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‘‘In Myocardial Perfusion Imaging (MPI) with

Positron Emission Tomography/Computed Tomography

(PET/CT) systems, accurate quantification is essential’’

reads the first sentence of the abstract of an article by

Siekkinen et al1 in which they describe a phantom study

to assess the accuracy of myocardial blood flow (MBF)

measurements using two different (types of) scanners.

Within the context of a phantom study, the clinical value

of this opening statement could easily be overlooked,

given that quantification often is ignored in clinical

practice, where decisions can be based on the spatial

distribution of a perfusion tracer (visual or semi-quan-

titative assessment). Therefore it is important to reiterate

the value of quantitative MBF measurements.

There are many situations where quantification is

indeed essential, such as identification of three-vessel

disease, assessment of cardiotoxicity after chemother-

apy, and other conditions that lead to a global change in

myocardial perfusion. Clearly, there are also many cases

where a relative assessment would be sufficient, but at

the same time it is strange that the scanning protocol

used will depend on the (potentially erroneous) expected

outcome of the scan. In addition, in a prospective study

it was shown that quantitative [15O]H2O PET studies

were superior over semi-quantitative SPECT studies in

selecting patients for the cath lab.2

[15O]H2O PET is the ‘‘gold standard’’ method for

absolute measurement of MBF. This is based on first

principles, as water is freely diffusible and has no

(molecular) interactions in tissue (i.e. also no labeled

metabolites). In addition, already in the early days of

PET, [15O]H2O PET perfusion measurements were

validated against labeled microspheres.3 Other advan-

tages of [15O]H2O PET are the short overall study

duration (rest-stress perfusion measurements can be

performed well within half an hour) and the intrinsic

ability to distinguish between viable and non-viable

myocardial tissue, making it possible to distinguish

between ischemic and infarcted tissue. Finally, software

packages are available to perform data analysis in a

semi-automated manner.4,5 To advance the field, it is

now time for cyclotron manufacturers to produce small

and cheap mini-cyclotrons for the production of oxygen-

15 that can be operated by a nuclear medicine techni-

cian, enabling hospitals with a PET scanner, but without

a (larger) cyclotron and radiochemistry facilities, to

perform myocardial perfusion (and viability) measure-

ments. In addition, such a mini-cyclotron could also be

used for perfusion measurements in brain and tumors.

Once a quantitative method, such as [15O]H2O PET,

has been validated in carefully conducted research

studies, its correct application in routine clinical studies

also needs to be guaranteed. Absolute quantification

implies attention to detail with respect to a series of

steps that are involved in generating quantitative para-

metric maps.6 In case of measuring myocardial

perfusion using [15O]H2O (and most other perfusion

tracers), the following steps need to be taken into

account:

1. Accurate normalization of the PET scanner with

accurate corrections for decay, dead time, attenua-

tion, and random and scattered coincidences.

2. An appropriate scanning protocol. To obtain accurate

results, not only the scanner needs to be tuned

optimally, but also a scan protocol is required that is
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able to catch the kinetics of the tracer. To properly

define the arterial input function (image derived input

function), this requires frame durations of about 5

seconds during the early part of the curve.

3. An injected dose that falls within the range that can

be properly managed by the scanner, in practice

setting a maximum to the injected dose depending on

the performance of the scanner.

4. Close observation of the patient during scanning.

Any patient motion should be corrected immediately,

if possible. Otherwise, motion correction should be

carried out retrospectively using either data from an

on-line monitoring system or by realigning succes-

sive frames to each other.

5. Use of a reconstruction algorithm that provides the

highest possible spatial resolution (given the thick-

ness of the myocardium) without producing

excessive noise levels. In general, an iterative

reconstruction algorithm will be used. In that case

it is important to check that convergence in recon-

structed blood and tissue concentrations is reached,

especially during the first part of a dynamic scan

(high activity in the left ventricle, low activity in

myocardium).

6. Correction for partial volume effects. This is not

needed for [15O]H2O, as the tracer kinetic model for

[15O]H2O has a built-in correction for partial volume

effects.7 For other flow tracers, however, such a

correction needs to be applied to the reconstructed

data.

7. Extraction of the arterial input function. For

[15O]H2O and several other flow tracers an image

derived input function can be used. Software pack-

ages exist that allow for semi-automated extraction of

the arterial input function.5 Nevertheless, a quality

control procedure is needed to exclude artefacts and

guarantee accurate results.

8. An appropriate tracer kinetic model, ideally as part of

a user friendly software package. The good news is

that such packages do exist and that different

packages provide essentially identical results.8

Most of the items listed above need to be addressed

only once, and others can be found in the literature

(optimal tracer kinetic model, optimal scanning proto-

col, etc.). As mentioned above, MBF measurements

using [15O]H2O PET have already been validated by

comparison with radiolabeled microspheres.3 Neverthe-

less, once the method is implemented in a new institute

or on a new scanner, some sort of evidence needs to be

gathered to demonstrate that obtained results are as

correct as they can be. Clearly, it would be overkill to

repeat validation against microspheres. The standard

way of demonstrating appropriate performance is by

carrying out phantom studies. Phantom measurements

provide an overview of the overall accuracy, provided

that the phantom can give a fair representation of the

clinical process being measured. In addition, phantom

measurements are of the utmost importance for harmo-

nizing different scanners in a multicentre trial.

In general phantom measurements carried out to

characterize scanner performance make use of static

scans of non-moving phantoms. The beauty and novelty

of the study by Siekkinen et al1 is that they used

dynamic scans together with a flow phantom. By doing

so, they were able to check quantification of the entire

(dynamic) process involved in MBF measurements by

comparing obtained results with the known ground truth.

Measured errors in myocardial perfusion for two state-

of-the-art scanners (digital and analogue) were smaller

than 12% for administered activities ranging from *350

to *1250 MBq. The authors recommend that in future

studies higher administered activities should be inves-

tigated and, based on the data presented, it is likely that

errors will increase somewhat. This will primarily affect
82Rb studies, where higher administered doses are used.

For [15O]H2O, however, an administered dose of *500

MBq is sufficient, even for analogue state-of-the-art

PET scanners. For the latter dose, errors will be closer to

a very acceptable 5%, which will clearly be an advan-

tage of [15O]H2O over 82Rb MBF measurements.

The main purpose of the study by Siekkinen et al1

was to assess the effects of administered dose on accu-

racy of myocardial perfusion measurements. This is a

valid question as, immediately after injection, the total

dose is within the field of view of the scanner, poten-

tially resulting in count rate limitations. It is reassuring

to note that such limitations were not observed.

Siekkinen et al1 claim that their phantom protocol could

be used ‘‘for MPI harmonization studies for several

PET/CT systems, according to their count-rate perfor-

mance and reconstruction methods’’, i.e. for

harmonising scanners in a multicentre study. Unfortu-

nately, this aspect was not further investigated, as only

standard scanning and reconstruction protocols (as used

locally) were used. Therefore, in future studies, it would

be of interest to assess the effects of fine-tuning recon-

struction (and smoothing) settings to harmonize final

images even further, i.e. to make sure they are compa-

rable in terms of both spatial resolution and noise level.
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