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A metapopulation activity-driven network model for COVID-19 in Italy
(Special Session: Dynamical Systems to Model and Control Epidemic Spreading: COVID-19 and beyond)

Francesco Parino1, Lorenzo Zino2, Maurizio Porfiri3, and Alessandro Rizzo1,3

Context - Several studies suggest that mobility has a key role
in shaping the evolution of the COVID-19 outbreak [1, 2]. The
proposed mathematical model is designed to capture and repro-
duce both the spatial spread of the disease and the heterogeneous,
time-varying nature of human interactions that supports the pan-
demic. Our model affords the execution of accurate what/if analy-
ses, which can inform decision-making by policy makers and pub-
lic health authorities. Specifically, our approach can be used to
predict the effect of nontherapeutical interventions (during imple-
mentation or gradual re-opening of local borders), of productive
activities, and citizen ability to freely move within national bor-
ders.

Model - We consider a variant of a metapopulation model [3].
A population of n individuals is partitioned into H = {1, . . . ,k} ge-
ographical areas (or patches, which in our case coincide with Ital-
ian provinces. Provinces are connected though a weighted graph
(H,W ), which captures the aggregated inter-provincial commut-
ing patterns; W ∈ [0,1]k×k is a row-stochastic matrix such that Whk
measures the average fraction of people that live in province h and
commute to province k. A schematic of the metapopulation struc-
ture is shown in Fig. 1.

Differently from typical metapopulation models that assume ho-
mogeneous mixing within patches, our model accounts for the
inherent heterogeneous and time-varying nature of human inter-
actions [4]. To this aim, individuals interact on the basis of a
mechanism inspired by activity-driven networks [5, 6]. Specifi-
cally, individuals are divided into a finite set of activation classes
0 < a1 < · · · < ap ≤ 1, where ai is probability that an individual
in the ith class generates an interaction in a unit time. Different
classes are used to capture heterogeneous human behavior, which
has been proved to occur in real social systems [4]. At any unit
time-step, each individual that belongs to the ith class generates an
interaction with probability ai, independent of the others. Such an
individual is called active. Interactions are generated according to
a probabilistic mechanism, accounting for both individual activity
features and mobility patterns. We introduce a parameter b ∈ [0,1]
to measure the propensity of active individuals to commute to other
regions. With probability 1−b, an active individual does not com-
mute and interacts locally with an individual selected uniformly at
random within his/her province. With probability b, an active indi-
vidual commutes to another province, randomly selected according
to the routing matrix W , and then generates the interaction therein.
At the end of the time-unit, the commuter returns to the province
in which he/she lives. The matrix W capture the spatial mobility of
these commuters.

To model the epidemic progression, we adopt a susceptible–
exposed–infected–asymptomatic–removed (SEIAR) model, which
allows to capture some key features of COVID-19, including the
presence of a phase in which individuals are infected, but asymp-
tomatic, before the possible (but not necessary) emergence of
symptoms [7]. Susceptible individuals (S) who contact infectious
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Figure 1: Metapopulation structure.

individuals (either symptomatic or asymptomatic) become exposed
(E) with a per-contact probability λ . Then, with probability β , they
may become symptomatic (I). Such a transition occurs with prob-
ability ν per unit-time. Otherwise, with probability 1−β , they be-
come asymptomatic (A). All infected individuals are eventually re-
moved (that is, they recover or die)4. Such a transition occurs with
probability γ , if asymptomatic, and with probability µ , if symp-
tomatic. The schematic of all the possible state transitions is repre-
sented in Fig. 2.

Let us consider a generic class of activation i and province h,
where Sh

i , Eh
i , Ih

i , and Ah
i are the fraction of susceptible, exposed,

symptomatic, and asymptomatic individuals belonging to that class
and province, respectively. For large-scale systems, we derive an
approximate solution of the system of equations, governing the dis-
ease spreading

Sh
i (t +1) = (1−Πh

i )S
h
i (t)

Eh
i (t +1) = Πh

i Sh
i (t)+(1−ν)Eh

i (t)
Ih
i (t +1) = βνEh

i (t +1)+(1−ν)Ih
i (t)

Ah
i (t +1) = (1−β )νEh

i (t +1)+(1− γ)Ah
i (t).

(1)

where Πh
i is the probability that an individual with activation class

ai from province h has an interaction with an infected individ-
ual. Such an expression has a rather lengthy and convoluted form
that depends on the properties of the individual and of the rest of
the population, the mobility parameters b and W , and the frac-
tion of exposed and infected individuals for each class and in each
province. Here, we omit this expression due to space constraints.

Parametrization - We tailored our model to the 2020 COVID-
19 outbreak in Italy. Using census data from ISTAT [8], we par-
titioned the population into 107 provinces and metropolitan cities,

4The removed state can be further subdivided in the recovered and deceased
classes, including a further parameter. In this preliminary effort, without loss of
generality, we adhere to the simpler SEIAR model.
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Figure 2: State transitions characterizing the SEIR model.
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Figure 3: Inter-province mobility matrix W . Darker colors corre-
spond to larger entries.

forming the set H. The weight matrix W was estimated from mo-
bility data from ISTAT [8], as shown in Fig. 3. We set the epidemic
progression and diffusion parameters (that is, λ , ν , γ , and µ), uti-
lizing recent and reliable estimates from Prem et al. [9]. Finally,
activity classes were identified from official epidemic data from the
Dipartimento della Protezione Civile [10]. Specifically, the num-
ber and activity values of activity classes were derived from exper-
imental data on social interactions [11], while the distribution of
individuals over classes was identified from epidemic data [10]. In
such a process, a crucial issue resides in the partial knowledge of
the real number of infected individuals. Due to the limited testing
capacity, asymptomatic individuals are rarely detected, and there is
a high uncertainty on the fraction of asymptomatic individuals [7].
For this reason, the parameter β (which determines the fraction
of infected individuals that become symptomatic) was identified
together with the remaining parameters, that is, the mobility pa-
rameter b and the distribution of the individuals over the activation
classes.

Analysis - The main objectives of our study are the investigation
of the role of mobility and the effect of past, current, and possible
future interventions on the evolution of the epidemic outbreak. We
plan to address these issues by means of extensive numerical sim-
ulations and rigorous analytical studies.

Through a campaign of numerical simulations, we performed
what/if analyses to compare different intervention policies, that
is, different strategies to dynamically change the model mobility
structure and the individuals’ tendency to interact with others to
contrast the spread of the disease. Such an analysis allows to as-
sess the effectiveness of different combinations of these two control
actions, depending on the time they are implemented (Fig. 4).

From the analytical perspective, we are working to derive the
epidemic threshold of the system, through a large-scale approxi-

Figure 4: Preliminary simulation results suggest that the epidemic
prevalence can be reduced by decreasing the activity or the mobility
during the early stages of the epidemics, while for late intervention,
reductions on mobility seem to have a minor effect.

mation of Eq. (1). From the expression of the epidemic threshold,
one can understand the role of the model parameters in the early
stages of the epidemic outbreaks. We also believe that the effect of
re-opening of borders and inter-province mobility can be studied
by means of a perturbation technique with respect to the mobility
parameters b and W .
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