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Chapter 3

Convex approximations of

mean-CVaR mixed-integer

recourse models

3.1 Introduction

Recourse models are a class of models that can be used to solve optimization prob-

lems under uncertainty. Traditionally, this uncertainty is accounted for by minim-

izing the expected total costs, and thus implicitly, a neutral stance toward risk is

assumed. For recurring problems that have to be solved many times, this approach

can be justified by the law of large numbers. However, in many other applications

we face a single-shot problem in which avoiding risk is desired.

In this chapter, we focus on a class of models from stochastic programming that

explicitly incorporates this aversion toward risk: mean-risk models. In these models,

a weighted average of the expected total costs and a measure of risk is minimized.

Thus, a balance is struck between minimizing the cost on average and avoiding

high levels of risk. In particular, we will consider mean-risk models with two time

stages, integer decision variables, and conditional value-at-risk (CVaR) as the risk

measure. The random parameters in our model are the second-stage right-hand

side and cost vector, and the technology matrix. Moreover, a key assumption is

This chapter is based on van Beesten and Romeijnders [87]
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that the random right-hand side vector is continuously distributed. We refer to

these models as two-stage mixed-integer mean-CVaR recourse models.

Integer decision variables are often required for realistic modeling of, e.g., indi-

visibilities or on/off decisions. However, including them in mean-CVaR recourse

models makes these models significantly harder to solve than their continuous

counterparts. Indeed, for continuous mean-CVaR recourse models, efficient solu-

tion methods are available from the literature. These methods exploit the convex-

ity of the objective function. See, e.g., Ahmed [3], Miller and Ruszczyński [53], and

Noyan [56] for decomposition algorithms based on the L-shaped algorithm by Van

Slyke and Wets [92] and Rockafellar [67] for a progressive hedging algorithm.

Mixed-integer mean-CVaR recourse models, however, are generally not convex

so that the aforementioned convex optimization-based methods cannot be applied.

Thus, alternative solution methods are required for these models. Schultz and

Tiedemann [79] show that the problem can be reformulated as a large-scale mixed-

integer linear program (MILP) if the probability distributions of the random vari-

ables in the model are discrete and finite. Based on this reformulation they propose

a decomposition algorithm using Lagrangean relaxation of the nonanticipativity

constraints. Other authors solve the large-scale MILP reformulation using stand-

ard MILP solvers (e.g., [85]) or develop heuristics for specific problem settings [5].

However, these solution methods can only solve problems of limited size.

We will take a fundamentally different approach to deal with integer decision

variables in mean-CVaR recourse models. Instead of aiming for an exact optimal

solution, we will construct approximation models with a convex objective function.

The rationale of doing so is that these convex approximation models can be solved ef-

ficiently using techniques from convex optimization, similar as continuous mean-

CVaR recourse models. To guarantee the performance of the resulting approxim-

ating solutions we derive error bounds on the convex approximations. Such con-

vex approximations and corresponding error bounds have been derived for risk-

neutral mixed-integer stochastic programming problems; see Section 3.2.3 for a re-

view of them. However, to our knowledge, this is the first paper that considers

convex approximations for mixed-integer stochastic programs in a risk-averse set-

ting.

The main contribution of this chapter is that we construct convex approxima-

tions and derive corresponding error bounds for two-stage mixed-integer mean-

CVaR recourse models. These error bounds converge to zero if the total variations

of the probability density functions of the random right-hand side variables in the
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model converge to zero. Intuitively, this means that any mixed-integer mean-CVaR

recourse model can be approximated arbitrarily well by a convex approximation if

the variability of the random right-hand side variables in the model is sufficiently

large. For the special cases of totally unimodular (TU) and simple integer mean-

CVaR recourse models we perform a specialized analysis to derive tighter bounds.

For the latter type of models, it turns out that the bound is particularly small if the

random right-hand side variable in the model has a decreasing hazard rate.

The remainder of this chapter is organized as follows. In Section 3.2 we formu-

late the mathematical model and review the relevant literature. Next, in Section 3.3

we consider the general setting of two-stage mixed-integer mean-CVaR recourse

models and derive convex approximations with asymptotically converging error

bounds. Section 3.4 deals with the special cases of TU and simple integer mean-

CVaR recourse models. Section 3.5 provides a discussion of the results and direc-

tions for further research. Finally, Appendix 3.A contains an analogue of the results

from Chapter 2 for the setting considered in the current chapter and Appendix 3.B

contains proofs of several lemmas, propositions, and theorems.

3.2 Problem formulation and literature review

3.2.1 Problem formulation

We consider the two-stage mixed-integer mean-CVaR recourse model

min
x∈X

{
cx +Qβ

ρ (x)
}

, (3.1)

where X = {x ∈ Rn1 | Ax = b} represents the set of feasible first-stage decisions

that have to be made before some random parameters ξ are known, and Qβ
ρ is the

mean-CVaR recourse function

Qβ
ρ (x) := (1− ρ)Q(x) + ρRβ(x), x ∈ Rn1 , (3.2)

with weight parameter ρ ∈ [0, 1]. Here, the mean recourse function Q and the CVaR

recourse function Rβ are defined by

Q(x) := Eξ [v(ξ, x)] , x ∈ Rn1 , (3.3)

Rβ(x) := CVaRβ [v(ξ, x)] , x ∈ Rn1 , (3.4)
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where CVaRβ is the β-conditional value-at-risk (β ∈ (0, 1)) defined in Definition 3.1,

and v is the second-stage value function, defined by

v(ξ, x) := min
y

{
qTy |Wy = h− Tx, y ∈ Z

n2
+ ×R

n3
+

}
. (3.5)

The second-stage decision variables y represent the recourse actions that can be

taken after the realization of ξ := (q, T, h) is known, in order to compensate for

infeasibilities in the goal constraint Tx = h. For ease of exposition, we assume

that the first-stage decision variables x are continuous. However, all results in this

chapter still hold when some or all of these variables are restricted to be integer.

As an example of an application of our model, we discuss a stylized version of

the disaster relief planning problem of Alem et al. [5] in Example 3.1 below.

Example 3.1. Consider the problem of distributing relief goods (e.g., water, food,

medicine, etc.) after a natural disaster. A priori, the location and size of the disaster

are naturally uncertain. However, where to store the relief goods needs to be de-

termined before the disaster takes place. The goal is both to minimize the financial

cost and to avoid shortages of relief goods at locations of need. We can model this

problem using a two-stage mixed-integer mean-CVaR model.

In the first stage (before the disaster) we have to decide how many relief goods

to store at each available storage location. The first-stage costs are the cost of ac-

quiring these goods. When the disaster strikes, the required amount of relief goods

in every area becomes known. In the second-stage, we need to allocate vehicles

to transport goods from the different storage locations to the affected areas. The

second-stage costs consist of the cost of using these vehicles plus a penalty on

any unsatisfied demand (shortages) of relief goods. Since high shortages should

be avoided, this problem is naturally modeled using a risk-averse approach. Fur-

thermore, note that integer variables are needed to model the number of allocated

vehicles in the second stage. 4

Our goal is to construct convex approximations Q̃β
ρ of the form Q̃β

ρ = (1 −
ρ)Q̃ + ρR̃β for the mean-CVaR recourse functionQβ

ρ . Since convex approximations

Q̃ of Q are available in the literature (see Section 3.2.3), we focus on constructing

convex approximations R̃β of Rβ. As a performance guarantee, we will derive an

upper bound on

‖Qβ
ρ − Q̃

β
ρ‖∞ := sup

x∈X
|Qβ

ρ (x)− Q̃β
ρ (x)|.
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Since

‖Qβ
ρ − Q̃

β
ρ‖∞ ≤ (1− ρ)‖Q− Q̃‖∞ + ρ‖Rβ − R̃β‖∞, (3.6)

we will focus on deriving an upper bound on ‖Rβ − R̃β‖∞. Bounds on ‖Q− Q̃‖∞

are known from the literature and extensions to a setting where q and T are also

random were developed in Chapter 2 of this thesis. However, since we consider a

slightly restricted setting in this chapter, we derive analogues of these results for

our particular setting, where q has a finite support, in Appendix 3.A,

Throughout this chapter, we make the following assumptions.

Assumption 3.1. We assume that

(a) the recourse is relatively complete and sufficiently expensive, i.e., −∞ < v(ξ, x) < ∞,

for all ξ ∈ Ξ and x ∈ Rn1 , where Ξ denotes the support of ξ.

(b) the expectation of the `1 norm of h and q are finite, i.e., EP
[
‖h‖1

]
< +∞ and

EP
[
‖q‖1

]
< +∞,

(c) the recourse matrix W is integer,

(d) the support Ξ of ξ can be written as Ξ = Ξq × ΞT × Ξh, where Ξq is finite. Moreover,

h is continuously distributed on Ξh with joint pdf f ,

(e) (q, T) and h are pairwise independent.

Assumption 3.1(a)-(b) ensure that Q(x) and Rβ(x) are finite for every x ∈ Rn1 .

Next, Assumption 3.1(c) is required for the proof of Theorem 3.1. However, this as-

sumption is not very restrictive, since any rational matrix can be transformed into

an integer one by appropriate scaling. Assumption 3.1(d)-(e) restrict the random

right-hand side vector h to be continuously distributed. This is the key assumption

on the random parameters ξ in this chapter. The remaining assumptions in As-

sumption 3.1(d)-(e), in particular the assumption that Ξq is finite, are for ease of

presentation; similar results as in this chapter can be obtained for relaxed versions

of these assumptions. Finally, we note that we assume that the probability distri-

bution of ξ is known or can be accurately estimated, based on, e.g., historical data

or expert opinions.

3.2.2 Conditional value-at-risk

In our risk-averse stochastic programming approach, we use conditional value-at-risk

(CVaR) as the measure of risk. For probability parameter β ∈ (0, 1), the β-CVaR of
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a random variable θ, written as CVaRβ[θ], has the interpretation of the conditional

expectation of θ, given that θ is at least as large as its β-quantile. Thus, intuitively,

CVaRβ[θ] represents the average of the 100(1 − β)% worst values of θ. We use

the minimization representation of CVaR by Rockafellar and Uryasev [68] as our

definition.

Definition 3.1. Let θ be a random variable and let β ∈ (0, 1) be given. Then, the

β-CVaR of θ is defined as

CVaRβ[θ] = min
ζ∈R

{
ζ + 1

1−β Eθ

[
(θ − ζ)+

]}
.

Our choice for CVaR is motivated by the fact that it satisfies several desirable

theoretical properties. First of all, CVaR is a coherent risk measure [68], and thus

satisfies the axiomatic properties of risk measures proposed by Artzner et al. [9]. In

contrast, several popular risk measures such as value-at-risk violate some of these

properties [2]. Second, Ogryczak and Ruszczyński [59] show that mean-CVaR re-

course models are consistent with second-order stochastic dominance, a tool that

establishes a preorder of random variables. This is relevant, since consistency with

second-order stochastic dominance is desirable for accurately modeling risk aver-

sion [46]. Third, Schultz and Tiedemann [79] show that mixed-integer mean-CVaR

recourse models exhibit desirable properties such as continuity and stability. Fur-

thermore, they show that under mild technical conditions an optimal solution to

these models exist.

Due to its desirable properties, CVaR is one of the most popular risk measures

in the literature on risk-averse optimization under uncertainty. For instance, it is

the most popular choice for applications in supply chain network design under

uncertainty [30]. See, e.g., [29, 63, 76, 84, 85, 86, 98] for applications of mean-CVaR

recourse models in this field. Other areas of application include disaster relief plan-

ning [5, 56, 57], (energy) production planning [6, 15, 35, 47], transportation network

protection [50], and water allocation [100]. The popularity of CVaR, and of mean-

CVaR recourse models in particular, underlines the relevance of the models studied

in this chapter.

