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A B S T R A C T

Recent research in materials science opens exciting perspectives to design novel quantum materials and
devices, but it calls for quantitative predictions of properties which are not accessible in standard first
principles packages. PAOFLOW, is a software tool that constructs tight-binding Hamiltonians from self-
consistent electronic wavefunctions by projecting onto a set of atomic orbitals. The electronic structure provides
numerous materials properties that otherwise would have to be calculated via phenomenological models. In this
paper, we describe recent re-design of the code as well as the new features and improvements in performance.
In particular, we have implemented symmetry operations for unfolding equivalent k-points, which drastically
reduces the runtime requirements of first principles calculations, and we have provided internal routines of
projections onto atomic orbitals enabling generation of real space atomic orbitals. Moreover, we have included
models for non-constant relaxation time in electronic transport calculations, doubling the real space dimensions
of the Hamiltonian as well as the construction of Hamiltonians directly from analytical models. Importantly,
PAOFLOW has been now converted into a Python package, and is streamlined for use directly within other
Python codes. The new object oriented design treats PAOFLOW’s computational routines as class methods,
providing an API for explicit control of each calculation.
1. Introduction

Exploring phenomena and properties of novel materials requires
accurate and efficient computational tools that can be easily customized
and manipulated. In this context, ab initio tight-binding (TB) Hamilto-
nians constructed from self-consistent quantum-mechanical wavefunc-
tions projected onto a set of atomic orbitals have been very successful,
since they allow calculations for materials that cannot be properly
addressed using only density functional theory (DFT) such as large
moiré superstructures or properties of exotic quantum systems where
spin and topology play an important role. PAOFLOW [1] is a new
software tool that employs an efficient procedure of projecting the full
plane-wave solution on a reduced space of pseudoatomic orbitals [2,3],

∗ Corresponding author.
E-mail address: mbn@unt.edu (M. Buongiorno Nardelli).

and provides an interpolated electronic structure to promptly com-
pute a plethora of relevant quantities, including optical and magnetic
properties, charge and spin transport as well as topological invariants.
Importantly, in contrast with other common approaches the projection
does not require any additional inputs and can be successively inte-
grated in high-throughput calculations of arbitrary complex materials.
The code has been employed in multiple areas of materials science
since its initial release in 2016. In particular, several groups used it to
compute the (spin) Berry curvature as well as spin and/or anomalous
Hall conductivity (SHC and AHC) in a variety of materials, ranging from
𝛽-W to magnetic antiperovskites [4–8]. Transport quantities, such as
the electrical and thermal conductivity, were also computed in order
to analyze carrier mobility in thermoelectrics [9,10].
vailable online 2 September 2021
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The software package has recently undergone a major refactor,
resulting in a large variety of properties that can be calculated as
well as highly improved performance. Many improvements were made
to simplify the user experience, to make the package more modular,
and to create an API for manipulating TB Hamiltonians. PAOFLOW,
now installed as a Python package, features an object oriented de-
sign and contains an importable PAOFLOW class, allowing multiple
Hamiltonians to be constructed and manipulated simultaneously. This
framework enables high-throughput materials analysis within a single
python file. While explicit descriptions of the code’s methodology are
available in the original PAOFLOW paper [1], in this paper we outline
PAOFLOW’s modified features, detail new functionalities, and provide
a user manual for operating the various methods available within the
package. Currently, PAOFLOW is publicly available under the terms
of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version. It
is also integrated in the AFLOW𝜋 high-throughput framework [11]
and distributed at http://www.aflow.org/src/aflowpi and http://www.
aflow.org/src/paoflow [12,13].

2. Installation and software design

PAOFLOW is written in Python 3.8 (using the Python standard
libraries, NumPy and SciPy). Parallelization on CPUs uses the openMPI
protocol through the mpi4py module. The PAOFLOW package can be
easily installed on any hardware. Installation directly from the Python
package index (PyPi) is possible with the single command: pip install

paoflow. Otherwise, one may clone the PAOFLOW repository from
GitHub and install it from the root directory with the command: python
etup.py install. The package requires no specific setup, provided
hat the prerequisite Python 3.8 modules are installed on the system.
xample codes illustrating PAOFLOW’s capabilities are included on
itHub, in the examples/ directory of the PAOFLOW repository. Once

installed, PAOFLOW can be imported into any Python code and used
in conjunction with other software packages. It should be noted that,
in PAOFLOW 1.0 two control files were required: main.py to begin
the execution, and inputfile.xml to provide details of the calculation.
In PAOFLOW 2.0 the desired routines are called directly from the
Python code, eliminating the need for inputfile.xml. To facilitate the
transition between the versions, in the examples/ directory we have
provided an updated main.py file which allows use of the version 1.0
XML inputfile structure in PAOFLOW 2.0.

