trimeriza-
tion of nitriles to triazine,24 dimerization of nitroso,25 and
trimerization of borazine.26

As the preparative strategies pertaining to assembly of COFs
have been summarized in some literature reviews,27−30 the
syntheses of COFs are just briefly mentioned further (Figure 2):

(1) Solvothermal synthesis: It was the first approach for the
synthesis of COFs disclosed in 2005 by Yaghi and co-
workers, and most of the COFs have been synthesized via
this protocol. The synthesis is often carried out in
glovebox at distinct pressure (150 Torr being optimal
pressure in the vacuum line) and heating about 80−120
°C for 2 to 9 days. The temperature, pressure, and
reaction time have been important parameters in this
synthesis method.1

(2) Microwave (MW) approach was developed for the COFs
synthesis by Cooper and co-workers in 2009. The main
advantages of this strategy include more expeditious
reaction (60 min) than solvothermal synthesis (72 h) and
no need for a sealed system (airtight container).31,32

(3) Ionothermal synthesis was introduced by Thomas and
colleagues for the synthesis of COFs in 2008, which
requires a pyrex tube and high temperatures (about 400
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°C) for a long time (2 days). In this strategy, the reaction
is carried out in the presence of ionic liquid or molten salt,
which serves a dual function as both a catalyst and a
solvent.33

(4) Mechanochemical (MC) synthesis was introduced in
2013 by Banerjee and co-workers to produce crystalline
porous COFs as a simple, fast, solvent-free, inexpensive,
and scalable method that could be performed at room
temperature by means of simple grinding in a mortar and

pestle, enabling the switch from the use of solvents to the
solid-state synthesis of COFs. One of the disadvantages of
the MC strategy is poor porosity and low crystallinity of
the produced COFs in comparison to the solvothermal
analogs.34

(5) Interfacial synthesis has been a well-adapted protocol for
the construction of polymer thin films in a bulk scale. This
efficient strategy has been applied for the synthesis of
COFs thin films with control of a tunable thickness. In this

Figure 1. Examples of 2D-COFs, 3D-COFs, and weaving frameworks.

Figure 2. Various synthesis strategies available for the formation of 2D and 3D COFs including solvothermal synthesis, MW approach, ionothermal,
MC, interfacial, sonochemical, light-promoted synthesis, and electron beam irradiation approach.
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regard, solid−liquid interface reactions, air/water inter-
face, liquid/liquid interface, and a liquid/liquid/gel
triphase system are various types of systems that can be
used depending on the phases involved.35

(6) Sonochemical synthesis is another route wherein an
effective mixing via a cavitation phenomenon proceeds in
a short reaction time and without bulk high temperatures
and high pressures. The key part of sonochemistry is the
formation, growth, and collapse of bubbles that this
process is called acoustic cavitation.36

(7) Light-promoted synthesis enables the fabrication of COFs
utilizing abundant light (for example, simulated sunlight
irradiation at wavelength 200−2500 nm) as an energy
source. Improved crystallinity is one of the advantages of
this strategy.37

(8) Electron beam irradiation (1.5 MeV) at room temper-
ature accomplishes the preparation within minutes, which
is amendable for large-scale production of COFs.38

Over the past few years, COFs have attained the status of a
propitious platform with fascinating properties such as large
surface areas, superb visible light absorbance, tunable band gaps,
and long-range order structures that have displayed outstanding
performance in diverse applications. They include appliances in
optoelectronic device, membranes,39,40 gas separation and
storage (e.g., ammonia uptake, capture of CO2, SO2 and NO,
separation of hydrogen isotopes, purification of H2 and CH4,
and separation of acetylene from ethylene), sensing, optical
thermometer, organocatalysis, photocatalysis (H2 evolution,
photoredox organic transformations), energy conversion and
storage, light emitters, catalysis (C−C coupling reactions,
oxidations, reductions, asymmetric synthesis, Heck-epoxidation
tandem reaction, chemical fixation of CO2, cycloaddition, and
condensation), electrocatalytic reactions (electrochemical CO2
reduction, oxygen reduction reactions (ORR), and oxygen
evolution reactions (OER)), and separation (dye separation,
removal of organic contaminants from water, seawater
desalination, removal of toxic ions, extraction of thorium from
uranium and chiral separation);27,28,40,41 in addition, π
conjugation, low density, high stability to hydrolysis in reductive
and oxidative environments, tunable porosity, large surface area
and biocompactable properties of COFs have enabled them to
serve as an extremely favorable platform in biomedical fields,
including drug delivery, photodynamic therapy, photothermal

therapy, and combined therapy, bioimaging, biosensing, and
anticancer activities, among others.
COFs have garnered widespread attention since their

discovery, and review articles have focused on chemistry beyond
the structure, topology, shape, construction, and application in
separation, sensing, organic chemistry, catalysis, electrocatalysis,
and photocatalysis.27,28,40,42 However, there are only a few
reviews that have exclusively discussed the appliances of COFs
in the biomedical arena.43−47

Herein, particular emphasis has been on the fabrication and
application of 2D and 3D COFs as a platform, which can be
exploited as a promising nanoplatform for biomedical
application and practical clinical trials. In the present review
article, stimuli-responsive COFs-based systems and targeted
drug delivery are summarized for in vitro and in vivo
investigations. Photodynamic-, photothermal-, and combination
therapy are appraised. Finally, some selected examples for
biosensing and bioimaging application of COFs are discussed.