3.2.3 Solution methods for risk-neutral mixed-integer recourse
models

Traditional solution methods for risk-neutral mixed-integer recourse models com-

bine solution methods from deterministic mixed-integer and stochastic continu-
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ous optimization. See, e.g., Laporte and Louveaux [44] for the integer L-shaped

method, Carøe and Schultz [20] for dual decomposition, Ahmed et al. [4] for

branch-and-bound, Sen and Higle [81] for disjunctive decomposition, and [8, 11,

19, 27, 36, 62, 99] for recent work on cutting plane techniques. In general, however,

these solution methods have difficulties solving large problem instances because

they aim at finding an exact optimal solution. In contrast, we merely aim at finding

good or near-optimal solutions to our mixed-integer mean-CVaR recourse model

by means of convex approximations. For this reason, the remainder of this subsec-

tion is devoted to the literature on convex approximations for the corresponding

risk-neutral case.

Convexity properties of risk-neutral mixed-integer stochastic programming

problems were first analyzed by Klein Haneveld et al. [38] for the special case of

simple integer recourse models. In fact, they exactly identified the probability dis-

tributions for which the mean recourse function Q in such models is convex. For

all other cases, they derive so-called α-approximations Q̃α of Q and corresponding

error bounds. These convex approximations are extended by van der Vlerk to TU

integer recourse models [90] and mixed-integer recourse models with a single re-

course constraint [91]. However, only for the latter type of model does he derive an

error bound for these convex approximations.

Recently, substantial progress has been made in deriving error bounds for con-

vex approximations of mixed-integer recourse models with multiple non-separable

recourse constraints. For example, for TU integer recourse models, Romeijnders et

al. [73] derive an error bound for the α-approximations from [90]. This error bound

depends on the total variations of the density functions of the random right-hand

side variables in the model. In particular, if these total variations are small, then

the error bound is small and hence, the convex approximation is good. This is con-

firmed by numerical experiments in [70]. A tighter error bound is derived for an

alternative convex approximation, called the shifted LP-relaxation approximation;

see [74]. In fact, it is shown that the error bound is the best possible in a worst-

case sense. The main building blocks in the derivation of this error bound are total

variation bounds for the expectation of periodic functions.

The latest developments in this area are the extension of these convex approxim-

ations to the general case of two-stage mixed-integer recourse models. In particular,

Romeijnders et al. [71] extend the shifted LP-relaxation approximation to this case,

while van der Laan and Romeijnders [88] generalize the α-approximations. For

both approximations, a corresponding asymptotic error bound is derived, which
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converges to zero as the total variations of the density functions in the model go to

zero. These bounds are derived by exploiting asymptotic periodicity of the second-

stage value functions in combination with the total variation bounds from [74].

In this chapter we generalize several results from this convex approximation

literature to the risk-averse case. In particular, in Section 3.3 we use the asymptotic

periodicity of mixed-integer value functions to derive convex approximations for

general mixed-integer mean-CVaR recourse models. Moreover, we derive error

bounds for these convex approximations using the total variation error bounds on

the expectation of periodic functions from [74]. We also use these total variation

bounds in Section 3.4 in a specialized analysis of TU integer and simple integer

mean-CVaR recourse models.

3.2.4 Total variation

Similar to the error bounds for risk-neutral models from the literature, the error

bounds in this chapter will depend on the total variation of the one-dimensional

conditional density functions of the random right-hand side variables in the model.

Therefore, we conclude this section by defining the notion of total variation and

some related concepts.

Definition 3.2. Let f : R → R be a real-valued function and let I ⊂ R be an

interval. Let Π(I) denote the set of all finite ordered sets P = {z1, . . . , zN+1} with

z1 < · · · < zN+1 in I. Then, the total variation of f on I, denoted by |∆| f (I), is

defined by

|∆| f (I) := sup
P∈Π(I)

Vf (P),

where Vf (P) := ∑N
i=1 | f (zi+1)− f (zi)|. We write |∆| f := |∆| f (R). We say that f is

of bounded variation if |∆| f < +∞.

Since the error bounds that we derive in this chapter depend on the total vari-

ations of the one-dimensional conditional density functions of the random right-

hand side variables in the model, we assume that these conditional density func-

tions are of bounded variation.

Definition 3.3. For every i = 1, . . . , m and t−i ∈ Rm−1, define the ith conditional
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density function fi(·|t−i) of the m-dimensional joint pdf f as

fi(ti|t−i) =


f (t)

f−i(t−i)
, if f−i(t−i) > 0,

0, if f−i(t−i) = 0,

where f−i represents the (marginal) joint density function of h−i, the random vector

obtained by removing the ith element of h.

Definition 3.4. We denote by Hm the set of all m-dimensional joint pdfs f whose

conditional density functions fi(·|t−i) are of bounded variation for all t−i ∈ Rm−1,

i = 1, . . . , m.

3.3 General two-stage mixed-integer mean-CVaR

recourse models

In this section we will derive convex approximations with corresponding error

bounds for the general mixed-integer mean-CVaR recourse model. The approach is

based on the analysis by Romeijnders et al. [71] for the risk-neutral case. Although

our CVaR recourse model can be reformulated as a risk-neutral recourse model, the

resulting model differs in structure from the model considered in [71]. We first lay

out this structural difference.

To reformulate our model as a risk-neutral model, note that by Definition 3.1,

Rβ(x) = min
ζ∈R

{
ζ + 1

1−β Eξ

[
(v(ξ, x)− ζ)+

]}
, x ∈ Rn1 . (3.7)

Based on this expression we introduce a new recourse function

R∗(x, ζ) = Eξ

[
vζ(ξ, x)

]
, x ∈ Rn1 , ζ ∈ R, (3.8)

where vζ is the corresponding second-stage value function, defined as

vζ(ξ, x) := (v(ξ, x)− ζ)+, ξ ∈ Ξ, x ∈ Rn1 , ζ ∈ R. (3.9)

Using these two functions the mixed-integer mean-CVaR recourse model (3.1) can

be reformulated as

min
x∈X,ζ∈R

{
cx + (1− ρ)Q(x) + ρζ + ρ 1

1−β R∗(x, ζ)
}

. (3.10)
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Here, we interpret ζ as a first-stage variable, as suggested by [68]. Then we can

interpret (3.10) as a risk-neutral mixed-integer recourse problem, since for any ξ ∈
Ξ and x ∈ Rn1 the second-stage value function vζ can be written as

vζ(ξ, x) = min
y,η,z
{η | Tx + Wy = h, η − qTy− z = −ζ,

y ∈ Z
n2
+ ×R

n3
+ , η, z ∈ R+}.

Observe that the right-hand side of the constraint η − qTy − z = −ζ does not

depend on h, but only on the first-stage variable ζ. This means that, in contrast with

Romeijnders et al. [71], the problem in (3.10) corresponds to a risk-neutral mixed-

integer recourse model in which not all right-hand side variables are random. Since

the results in [71] heavily rely on the pdfs of these (continuously distributed) ran-

dom right-hand side variables, they are not applicable to the risk-neutral reformu-

lation above and hence, an additional analysis is necessary. Moreover, this subtle

difference in the right-hand side has surprising consequences for the type of convex

approximation that we will derive.

3.3.1 Asymptotic semi-periodicity of vζ

The first step in our analysis is proving that the value function vζ is asymptot-

ically semi-periodic in h; see Proposition 3.1. By asymptotic semi-periodicity we

mean that on particular unbounded subsets of its domain, vζ is the sum of a lin-

ear and periodic function. Gomory [28] identified this for the pure integer case and

Romeijnders et al. [71] generalized it to the mixed-integer case. In this section we

use the notation of the latter reference. We also repeat some of the definitions they

introduced for the sake of completeness.

To understand why vζ exhibits semi-periodicity, consider the LP-relaxation vLP

of the mixed-integer value function v and let q ∈ Ξq be fixed. By the basis decom-

position theorem by Walkup and Wets [95], we can identify basis matrices Bk and

corresponding polyhedral cones Λk ⊆ Rm, k ∈ Kq, such that for all h− Tx ∈ Λk,

the function vLP(ξ, x) attains its value through the basis matrix Bk, i.e., vLP(ξ, x) =

qT
Bk (Bk)−1(h− Tx). A similar result holds for the mixed-integer value function v,

but only on shifted versions Λk(dk) of the cones Λk, k ∈ Kq.

Remark 3.1. Throughout this chapter we omit the dependence of, e.g., Λk and dk

on q. Instead, we assume without loss of generality that the index sets Kq, q ∈ Ξq,

are disjoint, i.e., Kq1 ∩ Kq2 = ∅ for all q1, q2 ∈ Ξq with q1 6= q2. Note, however, that
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it is still possible that, e.g., Bk1 = Bk2 for some k1 ∈ Kq1 , k2 ∈ Kq2 , with q1 6= q2.

Definition 3.5. Let Λ ⊂ Rm be a closed convex cone and let d ∈ R+ be given.

Then, we define Λ(d) as the set of points in Λ with at least Euclidean distance d to

the boundary of Λ.

Romeijnders et al. [71] show that there exist constants dk > 0, k ∈ Kq, such

that for all h − Tx ∈ Λk(dk), the mixed-integer value function v(ξ, x) attains its

value through the basis matrix Bk. That is, v(ξ, x) = qT
Bk (Bk)−1(h− Tx) + ψk(h−

Tx), where the function ψk represents the “penalty” incurred from having integer

decision variables. These functions ψk are Bk-periodic on Λk(dk). It turns out that

vζ exhibits the same type of periodicity.

Definition 3.6. Let the function g : Rm → Rn be given and let B be an m×m matrix.

Then, g is called B-periodic if g(x) = g(x + Bl) for every x ∈ Rm and l ∈ Zm.

Proposition 3.1. Consider the second-stage value function vζ from (3.9) for a fixed q ∈ Ξq.

Then, there exist dual feasible basis matrices Bk of vLP, closed convex polyhedral cones

Λk := {t ∈ Rm | (Bk)−1t ≥ 0}, positive constants dk and rk, and Bk-periodic functions

ψk, k ∈ Kq, such that

(i) ∪K
k=1Λk = Rm,

(ii) (int Λk) ∩ (int Λl) = ∅ for every k, l ∈ Kq with k 6= l,

(iii) for every k ∈ Kq,

vζ(ξ, x) =
(
qT

Bk (Bk)−1(h− Tx) + ψk(h− Tx)− ζ
)+, h− Tx ∈ Λk(dk),

where ψk ≡ ψl if qT
Bk (Bk)−1 = qT

Bl (Bl)−1,

(iv) for every k ∈ Kq

0 ≤ ψk(s) ≤ rk, s ∈ Rm.

Proof. Since W is an integer matrix by Assumption 3.1(c), the result follows directly

from Theorem 2.9 in [71] and the definition of vζ .

Proposition 3.1 shows that on shifted convex cones Λk(dk), the approximating

value function vζ is the positive part of the sum of a linear and a periodic function

in h. Hence, vζ is indeed asymptotically semi-periodic in h.
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3.3.2 Convex approximations of vζ and Rβ

In this subsection we construct two convex approximations v̂ζ and ṽζ
α of the second-

stage value function vζ , yielding two corresponding convex approximations R̂β and

R̃β
α of the CVaR recourse function Rβ. By Proposition Proposition 3.1 we know that

for all q ∈ Ξq, k ∈ Kq, and ζ ∈ R, we have

vζ(ξ, x) =
(
qT

Bk (Bk)−1(h− Tx) + ψk(h− Tx)− ζ
)+, h− Tx ∈ Λk(dk).

Observe that the first-stage decision vector x appears as an argument of the Bk-

periodic function ψk. This means that for h − Tx ∈ Λk(dk), the function vζ(ξ, x)

is periodic in x. This periodicity is the cause of the non-convexity of vζ(ξ, x) in x.

In order to construct convex approximations of vζ , we propose two “convexifying”

adjustments to this periodic term ψk(h− Tx).

A first convex approximation of vζ is obtained by replacing ψk by its mean value

Γk. This results in a shifted version of the LP-relaxation with shifting constant Γk.

Hence, we refer to this kind of approximation as the shifted LP-relaxation approxim-

ation. Since every Bk-periodic function is also pk Im-periodic with pk := |det
(

Bk
)
|

(see [71]), we can characterize the mean value of ψk as

Γk := p−m
k

∫ pk

0
· · ·

∫ pk

0
ψk(s)ds1 · · · dsm. (3.11)

Surprisingly, however, in our mean-CVaR recourse model we need to make an ad-

justment in order to be able to derive an asymptotically converging error bound. In

particular, for k ∈ Kq with qBk = 0, we should use the mean value of (ψk − ζ)+ + ζ

instead of Γk. In Example 3.2 we illustrate in more detail why this adjustment is

needed.

To construct a second convex approximation of vζ , we replace the term Tx in

the argument of ψk by a constant vector α ∈ Rm, yielding ψk(h − α). We call the

resulting approximation a generalized α-approximation; cf. [88]. This approximation

is still semi-periodic in h, and thus not convex in h. However, it is convex in x,

which is what we desire for optimization purposes.

Both approaches above yield an approximation of vζ(ξ, x) for h− Tx ∈ Λk(dk)

for each k ∈ Kq. We combine these approximations by taking the pointwise max-

imum over all k ∈ Kq.

Definition 3.7. Consider the mixed-integer value function vζ from (3.9) and let Bk,

qBk , and ψk, k ∈ Kq, q ∈ Ξq, be the basis matrices, corresponding cost vectors, and
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Bk-periodic functions from Proposition 3.1. Then, we define the shifted LP-relaxation

approximation v̂ζ of vζ by

v̂ζ(ξ, x) =
(

max
k∈Kq

{
qT

Bk (Bk)−1(h− Tx) + Γk
ζ

}
− ζ

)+

, ξ ∈ Ξ, x ∈ Rn1 , ζ ∈ R.

where for every k ∈ Kq,

Γk
ζ :=


p−m

k

∫ pk
0 · · ·

∫ pk
0 ψk(s)ds1 · · · dsm, if qBk 6= 0,

p−m
k

∫ pk
0 · · ·

∫ pk
0 (ψk(s)− ζ)+ds1 · · · dsm + ζ, if qBk = 0,

with pk := |det
(

Bk
)
|. Moreover, for every ξ ∈ Ξ, x ∈ Rn1 , and ζ ∈ R, we define

the generalized α-approximation ṽζ
α of vζ with parameter α ∈ Rm by

ṽζ
α(ξ, x) =

(
max
k∈Kq

{
qT

Bk (Bk)−1(h− Tx) + ψk(h− α)
}
− ζ

)+

.

As mentioned before, we make an adjustment to the shifted LP-relaxation ap-

proximation in the case qBk = 0. Instead of using the mean value Γk of ψk, we use

the mean value of (ψk − ζ)+ + ζ. In the example below we show that this adjust-

ment is necessary in order to derive error bounds that are asymptotically converging,

in the sense that they converge to zero as the total total variations of the conditional

density functions of the random right-hand side variables hi, i = 1, . . . , m, go to

zero.

Example 3.2. Consider a mixed-integer value function v given by

v(ξ, x) = min{u | y+ − y− + u = h− x, y+, y− ∈ Z+, u ∈ R+},

for all ξ ∈ Ξ, x ∈ R, where Ξq = {1}, ΞT = {[1]}, and Ξh = R. The LP-relaxation

vLP of v equals vLP ≡ 0, since for every ĥ := h− x ∈ R with ĥ ≥ 0 we can select

y+ = ĥ, y− = u = 0 and for ĥ < 0 we can select y− = −ĥ, y+ = u = 0. Indeed,

if ĥ > 0, then y+ is the basic variable corresponding to basis matrix B1 = [1] with

costs qB1 = 0 and if ĥ < 0, then y− is the basic variable corresponding to B2 = [−1]

with qB2 = 0. Since the mixed-integer value function v equals v(ξ, x) = ψ(ĥ) :=

ĥ− bĥc for all ĥ ∈ R, we have ψ1 = ψ2 = ψ and thus Γ1 = Γ2 =
∫ 1

0 ψ(s)ds = 1
2 .

Now suppose that we simply use Γk (rather than Γk
ζ) to construct a convex ap-
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proximation

v̄ζ(ξ, x) =
(

max
k=1,2
{qT

Bk (Bk)−1(h− x) + Γk − ζ}
)+

= ( 1
2 − ζ)+, ξ ∈ Ξ, x ∈ R,

of vζ and a corresponding convex approximation R̄β(x) := min
{

ζ + 1
1−β R̄∗(x, ζ)

}
of Rβ, where R̄∗(x, ζ) := Eξ

[
v̄ζ(ξ, x)

]
. We will show that the resulting approxima-

tion error ‖Rβ − R̄β‖∞ is not asymptotically converging in general.

First note that for every ξ ∈ Ξ and ζ ∈ R, we have v̄ζ(ξ, x) = ( 1
2 − ζ)+ =

(v̄(ξ, x) − ζ)+, where v̄(ξ, x) = 1
2 . Hence, it follows from the definition of CVaR

that R̄β(x) = CVaRβ[v̄(ξ, x)] = 1
2 . Now, suppose that h is uniformly distributed

on the interval [0, N], where N is a positive integer, and consider the value x = 0

for the first-stage decision variable. Then, since h is continuously distributed we

know from [68] that Rβ(x) = CVaRβ[v(ξ, x)] = Eh[v(ξ, x) | v(ξ, x) ≥ qβ(x)], where

qβ(x) is the β-quantile of v(ξ, x) = ψ(ĥ) = h− bhc. It follows by straightforward

computation that Rβ(x) = 1− β/2. Hence, |Rβ(x)− R̄β(x)| = | 12 − β/2|, which is

not equal to zero if β 6= 1
2 . Note that this expression does not depend on N. Hence,

as N goes to infinity (i.e., the total variation of the density function of h goes to

zero), the approximation error remains constant, i.e., it does not converge to zero

asymptotically. 4

Using the approximating value functions from Definition 3.7, we define corres-

ponding convex approximations of the CVaR recoure function Rβ. These can be

seen as extensions of the convex approximations in [71] and [88] to our mean-CVaR

setting.

Definition 3.8. Consider the CVaR recourse function Rβ from (3.4). Then, we define

the shifted LP-relaxation approximation R̂β of Rβ by

R̂β(x) := min
ζ∈R

{
ζ + 1

1−β R̂∗(x, ζ)
}

, x ∈ Rn1 ,

where R̂∗(x, ζ) := Eξ

[
v̂ζ(ξ, x)

]
, with v̂ζ defined in Definition 3.7. Moreover, we

define the generalized α-approximation R̃β
α of Rβ with parameter α ∈ Rm by

R̃β
α(x) := min

ζ∈R

{
ζ + 1

1−β R̃∗α(x, ζ)
}

, x ∈ Rn1 ,

where R̃∗α(x, ζ) := Eξ

[
ṽζ

α(ξ, x)
]
, with ṽζ

α defined in Definition 3.7.

Since the approximations from Definition 3.8 are convex, the resulting convex

approximation models can be solved using techniques from convex optimization.
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As a result, they can be solved much more efficiently than the original (non-convex)

model in (3.1). This is indeed true for the generalized α-approximations, whereas

for the shifted LP-relaxation approximation some computational challenges remain.

The first computational challenge is that the shifted LP-relaxation approxima-

tion R̂β requires computing the means Γk
ζ for all k ∈ Kq. For special cases, such

as pure integer recourse models with a totally unimodular recourse matrix W (cf.

Section 3.4), it is possible to derive analytic expressions for these means. However,

in general they need to be approximated in practical computations. In contrast,

the generalized α-approximations only need computation of the function values

ψk(h− α), which are obtained by solving a single mixed-integer linear program, or

in fact a Gomory relaxation of this mixed-integer linear program.

The second computational challenge is that the convex approximations are

defined as the maximum over all dual feasible basis matrices Bk, k ∈ Kq, of which

there are exponentially many in general. This challenge can be overcome for both

approximations by taking the optimal basis matrix of the LP-relaxation instead of

the maximum, see also [88]. This is again an approximation, but van der Laan and

Romeijnders [88] show both theoretically and using numerical experiments that it

yields good results.

Finally, we remark that for computational purposes the continuously distrib-

uted random vectors in the model need to be discretized. For example, using, e.g.,

Jensen [34] and Edmundson-Madansky [24, 52] lower and upper bounds or using

a sample average approximation (SAA), see [40]. However, if the discretization is

fine enough, this does not affect the quality of the convex approximations.

3.3.3 Properties of v̂ζ and ṽζ
α

In this subsection we present several properties of the approximating value func-

tions v̂ζ and ṽζ
α that will be useful when deriving our error bounds in Section 3.3.4.

In particular, we focus on the differences vζ − v̂ζ and vζ − ṽζ
α, which can be inter-

preted as the underlying difference functions in the approximation errors |Rβ− R̂β|
and |Rβ − R̃β

α |. Since several proofs of the results in this subsection are similar to

the proofs of corresponding results in [71] for the risk-neutral case, we postpone

them to the appendix of this chapter. Moreover, since the derivations for v̂ζ and ṽζ
α

are analogous, we will avoid repetition and focus on v̂ζ in our discussions.

First we show that the difference between vζ and its shifted LP-relaxation ap-

proximation v̂ζ is uniformly bounded.
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Lemma 3.1. Consider the value function vζ from (3.9) and its shifted LP-relaxation ap-

proximation v̂ζ and generalized α-approximation ṽζ
α from Definition 3.7. Then, there exists

a constant γ > 0 such that for every ζ ∈ R,

‖vζ − v̂ζ‖∞ ≤ γ and ‖vζ − ṽζ
α‖∞ ≤ γ.

Proof. See Appendix 3.B.

Next, we work towards a characterization of the difference vζ − v̂ζ in terms of

periodic functions. Recall from Proposition 3.1 that for any given q ∈ Ξq, k ∈ Kq,

and h − Tx ∈ Λk(dk), the value of vζ(ξ, x) is generated by the dual feasible basis

matrix Bk, i.e., vζ(ξ, x) =
(
qT

Bk (Bk)−1(h− Tx) + ψk(h− Tx)− ζ
)+. The following

lemma shows that on a subset σk +Λk of Λk(dk), the convex approximation v̂ζ(ξ, x)

is generated by the same basis matrix Bk.

Lemma 3.2. Consider the value function vζ from (3.9) and its shifted LP-relaxation ap-

proximation v̂ζ from Definition 3.8. Moreover, let Bk, Λk, and dk be the basis matrices,

cones, and scalars from Proposition 3.1. Then, for every q ∈ Ξq and k ∈ Kq, there exists a

vector σk ∈ Λk(dk) such that

v̂ζ(ξ, x) =
(
qT

Bk (Bk)−1(h− Tx) + Γk
ζ − ζ

)+, h− Tx ∈ σk + Λk,

and

ṽζ
α(ξ, x) =

(
qT

Bk (Bk)−1(h− Tx) + ψk(h− α)− ζ
)+, h− Tx ∈ σk + Λk,

Proof. See Appendix 3.B.