2. COFS: CUTTING-EDGE APPLICATION IN DRUG
DELIVERY

Nontarget accumulation and multidrug resistance are two main
limitations for the effective delivery of drugs to cells and
tissues.48 For surmounting these limitations, a tremendous
global effort has been devoted to the development of drug-
loaded carriers for efficient and nontoxic drug delivery
systems.49−52 Many studies have investigated the use of COFs
in drug delivery; 2D porous organic frameworks (POFs) for
drug delivery have been reported in 2011.53 Through
nucleophilic substitution reaction, the linear linking unit,
piperazine, reacts with the cyanuric chloride as a trigonal
building unit to generate 2D POFs, named PAF-6 (Figure 3). In
vitro testing of the pure framework revealed almost no
cytotoxicity over the range of concentrations tested in cell
viability assays with HeLa cells, confirming that PAF-6 is a
nontoxic and biocompatible architecture deployable in bio-
medical applications. Then ibuprofen (IBU), an anti-inflamma-
tory drug that is widely used for the treatment of pain,
inflammation, and rheumatism, was loaded in PAF-6. In vitro
release in PBS at pH 7.4 displayed that 50% of the drug was
released within 5 h, and 75% within 10 h, and it took about 46 h
to have all the drug released from the framework.53 Compared
with MOFs, such as MIL-10154 and MIL-53,55 that have been

Figure 3. Schematic for the synthesis of PAF-6 as a 2D triazine-piperazine-based framework for IBU delivery.
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scrutinized for drug delivery, the PAF-6 showed a high release
rate, thus exemplifying an unprecedented use of POFs in drug
delivery. In 2015, two 3D porous crystalline polyimides (PI-
COFs) were synthesized by Yan and co-workers;2 3D porous PI-
COF-4 and PI-COF-5 were prepared via the imidization
reaction of pyromellitic dianhydride (PMDA) with 1,3,5,7-

tetraaminoadamantane (TAA) or tetra(4-aminophenyl)-
methane (TAPM) (Figure 4). On the basis of the sizes of
TAA and TAPM (3.1 and 5.9 Å) and their formative bisimide
links (13.0 and 18.6 Å), noninterpenetrated (PI-COF-4) or 4-
fold-interpenetrated (PI-COF-5) diamond nets could be
achieved by dehydration of the dianhydride to produce linear

Figure 4. Construction of 3D PI-COF-4 and PI-COF-5 and their application as carriers for IBU, caffeine, and captopril.

Figure 5. 2D PI-3-COF and 2D PI-2-COF for loading of IBU, 5-FU, and captopril.

Figure 6. Fabrication of TTI-COF-based quercetin delivery nanomaterials.
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bisimides. The pore sizes of the PI-COF-4 and PI-COF-5 were
13 and 10 Å, respectively, which were calculated by nonlocal
density functional theory. The molecular size of IBU is 5 Å × 10
Å, which could be entrapped by PI-COFs. IBU was loaded in
both PI-COF-4 and PI-COF-5 with concentrations of 24 and 20
wt %, respectively, based on TGA data. The release profile of
IBU-loaded 3D PI-COFs was evaluated, showing 60% of drug
release for PI-COF-4 and 49% for PI-COF-5 after 12 h,
respectively, while all IBU was released after 6 days for both the
PI-COFs. Compared to PAF-6, both 3D PI-COFs displayed a
lower release rate. Likewise, PI-COF-5 with a smaller pore size
and 4-fold-interpenetrated architecture exhibited a lower release
rate than PI-COF-4 with a bigger pore size and non-
interpenetrated structure. This observation affirmed that the
drug release from COFs is dependent on the geometry and pore
size. Further investigations of PI-COF-4 and PI-COF-5 for drug
delivery applications included caffeine as a psychoactive drug
and captopril as antihypertension, wherein a high loading and
good release were revealed for both 3D PI-COFs.2

In another study, two imine-based 2D COFs, PI-3-COF and
PI-2-COF, were fabricated under solvothermal conditions via
the condensation between 1,3,5-triformylbenzene and 2,4,6-
tris(4-aminophenyl)-s-triazine or 4,4′-biphenyldiamine, respec-
tively (Figure 5). The pore sizes of these 2D COFs were 11 Å for
PI-3-COF and 14 Å for PI-2-COF as determined by Brunauer−
Emmett−Teller (BET) analysis. IBU, 5-fluorouracil (5-FU),
and captopril were employed for loading and release study
where PI-2-COF with a larger pore size displayed higher drug
loading capacity, demonstrating that the pore size and geometry
of COFs directly affect the capability of drug loading. The drug
release rate was almost identical for both 5-FU@PI-3-COF and
5-FU@PI-2-COF as the majority of the 5-FU was released after
∼3 days, and the total delivery amount could reach up to 85% of
the initial 5-FU loading. In vitro studies of the pure frameworks
displayed good biocompatibility and low cytotoxicity with two
other drugs, IBU and captopril, revealing the same release profile
as 5-FU.56

The delivery of quercetin (3,3′,4′,5,7-pentahydroxyflavone)
deploying COFs as nanocarrier was reported as a hydrophobic
drug with poor solubility and low bioavailability. The reaction
between the triazine triphenyl aldehyde (TT-ald) and triazine
triphenylamine (TT-am) was conducted to form triazine
triphenyl imine-COF (TTI-COF) (Figure 6), which was used
for the transport of quercetin into TTI-COF via π−π
interactions and hydrogen-bond interactions between imine
nitrogen in COF and hydroxyl groups in quercetin molecule as
confirmed by solid-state NMR studies. The quercetin-loaded
framework caused the apoptosis of human breast carcinoma
MDA-MB-231 cells.57 However, TTI-COF has some drawbacks
such as the lack of targeting groups. To solve this issue, COFs,
namely, TpASH (Tp, 1,3,5-triformylphloroglucinol; ASH, 4-
aminosalicylhydrazide), were prepared via solid-state mixing
strategy followed by three postsynthetic modifications to afford
covalent organic nanosheets (CONs) (TpASH-FA; FA, folic
acid) as a targeting carrier for cancer therapy by encapsulating 5-
FU (Figure 7). The results showed sustained release of 5-FU
within the breast cancer cells MDA-MB-231, through receptor-
mediated endocytosis, which led to the apoptosis of cancer cells,
although TpASH-FA had some limitations such as a lack of in
vivo studies and biodegradation kinetics.58

In vivo studies are absolutely crucial for the practical clinical
applications, and the design of excellent and efficient cargos for
this purpose requires several desirable factors including (1)
good dispersibility in aqueous media and, subsequently,
bioaccessibility to cells, (2) suitable particle size (the optimal
size for cellular uptake should be below 200 nm), and (3) in vivo
cytotoxicity must be minimal, and cargos should have good
biocompatibility. In this context, water-dispersible polymer-
COF nanocomposites as smart carriers for in vitro and in vivo
drug delivery have been reported. A linear tail polymer (denoted
as PEG-CCM) was prepared by the combination of poly-
ethylene glycol (PEG) and curcumin (CCM). Amine-function-
alized COFs (denoted as APTES-COF-1 or COF-1) were
realized via Brønsted-type interactions between amine groups in