Since σk + Λk ⊆ Λk(dk), it now follows that for all h− Tx ∈ σk + Λk, both vζ

and v̂ζ are generated by the same basis matrix Bk. Using this fact, we can derive

subsets of σk + Λk, k ∈ Kq, on which the difference vζ − v̂ζ is Bk-periodic with a

mean value of zero. In particular, if qBk 6= 0, then (using 0 ≤ ψk ≤ rk),

vζ(ξ, x)− v̂ζ(ξ, x) =

ψk(h− Tx)− Γk, if qT
Bk (Bk)−1(h− Tx) ≥ ζ,

0, if qT
Bk (Bk)−1(h− Tx) ≤ ζ − rk,

whereas if qBk = 0 we have (using the definition of Γk
ζ)

vζ(ξ, x)− v̂ζ(ξ, x) =
(
ψk(h− Tx)− ζ

)+ − µk
ζ ,
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where µk
ζ := p−m

k

∫ pk
0 · · ·

∫ pk
0 (ψk(s) − ζ)+ds1 · · · dsm. Indeed the right-hand sides

above are Bk-periodic functions of h. Moreover, it can be shown that the comple-

ment of these subsets on which vζ − v̂ζ is Bk-periodic, k ∈ Kq, is “relatively small”,

in the sense that it can be covered by finitely many hyperslices. We summarize these

results below.

Definition 3.9. A hyperslice in Rm is a set H of the form

H := {s ∈ Rm | b ≤ aTs ≤ b + δ},

where a ∈ Rm \ {0}, b ∈ R, and δ ∈ R with δ > 0.

Proposition 3.2. Consider the value function vζ from (3.9) and its convex approximations

v̂ζ and ṽζ
α from Definition 3.7. Then, for every q ∈ Ξq and ζ ∈ R, there exists a finite

number of closed convex polyhedral sets Aj ⊆ Rm, j ∈ Jq
ζ , whose interiors are mutually

disjoint, such that

(i) for all h− Tx ∈ Aj, j ∈ Jq
ζ , we can write

vζ(ξ, x)− v̂ζ(ξ, x) = φ
ζ
j (h− Tx), and vζ(ξ, x)− ṽζ

α(ξ, x) = φ̄
ζ
j (h− Tx),

where φ
ζ
j and φ̄

ζ
j are bounded Bk-periodic functions for some k ∈ Kq with mean value

equal to zero.

(ii) the set N q
ζ := Rm \⋃j∈Jq

ζ
Aj can be covered by finitely many hyperslices.

Proof. See Appendix 3.B.

3.3.4 Total variation error bounds

We now derive upper bounds on the approximation errors |Rβ(x) − R̂β(x)| and

|Rβ(x)− R̃β
α(x)| using the results from Section 3.3.3. We outline our approach for

R̂β; the analysis for R̃β
α is analogous.

We first derive an upper bound on |R∗(x, ζ)− R̂∗(x, ζ)|. For every x ∈ Rn1 and

ζ ∈ R, we have by definition of R∗ and R̂∗ that

|R∗(x, ζ)− R̂∗(x, ζ)| =
∣∣Eξ

[
vζ(ξ, x)

]
−Eξ

[
v̂ζ(ξ, x)

]∣∣
≤ Eq,T

[∣∣Eh
[
vζ(ξ, x)− v̂ζ(ξ, x)

]∣∣]
= Eq,T

[∣∣ ∫
Rm

(
vζ(q, T, s, x)− v̂ζ(q, T, s, x)

)
f (s)ds

∣∣],
(3.12)
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where we use that the right-hand side vector h is independent from (q, T) by As-

sumption 3.1(e). Consider the integral over Rm in (3.12) for a fixed q ∈ Ξq and

T ∈ ΞT . The main idea is to use Proposition 3.2 to split up this integral into integrals

over two types of subsets of Rm: subsetsAj, j ∈ Jq
ζ , on which the expression vζ − v̂ζ

in the integrand is a Bk-periodic function for some k ∈ Kq, and the complementN q
ζ

of these subsets. Then, the integrals over Aj, j ∈ Jq
ζ , can be bounded using a result

from [71] that exploits periodicity in the integrand. Furthermore, the integral over

the complement setN q
ζ can be bounded using Lemma 3.1 and another result in [71]

that provides an upper bound on the probability P{h− Tx ∈ N q
ζ | q, T}. Together,

this yields a uniform upper bound on |R∗(x, ζ)− R̂∗(x, ζ)|. Finally, is not hard to

prove that this also constitutes an upper bound on ‖Rβ − R̂β‖∞.

Theorem 3.1. Consider the CVaR recourse function Rβ from (3.4). Moreover, consider its

shifted LP-relaxation approximation R̂β and generalized α-approximation R̃β
α with para-

meter α ∈ Rm from Definition 3.8. Then, there exist finite, positive constants C1 and C2

such that for all f ∈ Hm we have

‖Rβ − R̂β‖∞ ≤
1

1− β
C1

m

∑
i=1

Eh−i

[
|∆| fi(·|h−i)

]
, (3.13)

and

‖Rβ − R̃β
α‖∞ ≤

1
1− β

C2

m

∑
i=1

Eh−i

[
|∆| fi(·|h−i)

]
. (3.14)

Proof. We will prove (3.13); the proof of (3.14) is completely analogous. To avoid

repetition, we only provide the proof of (3.13). First, we show that ‖Rβ − R̂β‖∞ ≤
1

1−β‖R
∗ − R̂∗‖∞. Fix x ∈ Rn1 and let ζ∗ be the minimizer in the minimization

representation of Rβ(x) in (3.7). Since ζ∗ is not necessarily optimal for the min-

imization problem defining R̂β(x) in Definition 3.8, we have R̂β(x) − Rβ(x) ≤
1

1−β

(
R̂∗β(x, ζ∗)− R∗β(x, ζ∗)

)
≤ 1

1−β‖R̂
∗
β − R∗β‖∞. Using an analogous argument for

the reverse difference, we obtain ‖Rβ − R̂β‖∞ ≤ 1
1−β‖R̂

∗
β − R∗β‖∞.

Next, we derive a constant C1 such that ‖R∗− R̂∗‖∞ ≤ C1 ∑m
i=1 Eh−i [|∆| fi(·|h−i)].

Let x ∈ Rn1 and ζ ∈ R be given and take (3.12) as a starting point. Splitting up the

integral in the right-hand side of (3.12) according to Proposition 3.2 yields
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∣∣∣ ∫
Rm

(
vζ(ξs, x)− v̂ζ(ξs, x)

)
f (s)ds

∣∣∣ ≤ ∑
j∈Jq

ζ

∣∣∣ ∫
Tx+Aj

φ
ζ
j (s− Tx) f (s)ds

∣∣∣
+
∫

Tx+N q
ζ

∣∣vζ(ξs, x)− v̂ζ(ξs, x)
∣∣ f (s)ds, (3.15)

where we write ξs := (q, T, s), s ∈ Rm. Consider the first term in the right-hand side

of (3.15). Since Tx +Aj is a convex set and φ
j
ζ is a bounded zero-mean Bkj -periodic

function for some k j ∈ Kq, we can apply Theorem 4.13 from [71] to obtain

∣∣∣ ∫
Tx+Aj

φ
j
ζ(s) f (s)ds

∣∣∣ ≤ 1
4

rkj |det
(

Bkj
)
|

m

∑
i=1

Eh−i

[
|∆| fi(·|h−i)

]
. (3.16)

Next, consider the second term in the right-hand side of (3.15). Applying Lemma 3.1

to this integral, we obtain∫
Tx+N q

ζ

∣∣vζ(ξs, x)− v̂ζ(ξs, x)
∣∣ f (s)ds ≤ γ

∫
Tx+N q

ζ

f (s)ds

= γP{h− Tx ∈ N q
ζ | q, T}. (3.17)

Consider the probability P{h− Tx ∈ N q
ζ | q, T} in the right-hand side above. By

Proposition 3.2(ii), the set N q
ζ can be covered by finitely many hyperslices. By

Theorem 4.6 from [71], this implies that there exists a constant Dq > 0 such that

P{h − Tx ∈ N q
ζ | q, T} ≤ Dq ∑m

i=1 Eh−i

[
|∆| fi(·|h−i)

]
. Substituting this into (3.17)

yields

∫
N q

ζ

∣∣vζ(ξs, x)− v̂ζ(ξs, x)
∣∣ f (s)ds ≤ γDq

m

∑
i=1

Eh−i

[
|∆| fi(·|h−i)

]
, (3.18)

for some constant Dq > 0. Now, defining Cq := γDq + ∑j∈Jq
ζ

1
4 rkj |det

(
Bkj
)
|, and

substituting (3.16) and (3.18) into (3.15), we obtain

∣∣∣ ∫
Rm

(
vζ(ξs, x)− v̂ζ(ξs, x)

)
f (s)ds

∣∣∣ ≤ Cq
m

∑
i=1

Eh−i

[
|∆| fi(·|h−i)

]
. (3.19)

Finally, defining C1 := Eq
[
Cq] (which is finite since q has a finite support) and

substituting (3.19) into (3.12), we obtain

|R∗(x, ζ)− R̂∗(x, ζ)| ≤ Eq,T
[
Cq

m

∑
i=1

Eh−i

[
|∆| fi(·|h−i)

]]
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= C1

m

∑
i=1

Eh−i

[
|∆| fi(·|h−i)

]
.

Now, (3.13) follows from the inequality ‖Rβ − R̂β‖∞ ≤ 1
1−β‖R̂

∗
β − R∗β‖∞ and the

observation that the right-hand side above does not depend on the value of x or

ζ.

The error bounds from Theorem 3.1 are asymptotically converging, i.e., they

converge to zero as the total variations of the density functions of the random right-

hand side variables in the model converge to zero. For instance, for independently

distributed normal random variables this is the case if all standard deviations σi go

to ∞. In fact, Theorem 3.1 implies that any mixed-integer CVaR recourse function

Rβ can be approximated reasonably well by a convex approximation R̂β or R̃β
α if the

aforementioned total variations are small.

Interestingly, the error bounds from Theorem 3.1 differ from their risk-neutral

counterparts in Proposition 3.3 only by an additional factor 1
1−β . Hence, combining

these error bounds with corresponding risk-neutral error bounds as suggested in

(3.6) results in an expression for the joint error bound with a similar asymptotic

behavior.

3.4 Two-stage TU integer mean-CVaR recourse models

In this section we derive tighter error bounds for the special case of two-stage TU

integer mean-CVaR recourse models. That is, we consider the model from Sec-

tion 3.2.1 and we make the additional assumption that the second-stage value func-

tion can be written as

v(ξ, x) := min
ȳ
{q̄T ȳ | W̄ȳ ≥ h− Tx, ȳ ∈ Z

n2
+ }, (3.20)

where W̄ is a totally unimodular matrix. This is indeed a special case of the value

function (3.5) from Section 3.2.1, with n3 = m, q = (q̄, 0), y = (ȳ, z), and W = [W̄ −
Im], where Im is the m×m identity matrix. We exploit the special structure of this

model to derive sharper error bounds for the shifted LP-relaxation and generalized

α-approximation than those in Theorem 3.1.
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3.4.1 Convex approximations

The TU integer structure of the value function v from (3.20) allows us to derive

simplified representations of the convex approximations R̂β and R̃β
α from Defini-

tion 3.7. These will be used in the proofs of the tighter error bounds in Theorem 3.2

and 3.3. We first derive a simplified representation of v itself.

Since W̄ is a TU (and thus, integer) matrix, it follows that

v(ξ, x) = min
ȳ

{
q̄T ȳ | W̄ȳ ≥ dh− Txe, ȳ ∈ Z

n2
+

}
= min

ȳ

{
q̄T ȳ | W̄ȳ ≥ dh− Txe, ȳ ∈ R

n2
+

}
,

where the round-up operator d·e is defined element-wise for vectors. By Assump-

tion 3.1(a) and strong LP-duality, we obtain the dual maximization problem

v(ξ, x) = max
λ

{
λTdh− Txe | λTW̄ ≤ q̄, λ ∈ Rm

+

}
.

Here, the dual feasible region {λ ∈ Rm
+ | λTW̄ ≤ q̄} is a non-empty, bounded

polyhedron for every q ∈ Ξq, and hence it has a positive, finite number of extreme

points. These extreme points can be characterized as λk := qT
Bk (Bk)−1, k ∈ Kq. Note

that at least one of these points is optimal in the dual problem. Hence, we can write

v(ξ, x) = max
k∈Kq

{
(λk)Tdh− Txe

}
. (3.21)

Based on (3.21) we can derive simplified representations of the convex approxima-

tions R̂β and R̃β
α from Definition 3.7.

Lemma 3.3. Let Rβ(x) = CVaRβ[v(ξ, x)] be the CVaR recourse function from (3.4),

where v is the TU integer value function from (3.20). Then, the convex approximations R̂β

and R̃β
α from Definition 3.8 can be represented as

R̂β(x) = CVaRβ

[
v̂(ξ, x)

]
, R̃β

α(x) = CVaRβ

[
ṽα(ξ, x)

]
,

for all x ∈ Rn1 , where v̂ and ṽα are defined by

v̂(ξ, x) = max
k∈Kq

{
(λk)T(h− Tx + 1

2 ιm)
}

, and

ṽα(ξ, x) = max
k∈Kq

{
(λk)T(dh− αe+ α− Tx)

}
,

for all ξ ∈ Ξ, x ∈ Rn1 , where ιm = (1, . . . , 1) ∈ Rm.
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Proof. Let ξ ∈ Ξ, ζ ∈ R, and x ∈ Rn1 be given and consider the function v̂ζ(ξ, x)

from Definition 3.7. By Example 3.4 in [71] it follows from straightforward analysis

that v̂ζ(ξ, x) = (v̂(ξ, x)− ζ)+. Then, from the definition of R̂β and the definition of

CVaR, it follows that R̂β(x) = CVaR[v̂(ξ, x)]. The proof for R̃β
α is analogous.

Note that the convex approximations R̂β and R̃β
α in Lemma 3.3 are structurally

similar to the original CVaR recourse function R̂β, while the approximating value

functions v̂ and ṽα are structurally similar to the mixed-integer value function v in

(3.21).

3.4.2 Error bounds

In this subsection we derive tight error bounds for the shifted LP-relaxation approx-

imation R̂β and the generalized α-approximation R̃β
α by exploiting the TU integer

structure of the value function v. Since the derivations for R̂β and R̃β
α are analogous,

we only discuss the derivation for the former.

Our approach to derive sharp error bounds consists of three main steps. First, in

Lemma 3.4 we find an upper bound on the approximation error R̂β(x)− Rβ(x) in

terms of the approximation error for a risk-neutral recourse function, under a con-

ditional probability distribution. Second, we apply existing results from the risk-

neutral literature to this approximation error to obtain an error bound, in terms

of this conditional probability distribution. Finally, we rewrite this error bound in

terms of the original probability distribution; the resulting error bounds are presen-

ted in Theorem 3.2 and 3.3.

By definition of CVaR we have

Rβ(x) = min
ζ∈R

{
ζ + 1

1−β Eξ [(v(ξ, x)− ζ)+]
}

,

where an optimal argument ζ is given by the β-value-at-risk (VaR) of v(ξ, x), defined

by ζβ(x) := min
{

ζ ∈ R | P{v(ξ, x) ≤ ζ} ≥ β
}

; see [68]. By Lemma 3.3, the ap-

proximation R̂β(x) has a similar representation, with the β-VaR of v̂(ξ, x) as an

optimal argument: ζ̂β(x) := min
{

ζ ∈ R | P{v̂(ξ, x) ≤ ζ} ≥ β
}

. Note that

ζβ(x) 6= ζ̂β(x) in general. However, since ζβ(x) is optimal for Rβ(x) and feasible

for R̂β(x), we obtain the inequality

R̂β(x)− Rβ(x) ≤ 1
1− β

Eq,T

[
Eh
[
(v̂(ξ, x)− ζβ(x))+ − (v(ξ, x)− ζβ(x))+

]]
.

(3.22)
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Using this inequality as a starting point, we will derive an upper bound on the

approximation error R̂β(x)− Rβ(x). An analogous derivation will yield an upper

bound on the reverse difference Rβ(x)− R̂β(x).

We start by deriving an upper bound on the expression

∆β(x; q, T) := Eh
[
(v̂(ξ, x)− ζβ(x))+ − (v(ξ, x)− ζβ(x))+

]
(3.23)

in the right-hand side of (3.22). For the sake of argument, suppose that we could

remove the positive part operators in (3.23). Then, we would obtain ∆β(x; q, T) =

Eh
[
v̂(ξ, x) − v(ξ, x)

]
. Note that this is the approximation error for a risk-neutral

recourse function. Hence, we could directly apply existing results from the risk-

neutral literature [74] to obtain an upper bound. Using this idea, we take the ap-

proach of conditioning on two complementary cases. In the first case, the positive

part operators indeed drop out, while the second case reduces to zero.

Lemma 3.4. Let q ∈ Ξq, T ∈ ΞT , and x ∈ Rn1 be given and consider ∆β(x; q, T) from

(3.23). Then,

∆β(x; q, T) ≤ P{v̂(ξ, x) > ζβ(x) | q, T}Eh

[
v̂(ξ, x)− v(ξ, x) | v̂(ξ, x) > ζβ(x)

]
.

Proof. We take (3.23) as a starting point and consider the complementary cases

v̂(ξ, x) > ζβ(x) and v̂(ξ, x) ≤ ζβ(x). First, suppose that v̂(ξ, x) > ζβ(x). Then,

(v̂(ξ, x) − ζβ(x))+ = v̂(ξ, x) − ζβ(x). Using this fact and (v(ξ, x) − ζβ(x))+ ≥
v(ξ, x)− ζβ(x), we obtain

(v̂(ξ, x)− ζβ(x))+ − (v(ξ, x)− ζβ(x))+ ≤ v̂(ξ, x)− v(ξ, x). (3.24)

Second, suppose that v̂(ξ, x) ≤ ζβ(x). Then, (v̂(ξ, x)− ζβ(x))+ = 0. Using (v(ξ, x)−
ζβ(x))+ ≥ 0, we get

(v̂(ξ, x)− ζβ(x))+ − (v(ξ, x)− ζβ(x))+ ≤ 0. (3.25)

Using (3.25) and (3.24) and defining pβ
x := P{v̂(ξ, x) > ζβ(x) | q, T} = 0, we can

condition on v̂(ξ, x) > ζβ(x) and v̂(ξ, x) ≤ ζβ(x) to obtain

∆β(x; q, T) ≤ pβ
xEh

[
v̂(ξ, x)− v(ξ, x) | v̂(ξ, x) > ζβ(x)

]
+ (1− pβ

x)Eh
[
0 | v̂(ξ, x) ≤ ζβ(x)

]
.
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The result follows from the observation that the second term above equals zero.

Remark 3.2. In Lemma 3.4 it could be that P{v̂(ξ, x) > ζβ(x) | q, T} = 0, in which

case the conditional expectation Eh[v̂(ξ, x)− v(ξ, x) | v̂(ξ, x) > ζβ(x)] is ill-defined.

In that case, we define this conditional expectation as zero. Then, we clearly have

that ∆β(x; q, T) ≤ 0, so Lemma 3.4 remains valid. 4

Lemma 3.4 provides an upper bound on ∆β(x; q, T) in terms of the approxima-

tion error of a risk-neutral model under a conditional probability distribution. This

means that we can directly apply existing error bounds for risk-neutral recourse

functions to obtain an upper bound on ∆β(x; q, T) and thus, on R̂β(x) − Rβ(x).

Note, however, that this upper bound will be in terms of the conditional pdf of h,

given v̂(ξ, x) > ζβ(x). By rewriting this upper bound in terms of the original pdf f

of h, we obtain the error bounds in Theorem 3.2. These uniform error bounds can

be interpreted as the risk-averse generalizations of Proposition 3.4 in the appendix.

Theorem 3.2. Consider the CVaR recourse function Rβ from (3.4), where v is the TU

integer value function from (3.20). Moreover, consider its shifted LP-relaxation approxim-

ation R̂β and generalized α-approximation R̃β
α from Definition 3.8. Then, if f ∈ Hm, we

have

‖Rβ − R̂β‖∞ ≤
1

2(1− β)

m

∑
i=1

λ̄∗i g
(

Eh−i

[
|∆| fi(·|h−i)

])
, (3.26)

‖Rβ − R̃β
α‖∞ ≤

1
1− β

m

∑
i=1

λ̄∗i g
(

Eh−i

[
|∆| fi(·|h−i)

])
, (3.27)

where for every i = 1, . . . , m, we have λ̄∗i := Eq[λ∗q,i], with λ∗q,i := maxk∈Kq{λk
i }, q ∈ Ξq.

Moreover, the function g : R+ → R is defined by

g(t) =

t/8, 0 ≤ t ≤ 4,

1− 2/t, t > 4.
(3.28)

Proof. See Appendix 3.B.

In comparison with Theorem 3.1, Theorem 3.2 provides tractable analytic ex-

pressions (in terms of λ∗q,i) for the constants C1 and C2. Using these expressions, the

error bounds from Theorem 3.2 are generally much tighter than those from The-

orem 3.1. Moreover, observe that the error bounds from Theorem 3.2 differ from

their risk-neutral counterparts in Proposition 3.4 only in the additional factor 1
1−β ,
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similar as for the error bounds from Theorem 3.1 in Section 3.3. Finally, it should

be noted that the error bounds for the shifted LP-relaxation approximation R̂β are

a factor 2 smaller than those for the α-approximation R̃β
α .

It turns out that we can derive even tighter bounds by exploiting that the ex-

pectation in Lemma 3.4 is conditional on v̂(ξ, x) > ζβ(x). Intuitively, this means

that the (upper bound on the) approximation error R̂β(x)− Rβ(x) is only determ-

ined by values of ξ for which v̂(ξ, x) is large. Since the TU integer approximating

value function v̂ is monotone in hi, it follows that for a given x, q, T, and h−i, this is

equivalent to hi ≥ τi for some τi ∈ R. Hence, we only need to account for the total

variation over the interval [τi,+∞), for some appropriately defined scalar τi.