Figure 7. Schematic representation of TpASH-FA CONs for targeted drug delivery. Reprinted with permission from ref 58. Copyright 2017 American
Chemical Society.
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(3-aminopropyl)triethoxysilane (APTES) and boron atoms in
COFs, and then DOX was loaded into APTES-COF-1, which is
named as APTES-COF-1@DOX. DOX bearing aromatic ring
and amine and hydroxy groups can be loaded onto the COF via
both the hydrogen bonding and π−π interactions. The entire
structure of the micelle (PEG-CCM@APTES-COF-1@DOX)
was attained by assembling PEG-CCM as the corona and
APTES-COF-1@DOX as the core (Figure 8). Compared with
bare APTES-COF-1, the PEG-CCM@APTES-COF-1 pre-
sented a higher loading efficiency of DOX with a loading
capacity of 9.71± 0.13 wt % and encapsulation efficiency of 90.5
± 4.1%. The explanations for these results come from the
imparted hydrophilicity of PEG, which improved its stability and
dispersion in aqueous media. After intravenous injection, DOX
was released via unplugged PEG-CCM, and then the progress of
cellular uptake and DOX release was tracked by monitoring the
fluorescence of CCM and DOX in a real time manner. In vivo
studies revealed an enhanced tumor-inhibition effect for the
PEG2000-CCM@APTES-COF-1@DOX nanocomposite in
tumor-bearing mice when compared with the free DOX
formulation, APTES-COF-1@DOX system, and other for-
mulations of PEGn-CCM@APTES-COF-1@DOX (n = 350
and 1000). Besides, PEG350-CCM@APTES-COF-1 showed an
efficient targeting capability toward brain tumors.59

Currently, stimuli-responsive systems and materials are
extensively explored for drug delivery.60−62 Stimuli-responsive-
ness can be classified into two groups of internal (temperature,
pH, enzyme, glucose, reactive oxygen species (ROS), gluta-
thione (GSH)) and external (light, ultrasound, mechanical,
electrical field, and magnetic field).49 GSH-responsive nano-
carriers based on materials have been evaluated to improve the
accumulation and retention of drugs in tumors and other injured
cells, which display overexpression of GSH. Intracellular GSH
concentration usually ranges from 0.5 to 10 mM63 and is
available ∼90% in the cytosol, and almost ∼10% is in the
mitochondria, with a very small percentage being in the
endoplasmic reticulum.64 GSH plays an important biological
role in living organisms and their levels are increased in various
types of tumors, which causes the neoplastic tissues more
resistant to chemotherapy.65 Accordingly, the development of
GSH-responsive structures is needed to a greater extent for drug
delivery as exemplified by GSH-responsive COFs (denoted as
F68@SS-COFs) constructed by self-assembly of poly-
oxyethylene−polyoxypropylene block copolymer (PEG−
PPO−PEG) with disulfide-bearing COFs derivatives prepared
via the Schiff base condensation between 4-aminophenyl
disulfide (DDS) and benzene-1,3,5-tricarboxaldehyde (BTA).

The drug loading capacity of DOX into the pores of the
framework was 21%, which was attributed to the framework
pores endowed with π−π stacking interactions. These nano-
particles not only displayed efficient release of DOX to tumor
cells but also represented a good response toGSH concentration
(10 mM GSH) in tumor cells.66 This result suggested that such
nanoparticles could be used as promising nanoplatforms for
anticancer drug delivery.
The pH-responsive cargos make up a group of materials that

can respond to pH changes based on functional groups such as
amine and carboxylic groups in their structures.67 Recently, pH-
responsive COFs have been developed for both in vitro and in
vivo studies. Tri(4-formylphenyl)amines (TPA-CHO) and
benzidine reacted via solvothermal strategy to generate pH-
responsive COF with intrinsic fluorescent properties (Figure 9).

DOX could be encapsulated with a high loading content of
∼35% due to the hydrogen bond and π−π interactions between
the drug and COFs. In an acidic environment (e.g., pH = 5.0),
with cleavage of interactions between DOX and COFs, the drug
could be released and induce a therapeutic effect.68

In another study, a pH-responsive COF platform (denoted as
TAPB-DMTP-COF) was synthesized via the Schiff base
condensation reaction between 2,5-dimethoxyterephthaldehyde
(DMTP) and 1,3,5-tris(4-aminophenyl)benzene (TAPB), and
DOX was loaded in situ into TAPB-DMTP-COF to attain
DOX@COF (Figure 10). The amount of DOX in the DOX@
COF platform was about 32.1 wt % that displays high drug-
loading capacity. At pH 5.0 or 6.5, most of the DOXwas released
in the first 2 h, and all the drug was released after about 24 h. In
contrast, at pH 7.4, about 40% of DOX was released in the first 2
h. The in vivo study of pH-responsive DOX@COF has shown its
good dispersibility and biocompatibility, low toxicity, and high
tumor-suppression efficiency.69 Table 1 summarizes the
representative COF-based drug delivery systems.

Figure 8. Schematic representation of micelle PEG-CCM@APTES-COF-1@DOX.

Figure 9. COFs-based DOX delivery nanomaterials.
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3. APPLICATION OF COFS IN GENE DELIVERY
Gene therapy is the transfer of foreign genetic material into
specific cells of the patient that holds great promise for treating
inherited and acquired genetic diseases such as cancer, cystic
fibrosis, combined immunodeficiency, and Parkinson’s via
rectifying the genomic errors.71 In transfer naked genes such
as small interfering RNA (siRNA), mRNA (mRNA), plasmid
DNA (pDNA), and antisense oligonucleotides (ASOs) to
targeted cells at the targeted site do not achieve desired
outcomes due to their rapid enzymatic degradation, low cellular
uptake, nonspecific biodistribution, and rapid clearance;72

therefore, effective delivery of therapeutic genes to targeted
tissues requires a carrier/nucleic acid system, named vectors that
are divided into two categories: viral vectors (e.g., retroviruses,
adenoviruses, and lentiviruses) and nonviral vectors (e.g.,
liposomes, polymers, and inorganic materials such as calcium
phosphate).73 Over the past two decades, a wide range of
nanoparticulate gene delivery systems have been developed.74