Definition 3.10. Let v be the second-stage value function from (3.20) and let v̂ and

ṽα be as in Lemma 3.3. Furthermore, let ζβ(x) := min
{

ζ ∈ R |P{v(ξ, x) ≤ ζ} ≥ β
}

denote the β-VaR of v(ξ, x) and similarly, let ζ̂β(x) and ζ̃
β
α(x) denote the β-VaR

of v̂(ξ, x) and ṽα(ξ, x), respectively. Finally, let i = 1, . . . , m, be given and define

ξ−i := (q, T, h−i). Then, for every ξ−i ∈ Ξq × ΞT ×Rm−1, we define

τ̂
β
x,i(ξ−i) := inf

{
hi ∈ R |

(
v̂(ξ, x) > ζβ(x)

)
∨
(
v(ξ, x) > ζ̂β(x)

)}
, and

τ̃
β,α
x,i (ξ−i) := inf

{
hi ∈ R |

(
ṽα(ξ, x) > ζβ(x)

)
∨
(
v(ξ, x) > ζ̃

β
α(x)

)}
.

Theorem 3.3. Consider the setting of Theorem 3.2 If f ∈ Hm, then for every x ∈ Rn1 we

have

|Rβ(x)− R̂β(x)| ≤ 1
1− β

m

∑
i=1

Eq,T

[
λ∗q,ig

(
Eh−i

[
|∆| fi(·|h−i)

(
[τ̂

β
x,i(ξ−i),+∞)

)])]
,

(3.29)

|Rβ(x)− R̃β
α(x)| ≤ 2

1− β

m

∑
i=1

Eq,T

[
λ∗q,ig

(
Eh−i

[
|∆| fi(·|h−i)

(
[τ̃

β,α
x,i (ξ−i),+∞)

)])]
,

(3.30)

where g is the function fromTheorem 3.2 and for every i = 1, . . . , m, the constants λ∗q,i :=

maxk∈Kq{λk
i }, q ∈ Ξq, are as in Theorem 3.2, and τ̂

β
x,i and τ̃

β,α
x,i are defined in Defini-

tion 3.10.

Proof. See Appendix 3.B.

Theorem 3.3 exploits the fact that CVaR represents the expected value of the

(1− β)× 100% worst-case values only. As a result, the error bounds in Theorem 3.3

only depend on the total variation of the conditional pdfs of h over that part of its
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support that corresponds to these worst-case values. Since this support decreases

if β increases, this total variation is non-increasing in β. This effect explains why,

contrary to what Theorem 3.1 suggests, the approximation errors |Rβ(x)− R̂β(x)|
and |Rβ(x) − R̃β

α(x)| may actually be decreasing in β. We illustrate this for the

special case of simple integer recourse models in the next subsection.

3.4.3 Simple integer recourse

In this subsection we study the behavior of the error bounds from Theorem 3.3 in

the special case of so-called one-dimensional simple integer recourse (SIR). Similar as in

the risk-neutral case [38, 49, 74], we can exploit the special structure of this problem

to construct a convex approximation with a sharp error bound. Surprisingly, for

random variables h with a non-increasing positive tail, the error bound depends on

the hazard rate of the distribution of h. Contrary to the bound in Theorem 3.1 from

Section 3.3, this error bound is not necessarily large if β ↑ 1. This is a desirable

property, since we are generally interested in large values for the CVaR parameter

β ∈ (0, 1). In fact, we prove that for heavy-tailed distributions with a decreasing

hazard rate the error bound converges to zero if β ↑ 1.

The one-dimensional simple integer recourse model is defined as a special case

of the TU integer recourse model defined by (3.20), with n2 = 1, W̄ = [1], q̄ = 1

and T = [1]. Note that q and T are assumed to be deterministic; only the right-hand

side vector h ∈ R is random, with pdf f and cdf F. The second-stage value function

can then be written as

v(h, x) = dh− xe+, h, x ∈ R, (3.31)

while its convex approximations v̂ and ṽα reduce to

v̂(h, x) = (h− x + 1/2)+ and ṽα(h, x) = (dh− αe+ α− x)+,

for all h, x ∈ R. Below we analyze the error bounds from Theorem 3.3 for these

convex approximations. However, since the bounds for R̂β and R̃β
α differ only by

a factor 2, we present the results for the shifted LP-relaxation R̂β only. We start by

presenting a simplified version of the error bound in (3.29) from Theorem 3.3.

Corollary 3.1. Let Rβ be the CVaR recourse function from (3.4), where v is the SIR value

function from (3.31). Moreover, let R̂β be the shifted LP-relaxation approximation from
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Definition 3.8. Then,

‖Rβ − R̂β‖∞ ≤
1

1− β
g
(
|∆| f

(
[τβ,+∞)

))
, (3.32)

where τβ := F−1(β)− 1 and g is defined in (3.28).

Proof. See Appendix 3.B.

It is not immediately clear whether the error bound in Corollary 3.1 is increasing

or decreasing in β. On the one hand, the fraction 1
1−β increases in β and goes to +∞

as β ↑ 1. On the other hand, g
(
|∆| f

(
[τβ,+∞)

))
decreases in β and goes to zero

as β ↑ 1, since the left end-point τβ of the interval over which we take the total

variation of f goes to +∞. Below, we identify conditions on the tail of the pdf f

under which the error bound goes to zero as β ↑ 1. We do so for random variables

h for which the pdf f has a positive, non-increasing right tail; see Assumption 3.2.

This includes many commonly-used probability distributions such as the normal,

gamma, Weibull, and lognormal distribution.

Assumption 3.2. The pdf f of the random variable h has a positive, non-increasing right

tail. That is, there exists a scalar z ∈ R such that f is positive and non-increasing on

[z,+∞).

Corollary 3.2. Consider the setting of Corollary 3.1 and suppose that Assumption 3.2

holds. Then, for β ≥ F(z + 1), we have

‖Rβ − R̂β‖∞ ≤
f (τβ)

8(1− β)
.

Proof. Since β ≥ F(z + 1), it follows that τβ ≥ z. Since f has a non-increasing right

tail, this implies that |∆| f
(
[τβ,+∞)

)
= f (τβ). The result now follows from the

observation that g(t) ≤ 1/8 for all t ≥ 0.

The error bound from Corollary 3.2 is closely related to the hazard rate of h. It

turns out that the error bound (and hence, also the error itself) converges to zero if

this hazard rate goes to zero.

Definition 3.11. Let h be a continuous random variable with pdf f and cdf F. Then,

the hazard rate λ of h is defined as

λ(t) =
f (t)

1− F(t)
, t ∈ R.
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We say h has a decreasing hazard rate if lim
t→∞

λ(t) = 0.

Theorem 3.4. Let Rβ be the CVaR recourse function from (3.4), where v is the SIR value

function from (3.31). Moreover, let R̂β be the shifted LP-relaxation approximation from

Definition 3.8. Suppose that Assumption 3.2 holds and that h has a decreasing hazard rate.

Then,

lim
β↑1
‖Rβ − R̂β‖∞ = 0.

Proof. For β sufficiently close to 1, the condition β ≥ F(z+ 1) of Corollary 3.2 holds.

Hence, by Corollary 3.2 it follows that

lim
β↑1
‖Rβ − R̂β‖∞ ≤

1
8

lim
β↑1

f (τβ)

1− β
=

1
8

lim
β↑1

f (F−1(β)− 1)
1− F(F−1(β))

. (3.33)

Consider the limit in the right-hand side above. Performing a change of variable

t = F−1(β), and using that lim
β↑1

F−1(β) = +∞, we get

lim
β↑1

f (F−1(β)− 1)
1− F(F−1(β))

= lim
t→∞

f (t− 1)
1− F(t)

= 0,

where the last equality follows by Lemma 3.5 in Appendix 3.B. Substituting this

into (3.33) completes the proof.

Theorem 3.4 shows that the convex approximation R̂β is good for large values

of β if h has a decreasing hazard rate. Since every distribution with a decreasing

hazard rate has a heavy tail [26], the convex approximation is good in cases where

extreme events are relatively likely to occur. Interestingly, this is precisely the situ-

ation in which explicit modeling of risk is desired. More generally, contrary to what

the error bounds from Theorem 3.1 suggest, Theorem 3.4 provides evidence that the

approximation errors of our convex approximations need not explode as β ↑ 1. In

fact, they may even converge to zero.

3.5 Summary and conclusions

We considered two-stage mean-CVaR recourse models, where the second-stage

problem is a mixed-integer linear program. These models are non-convex due to

the presence of integer variables and hence, they are extremely hard to solve. In-

spired by results from the literature on corresponding risk-neutral models we con-
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struct convex approximation models, which can be solved efficiently using techniques

from convex optimization. In particular, we define two types of convex approxim-

ations of the CVaR recourse function Rβ.

In order to guarantee the performance of the resulting approximate solutions,

we derive error bounds: upper bounds on the approximation errors. These error

bounds depend on the total variations of the one-dimensional conditional density

functions of the random right-hand side variables in the model. In particular, the

error bounds converge to zero if all these total varations go to zero. This implies that

all CVaR recourse functions Rβ can be approximated arbitrarily well by a convex

function if these total variations are small enough.

For the special case of two-stage totally unimodular integer mean-CVaR re-

course models, we derive sharper error bounds by exploiting the special structure

of these problems. In particular, for simple integer recourse models we show that

the error bound is small if the random right-hand side variable in the model has

a decreasing hazard rate, implying that its distribution is heavy-tailed. In such a

situation, explicit modeling of risk aversion is desired to accurately model the un-

derlying practical decision problem. Hence, our convex approximation approach

works well in precisely those cases in which risk-averse optimization is relevant.

Future research efforts may be aimed at finding sharper error bounds for other

special cases of two-stage mixed-integer mean-CVaR recourse models. Other dir-

ections for future research include assessing the actual performance of the approx-

imations (compared to their error bounds) in a numerical study and constructing

convex approximations for mixed-integer mean-risk recourse models with other

risk measures than CVaR.

3.A Appendix: Random q and T in risk-neutral models

In this appendix, we generalize error bounds for convex approximations of risk-

neutral mixed-integer recourse models to a setting where also q and T are ran-

dom and where q has a finite support. In the risk-neutral literature [88, 71, 74],

convex approximations of the mean recourse function Q with corresponding error

bounds exist, but for a setting where only the right-hand side vector h is random.

In Chapter 2 we extended these results to a setting where also q and T are random

and q has an arbitrary distribution. Here we derive specialized results for a setting

where q has a finite support, which is assumed in this paper for ease of presenta-

tion.
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Similar as in the main body of this chapter, we consider two settings: general

two-stage mixed-integer recourse models (cf. Section 3.3) and the special case of

TU integer recourse models (cf. Section 3.4). For both classes of recourse models,

we consider two types of convex approximations of the mean recourse function Q:

the shifted LP-relaxation approximation Q̂ and the (generalized) α-approximation

Q̃α.

3.A.1 General mixed-integer recourse

We first consider the general case of two-stage mixed-integer recourse models.

Consider the mean recourse function Q from (3.3), i.e.

Q(x) = Eξ [v(ξ, x)].

We define two convex approximations of Q, based on the approximations in [88]

and [71].

Definition 3.12. Consider the general mixed-integer mean recourse function Q

from (3.3). We define its shifted LP-relaxation approximation Q̂ and its generalized

α-approximation Q̃α with parameter α ∈ Rm by

Q̂(x) := Eξ [v̂(ξ, x)], and Q̃α(x) := Eξ [ṽα(ξ, x)],

respectively, where v̂ and ṽα are defined by

v̂(ξ, x) = max
k∈Kq

{
qT

Bk (Bk)−1(h− Tx) + Γk
}

, ξ ∈ Ξ, x ∈ Rn1 ,

ṽα(ξ, x) = max
k∈Kq

{
qT

Bk (Bk)−1(h− Tx) + ψk(h− α)
}

, ξ ∈ Ξ, x ∈ Rn1 ,

where Γk := p−m
k

∫ pk
0 · · ·

∫ pk
0 ψk(s)ds1 · · · dsm, pk := |det Bk|, and Bk and ψk, k ∈ Kq,

are as in Proposition 3.1.

We provide a uniform error bound for each of the two convex approximations

defined above. These bounds are generalizations of Theorem 5.1 in [71] and The-

orem 4 in [88] to the case with q and T random as well.

Proposition 3.3. Consider the mean recourse function Q from (3.3) and its convex ap-

proximations Q̂ and Q̃α from Definition 3.12. Then, if f ∈ Hm, there exist finite, positive
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constants C̄1 and C̄2 such that

‖Q− Q̂‖∞ ≤ C̄1

m

∑
i=1

Eh−i
[|∆| fi(·|h−i)], (3.34)

‖Q− Q̃α‖∞ ≤ C̄2

m

∑
i=1

Eh−i
[|∆| fi(·|h−i)]. (3.35)

Proof. From Theorem 5.1 in [71] we know that if q and T are deterministic, then

there exists a constant Cq > 0, such that

‖Q− Q̂‖∞ ≤ Bq := Cq
m

∑
i=1

Eh−i
[|∆| fi(·|h−i)].

It can indeed be shown (by going through the proofs in [71]) that this bound de-

pends on q but not on T, hence the notation Bq and Cq. Now let x ∈ Rn1 be given.

Then, using Jensen’s inequality, independence between (q, T) and h, and the error

bound above, we have

|Q(x)− Q̂(x)| =
∣∣Eξ

[
v(ξ, x)− v̂(ξ, x)

]∣∣
=
∣∣Eq,T

[
Eξ|q,T [v(ξ, x)− v̂(ξ, x)]

]∣∣
≤ Eq[Bq].

Now, defining C̄1 := Eq[Cq], (3.34) follows from the observation that this upper

bound on |Q(x) − Q̂(x)| does not depend on x. The proof of (3.35) is analogous,

except for the fact that we use Theorem 4 from [88] instead of Theorem 5.1 from

[71].

From the construction of the constants C̄1 and C̄2 in the proof, it is not hard to

see that the error bounds from Proposition 3.3 reduce to the existing bounds from

Theorem 5.1 in [71] and Theorem 4 in [88] if q (and T) are deterministic.

3.A.2 TU integer recourse

Next, we consider the special case of two-stage TU integer recourse models. That is,

we make the additional assumption that the second-stage value function is defined

as in (3.20). It is not hard to show that in this case the approximating value functions

v̂ and ṽα reduce to the functions from Lemma 3.3 (see Example 3.4 in [71] and

Example 3 in [88]).

Again, we provide an error bound for both convex approximations: Q̂ and Q̃α.
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This result is a generalization of Theorem 5 and 6 from [74] to the case where also q

and T are random.

Proposition 3.4. Consider the mean recourse function Q(x) = Eξ [v(ξ, x)] from (3.3),

and assume that v has a TU integer structure, i.e., v is as in (3.20). Then, if f ∈ Hm, we

have

‖Q− Q̂‖∞ ≤
1
2

m

∑
i=1

λ̄∗i Eh−i

[
g
(
|∆| fi(·|h−i)

)]
, (3.36)

‖Q− Q̃α‖∞ ≤
m

∑
i=1

λ̄∗i Eh−i

[
g
(
|∆| fi(·|h−i)

)]
, (3.37)

where λ̄∗i := Eq
[

maxk∈Kq{qT
Bk (Bk)−1ei}

]
, i = 1, . . . , m, where ei is the ith unit vector in

Rm.

Proof. From Theorem 6 in [74], we know that for any q ∈ Ξq and T ∈ ΞT , we have

∣∣Eh
[
v(ξ, x)− v̂(ξ, x)

]∣∣ ≤ 1
2

m

∑
i=1

λ∗q,iEh−i

[
g
(
|∆| fi(·|h−i)

)]
,

where λ∗q,i := maxk∈Kq{qT
Bk (Bk)−1ei} depends on q but not on T. Now, (3.36) follows

immediately by same line of reasoning as in the proof of Proposition 3.3. The proof

of (3.37) is similar, but we use Theorem 5 instead of Theorem 6 from [74], resulting

in an error bound that is a factor 2 larger.

3.B Appendix: Proofs of several lemmas, propositions,

and theorems

Proof of Lemma 3.1. Let vζ
LP be the LP-relaxation of vζ and fix q ∈ Ξq. Then, by

e.g., [18] and [21], there exists a constant γq > 0 such that |vζ(ξ, x)− vζ
LP(ξ, x)| ≤ γq

for all T ∈ ΞT , h ∈ Ξh, x ∈ Rn1 , and ζ ∈ R. Next, we show that |vζ
LP(ξ, x) −

v̂ζ(ξ, x)| ≤ r̄q for all T ∈ ΞT , h ∈ Ξh, x ∈ Rn1 , and ζ ∈ R, where r̄q := maxk∈Kq rk.

By definition of vζ
LP and v̂ζ , we have

|vζ
LP(ξ, x)− v̂ζ(ξ, x)| =

∣∣∣(max
k∈Kq
{qT

Bk (Bk)−1(h− Tx)} − ζ
)+

−
(

max
k∈Kq
{qT

Bk (Bk)−1(h− Tx) + Γk
ζ} − ζ

)+∣∣∣
≤
∣∣∣max

k∈Kq
{qT

Bk (Bk)−1(h− Tx)} −max
k∈Kq
{qT

Bk (Bk)−1(h− Tx) + Γk
ζ}
∣∣∣
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≤ max
k∈Kq
{|Γk

ζ |},

where the last inequality follows from Γk
ζ ≥ 0, k ∈ Kq, ζ ∈ R. We consider two

cases. First, suppose ζ ≤ r̄q. Then, 0 ≤ Γk
ζ ≤ r̄q for every k ∈ Kq and using

the above it follows that |vζ
LP(ξ, x)− v̂ζ(ξ, x)| ≤ r̄q. Second, suppose ζ > r̄q. Let

k∗ be the maximizing index for v̂ζ(ξ, x). We consider two subcases. Firstly, sup-

pose that qBk∗ = 0. Then, Γk∗
ζ = ζ and it follows that maxk∈Kq{qT

Bk (Bk)−1(h −
Tx)} ≤ ζ. Hence, |vζ

LP(ξ, x) − v̂ζ(ξ, x)| = |0 − (ζ − ζ)+| = 0. Secondly, sup-

pose that qBk∗ 6= 0. Since Γk
ζ ≥ Γk for all ζ ∈ R and Γk

ζ = Γk if qBk 6= 0, we

have v̂ζ(ξ, x) =
(

maxk∈Kq{qT
Bk (Bk)−1(h− Tx) + Γk} − ζ

)+. Hence, similar to the

inequalities above, we have |vζ
LP(ξ, x)− v̂ζ(ξ, x)| ≤ maxk∈Kq{|Γk|} ≤ r̄q.

Now, define γ := maxq∈Ξq{γq + r̄q}. Then, using the above we have ‖vζ −
v̂ζ‖∞ ≤ ‖vζ − vζ

LP‖∞ + ‖vζ
LP− v̂ζ‖∞ ≤ γ. The proof of ‖vζ − ṽζ

α‖∞ ≤ γ is analogous.

Proof of Lemma 3.2. Let q ∈ Ξq, k ∈ Kq, and ζ ∈ R be given. We will show that

there exists σkl ∈ Λk(dk) such that for every l 6= k and ĥ := h− Tx ∈ σkl + Λk,

(
qT

Bk (Bk)−1ĥ + Γk
ζ − ζ

)+ ≥ (qT
Bl (Bl)−1ĥ + Γl

ζ − ζ
)+, ĥ ∈ σkl + Λk. (3.38)

By LP-duality, we know that for the LP-relaxation vLP of v we have vLP(ξ, x) =

maxk∈Kq

{
qT

Bk (Bk)−1ĥ
}

, where the index k ∈ Kq is optimal if ĥ ∈ Λk. Fix k, l ∈ Kq

with l 6= k. Then, the above implies that qT
Bk (Bk)−1ĥ ≥ qT

Bl (Bl)−1ĥ, ĥ ∈ Λk. Suppose

that qT
Bk (Bk)−1 = qT

Bl (Bl)−1. Then by Proposition 3.1(iii), ψk = ψl . Hence, Γk
ζ = Γl

ζ

and (3.38) holds for σkl = 0.

Next, suppose that qT
Bk (Bk)−1 6= qT

Bl (Bl)−1. Then, there exists some s∗ ∈ Λk(dk)

such that qT
Bk (Bk)−1s∗ > qT

Bl (Bl)−1s∗. Fix such an s∗. We distinguish two cases.

First, suppose that qBl 6= 0. Then, Γl
ζ = Γl ≤ rl . For a large enough scalar γ ≥ 1,

we find qT
Bk (Bk)−1(γs∗) > qT

Bl (Bl)−1(γs∗) + rl . Observing that Γk
ζ ≥ 0, this implies

that

(
qT

Bk (Bk)−1(γs∗) + Γk
ζ − ζ

)+ ≥ (qT
Bl (Bl)−1(γs∗) + Γl

ζ − ζ
)+. (3.39)

Second, suppose that qBl = 0. If ζ < rl , then by definition, Γl
ζ ≤ rl and hence, (3.39)

holds true. Conversely, if ζ ≥ rl , then Γl
ζ = ζ and hence, (qT

Bl (Bl)−1(γs∗) + Γl
ζ −

ζ)+ = 0. It follows that (3.39) holds.

Combining all cases above, we conclude that (3.38) holds for σkl := γs∗.
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Moreover, since s∗ ∈ Λk(dk) and γ ≥ 1, we have σkl ∈ Λk(dk). Now, similar as

in the proof of Proposition 3.7 in [71], taking the intersection of the shifted cones

σkl + Λk, k, l ∈ Kq, k 6= l, yields a set σk + Λk, where σk ∈ Λk(dk). From the con-

struction of this set and (3.38) we conclude that v̂ζ attains its value through the basis

matrix Bk for all h− Tx ∈ σk + Λk. The proof for ṽζ
α is analogous.

Proof of Proposition 3.2. We prove the result for v̂ζ ; the proof for ṽζ
α is analogous.

Let q ∈ Ξq be fixed and note that for every k ∈ Kq, we have by Proposition 3.1,

Lemma 3.2, and σk + Λk ⊆ Λk(dk) that both vζ(ξ, x) and v̂ζ(ξ, x) are generated

by the same basis matrix Bk if h − Tx ∈ σk + Λk. Using this observation we will

construct sets Aj, j ∈ Jq
ζ , such that (i) holds.

For every k ∈ Kq we do the following. Firstly, if qBk = 0, then we define

Ak := σk + Λk. Then, for h − Tx ∈ Ak we have vζ(ξ, x) − v̂ζ(ξ, x) = (ψk(h −
Tx) − ζ)+ − p−m

k

∫ pk
0 · · ·

∫ pk
0 (ψk(s) − ζ)+ds1 · · · dsm. Clearly, this is a zero-mean

Bk-periodic function of h− Tx. Secondly, if qBk 6= 0, then we define the sets Ak+ :=

{s ∈ σk + Λk | qT
Bk (Bk)−1s ≥ ζ} and Ak− := {s ∈ σk + Λk | qT

Bk (Bk)−1s ≤ ζ − rk}.
Then, for h − Tx ∈ Ak+ , we have vζ(ξ, x) − v̂ζ(ξ, x) = ψk(h − Tx) − Γk, and for

h − Tx ∈ Ak− , we have vζ(ξ, x) − v̂ζ(ξ, x) = 0. In both cases, we obtain a zero-

mean Bk-periodic function of h− Tx. Now, defining the sets Aj, j ∈ Jq
ζ , as the sets

Ak, Ak+ , and Ak− , k ∈ Kq, described above, (i) clearly holds.