Improving the speed, cost effectiveness, safety, and efficiency of
intracellular delivery methods remains a long-standing chal-
lenge.75 COFs have some advantages in gene delivery including
excellent gene transfection, good biocompatibility, low cytotox-
icity, among others. Dual functionalized covalent triazine
framework (CTF) nanosheets, named CTF−PEG−PEI (PEI:
polyethylenimine) with brush-like hierarchical structures, were

fabricated through exfoliation and surface chemistry modifica-
tion. In vitro gene delivery studies in both the HeLa and 293T
cells reveal that CTF−PEG-PEI has lower cytotoxicity and good
gene transfection performance compared to PEI. The lack of in
vivo trial is one of drawbacks of this study.76 In another study, a
cationic COF nanoparticle with good dispersion and uniform
size was prepared through the one-potmethod. This COF-based
gene vector exhibited good biocompatibility and excellent gene
transfection ability both in vitro and in vivo.77

4. APPLICATION OF COFS IN PHOTODYNAMIC
THERAPY

Photodynamic therapy (PDT) has been evaluated for cancer
therapy as a potential noninvasive therapeutic method with
attributes such as simple operation and low side effects.78

Photosensitizers (PSs), oxygen, and specific wavelengths of light
are three important elements for PDT.79 A large number of PSs
(Figure 11) exist including porphyrins,80 chlorophylls, cyanine
derivatives (IR783, cyanine3, cyanine5, indocyanine green,
thiacarbocyanine, and oxacarbocyanine),81 xanthene derivatives
(rose Bengal, rhodamine, fluorescein, and eosin),82 and
derivatives of coumarin,83 squaraine,84 oxadiazole (benzoxadia-
zole and nitrobenzoxadiazole),85 anthraquinones,82 pyrene
(cascade blue),86 oxazine (Nile red and Nile blue),87

arylmethine (crystal violet and malachite green), acridine
(acridine yellow, acridine orange, and proflavin), and boron-
dipyrromethene (BODIPY).88

Mechanistically, in PDT subsequent to a specific wavelength
light irradiation, PS is exited and generates reactive oxygen
species (ROS, such as hydrogen peroxide (H2O2), singlet
oxygen (1O2), superoxide (O2

•), hypochlorite (ClO−), peroxyl
radical (ROO•), and hydroxyl radical (HO•))89,90 to cause
necrosis or apoptosis in cancer cells.91,92

Among various porous organic frameworks such as COF,93

MOF,94 and others deployed for PDT application, COF-based
PDT is one of the most significant members developed. Free
photosensitizers with the characteristics of aggregation tendency
and low water solubility would cause low selectivity and low

Figure 10. TAPB-DMTP-COF-based DOX delivery nanomaterials.

Table 1. Summary of Typical COF-Based Drug Delivery

COF linkage drug molecules key characteristics ref

3D PI-COF-4 and PI-COF-5 imine IBU, caffeine, and
captopril

first 3D COFs for drug delivery 2
24% loading capacity and 95% drug release with IBU for PI-COF-4
20% loading capacity and 95% drug release with IBU for PI-COF-5

2D PI-3-COF and PI-2-COF imine IBU, 5-FU, and captopril 30% maximum loading capacity with 5-FU and 85% drug release with 5-FU for
both COFs.

56

TTI-COF imine Quercetin enhanced anticancer activity of quercetin loaded TTI-COF compare to free
quercetin

57

TpASH-FA β-ketoenamine 5-FU targeted drug delivery 58
12% loading capacity, 50% drug release at pH 7.4 and 75% drug release at pH
5.0

PEG-CCM@APTES-COF-1 boroxine DOX and CCM first report of in vivo drug delivery of COF-polymer nanocomposites 59
9.71 ± 0.13% loading capacity and 90.5 ± 4.1% encapsulation efficiency

TAPB-DMTP-COF imine DOX pH-responsive COFs 69
32.1% loading capacity

F68@SS-COFs imine DOX GSH-responsive COFs 66
21% loading capacity

fluorescent COF imine DOX pH-responsive COFs with intrinsic fluorescent properties 68
monitoring drug loading with the naked eye
35% loading capacity.

DT-COF imine carboplatin targeted drug delivery 70
31.32% loading capacity
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PDT efficacy toward target tissues, while the COF-based PDT
could overcome these drawbacks. 3D Porphyrinic COFs for
PDT inactivation of bacteria have been synthesized by Schiff-
base reaction between tetrakis(4-aminophenyl)-methane and
porphyrinic aldehyde derivatives; under visible light irradiation,
they can produce O2(

1Δg) that displays strong antibacterial
effects toward Pseudomonas aeruginosa and Enterococcus faecalis
biofilms.95 In another example, porphyrin-based COF nanodots
have been fabricated by the reaction between 5,10,15,20-
tetrakis(4-aminophenyl)-21H,23H-porphine (Tph or TAP)
and 2,5-dihydroxyterephthalaldehyde (Dha or DHTA) that
used a liquid exfoliation method and then modified by PEG.
This COF nanodots-PEG system, in the presence of light,
produces ROS and shows excellent PDT efficiency in inhibiting
tumor growth both in vitro and in vivo as a result of effective
tumor accumulation. The in vivo PDT experiments show that

these COF nanodots-PEG can be cleared from the body through
renal filtration, rendering them a promising potential for clinical
trials.96 The real-time and in situmonitoring of ROS during PDT
in the body is important for minimizing unwanted side effects,
evaluating the exact treatment end point, and maximizing the
therapeutic effects.97,98 The real-time and in situ monitoring of
ROS generation was performed by upconverting porphyrin-
based COF nanoplatform (UCCOFs) that have been
synthesized using 5,10,15,20-tetrakis(4-aminophenyl)-
21H,23H-porph ine (TAP) , and 2 ,5 d ihyd roxy -
terephthalaldehyde (DHTA). Under NIR irradiation by a 980
nm light, it generated 1O2 to treat mice bearing 4T1 breast
tumors in vivo as revealed by an excellent tumor therapeutic
effect.99

COFTTA‑DHTA (TTA: 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)-
trianiline) has been prepared using solvothermal strategy via

Figure 11. Different types of PSs including BODIPY, coumarin, thiacarbocyanine, nitrobenzoxazole, cascade blue, flurescin, porphine, and nile red.

Figure 12. Schematic representation for the synthesis of TPAPC−COF and generating 1O2. Adapted with permission from ref 102. Copyright 2020
Wiley-VCH.
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the condensation between DHTA and TTA. The framework is
loaded first with pirfenidone (PFD), an antifibrotic drug, and
then is modified with PLGA−PEG (PLGA: poly(lactic-co-
glycolic-acid)) to form PFD@COFTTA‑DHTA@PLGA−PEG;
PLGA−PEG improves the biocompatibility and dispersibility
of the nanosystem. After intravenous injection, PFD@
COFTTA‑DHTA@PLGA−PEG could accumulate and release

PFD in tumor sites, which leads to the downregulation of
extracellular matrix components such as collagen I and
hyaluronic acid (HA). Followed by injected protoporphyrin
IX (PPIX)-conjugated peptide, nanomicelles (NM-PPIX) are
formed, which can increase the oxygen supply in the tumor that
would be conducive to the improved ROS generation to attain a
prominent PDT effect in vivo.100

Figure 13. Schematic diagram of PcS@COF-1 nanosheets.

Table 2. Summary of Typical COF-Based PDT, PTT, and Combination Therapy

COF linkage application key characteristics ref

3D porphyrinic COFs imine PDT displaying strong antibacterial effects toward Pseudomonas aeruginosa and Enterococcus
faecalis biofilms

95

porphyrin-based COF
nanodots

imine PDT showing excellent PDT efficiency in inhibiting tumor growth both in vitro and in vivo 96

UCCOFs imine PDT real-time and in situ monitoring of ROS generation 99
NIR light excitation
in vivo study

COFTTA‑DHTA imine PDT improved ROS generation 100
in vivo study
delivery of pirfenidone as an antifibrotic drug

COF-909 imine PDT Killing over 80% of tumor cells in in vitro studies 101
reduction of tumor size from 9 mm to less than 1 mm in in vivo studies after 10 days
treatment

TPAPC−COF′ imine PDT in vitro assessment of TPAPC−COF′ against human breast carcinoma cells 102
corrole-based COF

PcS@COF-1 boroxine PDT laser irradiation 104
in vitro and in vivo studies
displaying photooxidation activity

LZU-1-BODIPY imine PDT green LED irradiation (40 mW/cm2) 105
restraining cancer cells both in vitro and in vivo experiments

Fe−HCOF imine PTT laser irradiation 107
showing an excellent antitumor efficacy (87.8%) for the treatment of cancer cells in vivo

Fe3O4@COF(TpBD) imine PTT 21.5% photothermal conversion efficiency 108
785 nm light irradiation

ICG@COF-1@PDA boroxine PDT/PTT in vitro study againt CT26 cells 112
in vivo study against CT26 tumor-bearing mice

TP-Por boronate
ester

PDT/PTT in vitro and in vivo studies 114

COF-LZU-1-CuSe imine PDT/PTT excellent antitumor therapy 115
VONc@TAPB-DMTP-COF-
Porph

imine PDT/PTT in vitro and in vivo experiments against MCF-7 breast cancer cell 116
55.9% photothermal conversion efficiency

COF@IR783@CAD boronate
ester

chemotherapy/
PTT

excellent in vivo antitumor therapy 118
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2D COF-909 platform was fabricated by the Schiff base
reaction between 4,4′,4′′-(1,4-phenylene)-bis(([2,2′:6′,2′′-ter-
pyridine]-5,5′′-dicarbaldehyde)) (L-3N) and p-phenylene-
diamine (PPDA) monomer. Under light irradiation, COF-909
is excited and following by ROS generation in cells to kill over
80% of tumor cells in in vitro studies; a 10-day treatment
exhibited efficient reduction of tumor size from 9 mm to less
than 1 mm in vivo.101

In a recent study, 2D corrole-based COF endowed with
excellent chemical stability and high crystallinity was synthe-
sized by a reaction between terephthalaldehyde and 5,10,15-
tris(p-aminophenyl)corrole (H3TPAPC), labeled as TPAPC−
COF (Figure 12). This porphyrin-based COF under 635 nm
laser (0.18 W cm2) irradiation generated 1O2 (Figure 12). The
TPAPC−COF can be further modified with DSPE-PEG2000 as
amphiphilic molecules for improving hydrophilicity in the
physiological environment (denoted as TPAPC−COF’). In vitro
assessment of TPAPC−COF′ against human breast carcinoma
cells not only showed good biocompatibility but also
demonstrated the ability to generate the intracellular 1O2 as a
potential PDT application for use in killing cancer cells.102

Porphyrin photosensitizer phthalocyanines (PcS) with π-
bonds interaction has been incorporated into 2D COF-1
nanosheets.103 Then facile ultrasonic exfoliation was performed
on these COF nanosheets to achieve nanophotosensitizer based
on COF nanosheets, labeled as PcS@COF-1 nanosheets
(Figure 13). Under laser irradiation, 1O2 was generated to
restrain the tumor cell proliferation in both in vitro and in vivo
studies. Further, PcS@COF-1 nanosheets displayed photo-
oxidation activity by oxidizing dopamine into leucodopamine-
chrome.104

BODIPY-based COF platform has been assembled by the
condensation between tert-butyl (4-aminophenyl)carbamate
(NBPDA) and benzene-1,3,5-tricarbaldehyde under solvother-
mal conditions. Under green LED irradiation (40 mW/cm2),
1O2 was generated to restrain cancer cells both in vitro and in vivo
experiments.105 Thus, the porous COFs could serve as smart
carriers in PDT applications. The representative COF-based
PDT systems are summarized in Table 2.