Finally, we show that for these sets Aj, j ∈ Jq
ζ , (ii) holds. Observe that

N q
ζ = Rm \ ⋃j∈Jq

ζ
Aj =

(
Rm \ ⋃k∈Kq(σk + Λk)

)
∪
(⋃

k∈K̄q{s ∈ σk + Λk | ζ − rk <

qT
Bk (Bk)−1s < ζ}

)
, where K̄q := {k ∈ Kq | qBk 6= 0}. Then, by Lemma 3.9 in [71],

there exist hyperslices Hq
ik, i = 1, . . . , m, k ∈ Kq, such that Rm \ ⋃k∈Kq(σk + Λk) ⊆⋃

k∈Kq
⋃m

i=1 Hq
ik. Moreover, defining the hyperslices H̄q

ζ,k := {s ∈ Rm | ζ − rk ≤
qT

Bk (Bk)−1s ≤ ζ}, k ∈ K̄q, we have
⋃

k∈K̄q{s ∈ σk + Λk | ζ − rk < qT
Bk (Bk)−1s < ζ} ⊆⋃

k∈Kq H̄q
ζ,k. Hence, N q

ζ ⊆
(⋃

k∈Kq
⋃m

i=1 Hik
)
∪
(⋃

k∈K̄q H̄q
ζ,k
)
, i.e., N q

ζ can be covered

by finitely many hyperslices.

Proof of Theorem 3.2 and 3.3. We take Lemma 3.4 as a starting point and we tem-

porarily fix q ∈ Ξq, T ∈ ΞT , and x ∈ Rn1 . Note that the conditional expectation

in Lemma 3.4 can be written as E
hβ

x
[v̂(q, T, hβ

x , x) − v(q, T, hβ
x , x)], where hβ

x is the

random vector defined by its joint pdf f β
x := f (·|v̂(ξ, x) > ζβ(x)). Now, applying

Theorem 6 from [74] to the conditional expectation in Lemma 3.4, we obtain

∆β(x; q, T) ≤ 1
2

m

∑
i=1

λ∗q,iEhβ
x,−i

[g(|∆| f β
x,i(·|h

β
x,−i))], (3.40)
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where hβ
x,−i denotes the random vector hβ

x without its ith element. Note that sub-

stituting (3.40) into (3.22) already provides us with an upper bound on the approx-

imation error R̂β(x) − Rβ(x). However, this bound is in terms of the conditional

pdf f β
x . The rest of this proof is concerned with manipulating the right-hand side

of (3.40) such that we end up with error bounds in terms of the original pdf f .

Consider the expected value in (3.40). Since g(·) is concave, it follows by Jensen’s

inequality that

E
hβ

x,−i

[
g
(
|∆| f β

x,i(·|h
β
x,−i)

)]
≤ g

(
E

hβ
x,−i

[
|∆| f β

x,i(·|h
β
x,−i)

])
. (3.41)

We will derive two upper bounds on the expected value in the right-hand side of

(3.41).

Using the definition of f β
x,i(·|·), we have

E
hβ

x,−i
[|∆| f β

x,i(·|h
β
x,−i)] =

∫
Rm−1

|∆| f β
x,i(·|t−i) f β

x,−i(t−i)dt−i

=
∫

Θβ
x,−i

|∆| f β
x (·;t−i)

f β
x,−i(t−i)

f β
x,−i(t−i)dt−i

=
∫

Θβ
x,−i

|∆| f β
x (·; t−i)dt−i, (3.42)

where Θβ
x,−i :=

{
t−i ∈ Rm−1 | f β

x,−i(t−i) > 0
}

and f β
x (·; t−i) denotes f β

x (t) as

a function of ti. We derive two upper bounds on |∆| f β
x (·; t−i). Define the set

T β
x,i(t−i) :=

{
ti ∈ R | v̂(q, T, t, x) > ζβ(x)

}
. Since λk ≥ 0, k ∈ Kq, it follows

by definition of v̂(ξ, x) that v̂(ξ, x) is monotonely non-decreasing and lower semi-

continuous in hi for every i = 1, . . . , m. Hence, the set T β
x,i(t−i) is of the form

T β
x,i(t−i) = (τ

β
x,i(t−i),+∞), where τ

β
x,i(t−i) := inf{hi ∈ R | v̂(ξ, x) > ζβ(x)}. Now,

by definition of f β
x , we have f β

x (t) = 1
pβ

x
1[

ti>τ
β
x,i(t−i)

] f (t), where pβ
x := P{v̂(ξ, x) >

ζβ(x) | q, T}. From this expression it is immediately clear that

|∆| f β
x (·; t−i) ≤ 1

pβ
x
|∆| f (·; t−i). (3.43)

Alternatively, using τ̂
β
x,i(t−i) ≤ τ

β
x,i(t−i) (by definition of τ̂

β
x,i and τ

β
x,i(t−i)), we have

|∆| f β
x (·; t−i) = |∆| f

β
x (·; t−i)

(
[τ

β
x,i(t−i),+∞)

)
≤ 1

pβ
x

f
(
τ

β
x,i(t−i)

)
+ 1

pβ
x
|∆| f (·; t−i)

(
[τ

β
x,i(t−i),+∞)

)
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≤ 2
pβ

x
|∆| f (·; t−i)

(
[τ

β
x,i(t−i),+∞)

)
. (3.44)

Hence, we have found two alternative upper bounds on |∆| f β
x (·; t−i).

Returning to (3.42), define Θ−i :=
{

t−i ∈ Rm−1 | f−i(t−i) > 0
}

and observe

that Θβ
x,−i ⊆ Θ−i. Using this fact and (3.43), we obtain

E
hβ

x,−i

[
|∆| f β

x,i(·|h
β
x,−i)

]
≤ 1

pβ
x

∫
Θ−i

|∆| f (·; t−i)dt−i

= 1
pβ

x

∫
Θ−i

|∆| fi(·|t−i) f−i(t−i)dt−i

≤ 1
pβ

x
Eh−i

[
|∆| fi(·|h−i)

]
. (3.45)

Similarly, using (3.44) instead of (3.43) we obtain

E
hβ

x,−i

[
|∆| f β

x,i(·|h
β
x,−i)

]
= 2

pβ
x

Eh−i

[
|∆| fi(·|h−i)

(
[τ

β
x,i(h−i),+∞)

)]
. (3.46)

Now, combining (3.22), (3.40), (3.41) and (3.45), we obtain

R̂β(x)− Rβ(x) ≤ 1
2(1− β)

Eq,T

[
pβ

x

m

∑
i=1

λ∗q,ig
(

1
pβ

x
Eh−i

[
|∆| fi(·|h−i)

])]
.

Since 2
pβ

x
≥ 1 and g is non-decreasing and concave with g(0) = 0, we can move the

factor 2
pβ

x
outside of the function g to obtain an upper bound, i.e.,

R̂β(x)− Rβ(x) ≤ 1
2(1− β)

m

∑
i=1

Eq,T

[
λ∗q,ig

(
Eh−i

[
|∆| fi(·|h−i)

])]
=

1
2(1− β)

m

∑
i=1

λ̄∗i g
(

Eh−i

[
|∆| fi(·|h−i)

])
,

where we use the definition of λ̄∗i and the fact that λ∗q,ig
(

Eh−i

[
|∆| fi(·|h−i)

)
does

not depend on T. An analogous proof shows that the right-hand side above is also

an upper bound on the reverse approximation error Rβ(x) − R̂β(x). Observing

that this upper bound does not depend on x completes the proof of (3.26) in The-

orem 3.2. The proof of (3.29) in Theorem 3.3 is analogous, but instead of (3.45) we

use (3.46).

Finally, the proofs of the error bounds (3.27) in Theorem 3.2 and (3.30) in The-

orem 3.3 for the α-approximation R̃β
α are analogous to the proofs of (3.26) and (3.29),

respectively. The only difference is that instead of using Theorem 6 from [74], we
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use Theorem 5 from that reference to obtain an analogue of (3.40).

Proof of Corollary 3.1. Direct application of (3.29) from Theorem 3.3 yields

|Rβ(x)− R̂β(x)| ≤ 1
1− β

g
(
|∆| f

(
[τ̂

β
x ,+∞)

))
,

where τ̂
β
x := inf

{
h ∈ R | v̂(h, x) > ζβ(x) ∨ v(h, x) > ζ̂β(x)

}
. Here we used that

λ∗q,i = 1, which follows directly from the dual representation of v(ξ, x) in (3.21) for

the simple integer case. Now, consider the definition of τ̂
β
x above. It is not hard to

verify that ζβ(x) = v(F−1(β), x) and ζ̂β(x) = v̂(F−1(β), x). Using the definition of

v(h, x) and v̂(h, x) it follows that inf{h ∈ R | v̂(h, x) > ζβ(x)} ≥ F−1(β)− 1 and

inf{h ∈ R | v(h, x) > ζ̂β(x)} ≥ F−1(β)− 1. Substituting this into τ̂
β
x and observing

that the result does not depend on x proves (3.32).

Lemma 3.5. Let h be a random variable such that Assumption 3.2 holds. If h has a de-

creasing hazard rate, then

lim
t→∞

f (t− 1)
1− F(t)

= 0.

Proof. Define F̄(t) := 1− F(t), At := F̄(t− 1)− F̄(t), and Bt := F̄(t), t ∈ R. We

first show that lim
t→∞

F̄(t−1)
F̄(t) = lim

t→∞
At+Bt

Bt
= 1. For the sake of contradiction, suppose

lim
t→∞

At+Bt
Bt
6= 1. Since At+Bt

Bt
≥ 1 for all t ∈ R, this means that there exists ε > 0

such that for all t0 ∈ R, there exists t ≥ t0 such that At+Bt
Bt
≥ 1 + ε, i.e., At

Bt
≥ ε, i.e.,

Bt
At
≤ 1/ε. Let such an ε > 0, t0 ∈ R, and t ≥ max{t0, z + 1} be given. Consider

λ(t− 1) = f (t−1)
F̄(t−1) . Since f is non-increasing on [z,+∞) by Assumption 3.2, we have

At =
∫ t

t−1 f (s)ds ≤ f (t− 1). Hence,

λ(t− 1) =
f (t− 1)
F̄(t− 1)

≥ At

At + Bt
=

(
At + Bt

At

)−1

=

(
1 +

Bt

At

)−1
≥
(

1 +
1
ε

)−1
=

ε

1 + ε
.

Define ε̄ := ε
1+ε . We have shown that for every t0 ∈ R there exists some t ≥ t0 such

that λ(t− 1) ≥ ε̄. This contradicts our assumption that lim
t→∞

λ(t) = 0. Hence, by

contradiction it follows that lim
t→∞

F̄(t−1)
F̄(t) = 1.
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Now, using the algebraic limit theorem it follows that

lim
t→∞

f (t− 1)
F̄(t)

= lim
t→∞

(
f (t− 1)
F̄(t− 1)

· F̄(t− 1)
F̄(t)

)
= lim

t→∞

f (t− 1)
F̄(t− 1)

· lim
t→∞

F̄(t− 1)
F̄(t)

= 0 · 1 = 0,

where we used the fact that h has a decreasing hazard rate.
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