5. APPLICATION OF COFS IN PHOTOTHERMAL
THERAPY

Photothermal therapy (PTT) is an emerging photobased
treatment that uses electromagnetic radiation such as near-
infrared irradiation, visible light, microwaves, and radio-
frequency for the treatment of the targeted cells or tissues in
which a photosensitive agent is excited with specific band light.
This activation brings the sensitizer to an excited state where it
releases heat, which kills the targeted cells. Unlike PDT, PTT
does not require oxygen to interact with the target abnormal
tissues and cells.106

Presently, new photothermal agents with good biocompati-
bility, excellent photostability, and efficient photothermal effect
are one of the critical issues to achieve minimum side effects and
maximum treatment efficacy; COFs have been used for
photothermal ablation of cancer cells. Hierarchical COF
(HCOF) spheres have been synthesized via a template-free
solution-based aging method at room temperature, followed by
postsynthetic metalation of HCOF with Fe3+ on HCOF. Under
laser irradiation, Fe−HCOF exhibited a good photothermal
effect and an excellent antitumor efficacy (87.8%) for the
treatment of cancer cells in vivo.107

Figure 14. Preparation of Fe3O4@COF(TpBD) via the amorphous-to-crystalline conversion process. Reproduced with permission from ref 108.
Copyright 2016 Wiley-VCH.
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A nano COF layer (denoted as Fe3O4@COF(TpBD), BD:
benzidine) comprising core−shell nanostructure was used for
PTT upon 785 nm light irradiation, with a good photothermal
conversion efficiency of 21.5%. The preparation of Fe3O4@
COF(TpBD) entailed securing a core−shell system consisting
of a Fe3O4 nanocluster (core) and an amorphous polyimine
network (shell). Then the reformation of the polyimine network
into the imine linkage COF led to crystalline imine-linked COFs
(shell) under solvothermal conditions (Figure 14).108

Recently, a COF (termed CPF-Cu) was built through the
reaction between 2,3-dicyanohydroquinone (DCH) and
1,2,4,5-tetracyanobenzene (TCNB) with Cu riveted in the
center as the structure-directing agent. The CPF-Cu exhibited
fluorescence quantum yield (10.3%) by UV light and high
photothermal conversion efficiency (39.3%) under exposure to
near-infrared light;109 representative COF-based PTT systems
are summarized in Table 2.

6. APPLICATION OF COFS IN COMBINATION
THERAPY

In the last couple of years, combined therapy, such as the
combination of PDT/PTT, and the combination of chemo-
therapy/PTT, etc., has been gaining ever more attention;110,111

the strategy of “killing three birds with one stone” was
successfully developed in combination therapy. A combination

therapy comprising PDT and PTT can attain significant
antitumor effects. NIR dye indocyanine green (ICG), which
forms π−π interaction, was added to COF-1, which is named
COF@IR783. Then the ICG@COF-1@PDA nanosystem was
prepared by mixing polydopamine (PDA) and COF@IR783
under aqueous sonication exfoliation. Compared with free ICG
and COF-1@PDA, ICG@COF-1@PDA displayed stronger
photocytotoxicity in vitro. Upon NIR laser irradiation, ICG@
COF-1@PDA effectively killed CT26 cells by PDT/PTT dual-
mode phototherapy. In vivo study indicated that the ICG@
COF-1@PDA induced by PDT/PTT dual-mode displayed the
greatest therapeutic efficacy without notable body weight
change against CT26 tumor-bearing mice and potential immune
activation against recurrence and metastases.112

The 2DCOF (denoted as TP-Por) has been constructed via a
condensation between 5,15-bis(4-boronophenyl)-porphyrin
(Por) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)
according to the solvothermal strategy.113 Then CONs were
achieved from their bulk COFs via aqueous sonication
exfoliation (Figure 15). During the in vitro and in vivo
experiments, the CONs under single-wavelength irradiation
exhibited excellent dual-modal properties with significant ROS
production (in PDT) and temperature elevation (in PTT).
Intravenous injection of CONs in nude mice, followed by the

Figure 15. Schematic illustration showing CON construction, the mechanism of PDT and PTT generation, and in vivo tumor therapy. Reprinted with
permission from ref 114. Copyright 2019 American Chemical Society.
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PDT/PTT, could cause significant tumor ablation without in
vivo toxicity after 22 days (Figure 15).114

COF-LZU-1 has been generated from 1,3,5-triformylbenzene
and 1,4-diaminobenzene according to a facile solution-phase
synthesis method at room temperature. Then the COF-LZU-1-
CuSe nanocomposites were prepared by the in situ conjugation
of CuSe nanoparticles with COF-LZU-1. The in vitro and in vivo
experiments demonstrated enhanced tumor suppression
efficiency and excellent antitumor therapy of the COF-LZU-1-
CuSe platform via a PDT/PTT effect.115

In another report, TAPB-DMTP-COF was fabricated from
TAPB and DMTP, while TAPB-DMTP-COF-Porph (Porph: 5-
(4-aminophenyl)-10,15,20-triphenylporphyrin) was obtained
via Schiff-base condensation between Porph and TAPB-
DMTP-COF. Finally, the host−guest supramolecular system
VONc@TAPB-DMTP-COF-Porph (VONs: vanadyl
2,11,20,29-tetra(tert-butyl)-2,3-naphthalocyanine) is attained
by soaking TAPB-DMTP-COF-Porph in an N,N-dimethyl-
acetamide (DMAC) solution of VONc. The ensuing VONc@
TPB-DMTP-COF-Porph exhibited an excellent combined
PDT/PTT therapeutic effect under the red LED (50 mW/
cm2); 808 nm laser irradiation resulted in high 1O2 generation
with high photothermal conversion efficiency (55.9%). The in
vitro and in vivo experiments unveiled inhibition of MCF-7
breast cancer cell proliferation and metastasis.116

COF-366 has been obtained by the reaction between tetra (p-
amino-phenyl) porphyrin (TAPP) and terephthaldehyde, which
was then converted to nanoparticle form, COF-366 NPs, by
ultrasonic dispersion. The COF-366 NPs, upon a single
wavelength light, provided an excellent combined PDT/PTT
therapeutic effect on 4T1 tumor-bearing mice, which is
evidenced by in vitro and in vivo experiments.117

The condensation reaction between 5,15-bis(4-boronophen-
yl)-porphyrin and 2,3,6,7,10,11-hexahydroxytriphenylene

(HHTP) afforded a 2D COFs, which were converted to the
nanocomposites COF@IR783 via the combination of COFs
and IR783 under aqueous sonication exfoliation (Figure 16).
Anticancer cisaconityl-doxorubicin (CAD) prodrug was loaded,
and combination chemotherapy/PTT with the COF@IR783@
CAD was performed in both in vitro and in vivo; excellent in vivo
antitumor therapy was realized without in vivo toxicity for
COF@IR783@CAD (Figure 16).118 The representative COF-
based combination therapy systems are summarized in Table 2.

7. APPLICATION OF COFS IN BIOIMAGING

Bioimaging is the observation of entire cells over tissues in whole
multicellular organisms and subcellular structures, which uses
fluorescence, magnetic resonance, light, electrons, X-ray, and
ultrasound as sources for imaging.119,120 A bulk material and
luminescent triazine-based COF has been prepared by the imine
condensation between TTA with 2,6-diformylpyridine (DFP)
under 30 min of microwave irradiation to afford the product
assigned as TTA−DFP COF. Subsequently, TTA−DFP
covalent organic nanosheets (denoted as TTA−DFP CONs),
on the nanoscale, were obtained via the exfoliation of the TTA−
DFP COF that displayed a high luminescence efficiency with a
maximum peak centered at 435 nm. The in vitro study revealed
that the TTA−DFPCONs exhibited an ability to stain HeLa cell
nuclei with no cytotoxic.121 Still, in vivo toxicity evaluation for
proper clinical applications of the COFs in bioimaging is a key
issue that needs to be addressed in future studies.
A two-photon fluorescent COF nanoprobe, namely, TpASH-

NPHS (NPHS: 4-amino-1,8-naphthalimide), was prepared to
detect and image intracellular hydrogen sulfide (H2S) in deep
tissues and live cells under NIR excitation, which exhibited high
photostability and long-term bioimaging capability.122

Zhang and colleagues reported a benzothiadiazole-based
COF as enhanced fluorescent material for two-photon induced

Figure 16. Schematic illustration for construction of COF@IR783@CAD and in vivo combinative antitumor therapy. Reprinted with permission from
ref 118. Copyright 2019 American Chemical Society.
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fluorescence imaging in vitro and in vivo. These TPI-COF (TPI:
two-photon induction) were generated via Schiff-base con-
densation between an aniline building block with a benzo-
thiadiazole-based aldehyde chromophore under solvothermal
synthesis protocol.123 The representative COF-based bioimag-
ing systems are summarized in Table 3.

8. APPLICATION OF COFS IN BIOSENSING

Over the past decade, COFs have been extensively utilized for
sensing including biosensing, photoelectrochemical-, electro-
chemical-, QCM-, colorimetric-, humidity-, enantioselective-,
and fluorescent sensing.124

GSH functionalized magnetic COFs have been synthesized
through postsynthetic modification of a vinyl-functionalized
magnetic COF for efficient N-linked glycopeptide enrichment.
The core−shell-structured magnetic COFs were fabricated
using magnetic colloid nanocrystal cluster (MCNC) as the core
and COFs as the shell, while COFs were prepared by Schiff base
condensation of 2,5-divinylterephthalaldehyde (Dva) and 1,3,5-
tris (4-aminophenyl) benzene (Tab). Next, GSH was adorned
onto the COF shell by thiol−ene “click” reaction to prepare
MCNC@COF@GSH platform (Figure 17). The MCNC@

COF@GSH microspheres exhibited excellent performance for
endogenous N-linked glycopeptide enrichment in human saliva
with demonstrable reusability, high selectivity, and low
detection limit.125

The COF-300-AR with good reusability, light-control, high
stability, and catalytic oxidation capacity has been fabricated in
several steps. First, COF-300 was formed through the
condensation of terephthaldehyde (PDA) and tetrakis(4-
aminophenyl)methane (TAPM). Consequently, terephthalic
acid (TPA) was added to the ensuing COF-300 and reduced in
the presence of NaBH4 to generate COF-300-AR. The COF-
300-AR showed oxidase-mimicking activity upon visible light
irradiation with λ = 400 nm; detection of GSH levels in HL-60
cells (cell lysate) could be achieved with excellent sensitivity and
high selectivity.126

Li and co-workers devised an electrochemical sensing
platform for the determination of prostate-specific antigen
(PSA) using black phosphorene (BPene) as a substrate material
and magnetic COFs as the nanoprobe. The fabricated
immunosensor exhibited good stability and fine specificity
with a low detection limit of 30 fg mL−1 in the linear range of
0.0001 ng mL−1 to 10 ng mL−1.127

Table 3. Summary of Typical COF-Based Bioimaging and Biosensing Systems

COF linkage application key characteristics ref

TTA−DFP CONs imine bioimaging showing a high luminescence efficiency with a maximum peak centered at 435 nm 121
in vitro study against HeLa cell nuclei with no cytotoxic

TpASH-NPHS imine bioimaging detect and image intracellular H2S in deep tissues and live cells 122
TPI-COF imine bioimaging two-photon induced fluorescence imaging in vitro and in vivo 123
MCNC@COF@GSH imine biosensing showing excellent performance for endogenous N-linked glycopeptide enrichment in human saliva 125
COF-300-AR imine biosensing detection of GSH levels in HL-60 cells 126

good reusability, light-control, high stability, and catalytic oxidation capacity
Ab2/MB/Au@Fe3O4@COF imine biosensing showing linearity ranging from 0.0001−10 ng mL−1 127

30 fg mL−1 detection limit
prostate specific antigen detection

TpTTA-COF imine biosensing sensing of adenosine 5′-triphosphate and DNA 128
TPA-COF imine biosensing detection of DNA with high selectivity and excellent sensitivity 129

Figure 17. Schematic representation for the synthesis of MCNC@COF@GSH microspheres. Reprinted with permission from ref 125. Copyright
2019 American Chemical Society.
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TpTTA-COF was synthesized via the condensation of Tp
with TTA under solvothermal conditions. The COF-based
platform was demonstrated for sensing adenosine 5′-triphos-
phate and DNA.128

2D imine-linked COF nanosheets have been explored as a
fluorescence-sensing platform for the detection of DNA with
high selectivity and excellent sensitivity. Ultrathin 2D COF
nanosheets were fabricated by the condensation of tris(4-
aminophenyl)amine (TAPA) with tris(4-formylphenyl)amine
(TFPA), which was then exfoliated to obtain COF nanosheets
via one-step solvent-assisted liquid sonication.129 The fabricated
biosensor exhibited a linear relationship between increased
fluorescence intensity and the concentration of the target DNA,
with a detection limit of 20 × 10−12 M. This is comparable with
most 2D nanosheet-based fluorescence DNA sensors such as
graphene oxide (detection limit of 2 × 10−9 M), carbon nitride
(81 × 10−12 M),130 MoS2 (0.5 × 10−9 M),131 WS2 (60 × 10−12

M),132 TaS2 (50 × 10−12 M),133 and MOF (20 × 10−12 M).134

Furthermore, COFs have been reported for ultrasensitive
detection of miRNAs.135 The representative COF-based
biosensing systems are summarized in Table 3.

9. ENZYME IMMOBILIZATION

Despite the fact that enzyme immobilization has high specificity
and catalytic efficiency, the natural enzyme activity is difficult to
maintain and the delivery is often complicated. Nanomaterial-
based artificial enzymes, named nanozymes, have garnered great
interest due to their facile production, long storage time, low
cost, high stability, and greater resistance to biodegradation.136

But the fabrication of nanozymes with high enantioselectivity
and activity is still a great challenge. In this content, chiral COF
nanozymes with substrate-binding sites and highly ordered
active centers have been reported. Initially, Fe-COF was
constructed by the Schiff-base reaction between iron
5,10,15,20-tetrakis(40-tetraphenylamino) porphyrin and
terephthalaldehyde. Then the ensued Fe-COF was modified
via postsynthetic modification route by adding L-histidine (L-
His) as the chiral binding site to create L-Hisx@Fe-COF, which
displayed 21.7-times higher activity compared to the natural
enzyme (horse radish peroxidase). Furthermore, based on the
chirality of the His unit, the COF nanozymes in the oxidation of
dopa have shown high enantioselectivity.137

In another work,MOFs were applied as sacrificial templates to
fabricate hollow COF capsules for enzyme encapsulation. This
effective, scalable, and facile method achieved high-performance
COF bioreactors that could maintain enzyme conformational
freedom, offered protective effect against the external environ-
ment, stabilized the enzyme, and enhanced mass transfer thus
boosting the enzymatic activities. Compared to traditional
porous materials such as SBA-15, the encapsulated enzymes in
COF capsules showed excellent reusability. Furthermore, this
platform exhibited high tunability and versatility; assorted COF
shells, various sacrificial MOF templates, and different enzymes
could be used.138

In another research, ultrafine platinum NPs confined in a
COF (Pt/COF) have been developed, which showed good
catalytic activities; Pt NPs were grown in situ and confined in the
COF with a narrow size distribution and the size as small as 2.44
nm. This Pt/COF catalyst exhibited high affinity and both
superior oxidase-like and peroxidase-like activity toward the
peroxidase (TMB) substrate.139

These results have revealed that the COF nanozyme opens up
a new avenue to overcome the present drawbacks of enzymatic
immobilization in porous materials.

10. ANTICANCER ACTIVITIES

Cancer is abnormal cell growth having the potential to invade or
spread to other parts of the body with inclusionary criteria
around the globe that annually kill millions of people by cancer
disease.140,141 There are several different factors, including
smoking, tobacco, polluted air, chemicals, food, radiation,
certain metals, infectious agents, genetic mutations, body
immune system, and hormonal disorders, that can cause
cancer.142 Therefore, the fabrication of new materials with
anticancer activity is crucial in cancer therapy. In this context,
Bhaumik et al. created a 2D TrzCOF structure by
polycondensation of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine
(TAPT) with 1,3,5-tr i(4-formylbiphenyl) benzene
[Ph7(CHO)3, TFBPB] under solvothermal synthesis protocol.
In vitro studies were performed on this 2D hexagonal TrzCOF
that displayed anticancer activity for the colorectal carcinoma
HCT-116 cells.143 There is a need for evaluation of the validity
of TrzCOF in vivo for clinical trials.

11. CONCLUSION AND OUTLOOK

As a new type of porous material, COFs possess unique
characteristics and several advantages such as highly tunable
porosity, ordered channels, biocompatibility, multifunctionality,
large specific surface area, optional building blocks, and
predictable and stable structure. These properties have endowed
COF materials with superior potential applications in
biomedical systems. Herein, we have discussed and reviewed
the recent progress and achievements of 2D and 3D COF-based
materials including their synthesis and functionalization and
especially biomedical applications in the delivery of drugs and
genes, bioimaging, biosensing, PDT, PTT, and combination
therapy. Furthermore, the developmental prospects and
challenges of COFs for biomedical appliances are deliberated
with examples of COF-based platforms in both in vitro and in
vivo models. Finally, recent efforts to develop various types of
COFs-based platforms are highlighted that can overcome their
traditional shortcomings. Furthermore, the high π-electron
density of COFs along with the large surface area renders them a
good candidate for bioimaging and biosensing. Nevertheless,
despite these advantages, COFs suffer from several drawbacks
such as poor physiological stability and scalability that will need
detailed analysis and exploration. COF as an advantageous
platform could be applied in newer approaches to cancer
therapy, from novel drugs, biological agent, and drug delivery
system to gene targeting, gene therapy, and the possibility of
targeting cancer stem cells. Stimuli-responsive based COFs such
as ROS-responsive, thermoresponsive, among others need more
attention. So far, only two reports have demonstrated the use of
2D and 3D COF-based material for gene delivery. Therefore,
COF-based gene delivery requires additional studies for
realizing their full potential. Furthermore, there has been a
clear lapse in extensive in vivo studies using 2D and 3D COF-
based material, which could have paved the way to clinical trials.
In view of the deployment ofMOFs for biomedicine application,
integration of COFs and MOFs-based strategies could be
explored in the near future. Despite some general similarity such
as biocompatibility and low cytotoxicity, there are differences
between 2D and 3D COF in terms of shape, pore size and
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porosity, and surface area, among others. These differences in
characteristic offer different results in their application in the
biomedical field such as drug and gene delivery, but to the best of
our knowledge, there is not any research that has compared 2D
and 3D COF in biomedical application. Consequently, in the
future explorations, this comparison could be evaluated by
researchers in this burgeoning field.
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