Generally, PAOFLOW requires a few basic calculations performed
with the Quantum ESPRESSO (QE) package [14]. The first (self-
consistent) run generates a converged electronic density and Kohn–
Sham (KS) potential on an appropriate Monkhorst and Pack (MP)
k-point mesh (pw.x). The second (non self-consistent) one (pw.x) eval-
uates eigenvalues and eigenfunctions on a larger MP mesh and often
for an increased number of bands. In PAOFLOW 1.0 the latter
required full k-point mesh without using symmetries, i.e. setting flags
nosym=.true. and noinv=.true. in QE inputfile, while version 2.0 can
econstruct equivalent k-points from symmetry operations and has no

such requirement, which greatly reduces the computation time at the
level of DFT. As a next step, the KS wavefunctions from QE must be
projected onto PAO basis functions. Also here we have introduced an
important change — a new capability is the generation of real space
atomic orbitals, constructed from the product of radial components
from pseudopotential files and spherical harmonics specifying angu-
lar momentum dependence. The user can thus choose between two
different options: project the KS wavefunctions onto this internally
constructed PAO basis set (Section 3.2), or post-processing the QE
output with projwfc.x in order to perform the projection, as it was
done in version 1.0. If the projections are computed using QE, the
eigenfunctions must be read by PAOFLOW before the construction
of a PAO Hamiltonian (Section 3.3). Performing the projections in
PAOFLOW enables construction of real space PAO wavefunctions for
2

computing spatially resolved quantities like charge density. Finally,
PAOFLOW 2.0 introduces a possibility to operate with no preprocess-
ing requirements from QE, where built-in or user-defined models serve
as the recipe for building Hamiltonians. Implementing these models
requires specific information about the atomic system a priori, and their
usage is described in Section 4.

Central to PAOFLOW 2.0 is an internal object called the
DataController, which has the sole responsibility of collecting and
maintaining important information about the atomic system and its
corresponding Hamiltonian. The DataController is initially populated
with data from the QE calculation, providing many of PAOFLOW’s
routines with required information and simplifying the way of calling
functions by the user. Moreover, the DataController saves quantities
needed for subsequent calculations, such as the Hamiltonian’s gradient
or the adaptive smearing parameters. In fact, many routines require
calculation of some quantities as a prerequisite. For example, the
spin_Hall routine requires the Hamiltonian’s gradient, which means
that the gradient_and_momenta should be called first to populate the
DataController with the gradient and momenta. The DataController

stores the system information in two dictionaries: one for strings and
scalar attributes (data_attributes) and another for vector and tensor
quantities (data_arrays). Such a structure allows computed quantities
to be easily accessed from PAOFLOW and utilized in customized calcu-
lations defined by the user. Note that the dictionary keys are consistent
with the naming conventions of PAOFLOW 1.0 to facilitate backwards
compatibility with the XML inputfiles and minimize differences in the
user experience when transitioning from the previous version.

3. Code description and package usage

PAOFLOW’s most fundamental procedure is the construction of
accurate PAO Hamiltonians, and the code’s object-oriented design al-
lows users to manipulate multiple Hamiltonians easily. A PAOFLOW
object is responsible for a single Hamiltonian, which is constructed and
operated on with PAOFLOW’s class methods. If instead of DFT elec-
tronic wavefunctions a TB model is used to construct the Hamiltonian,
the new PAOFLOW object will create the Hamiltonian immediately.
Otherwise, the KS wavefunctions are read from the output of QE. The
atomic orbitals are constructed and the KS wavefunctions are projected
onto them with the projections routine, creating the PAO basis. If
the projections are performed by QE’s module projwfc.x, they must
be read explicitly with read_atomic_proj_QE. Then, the Hamiltonian is
constructed with build_pao_hamiltonian, which allows PAOFLOW’s
other class methods to become functional. Listing 1 provides an exam-
ple source code for building the PAOFLOW object, reading projections
performed by QE, and constructing the PAO Hamiltonian. Listing 2
performs the same initialization procedure, but uses the internal atomic
orbital projection scheme. An ellipsis appearing in any listing indicates
that other PAOFLOW routines may follow.

The following subsections outline PAOFLOW’s individual routines
and the arguments that they accept for control. These routines belong
to the file PAOFLOW.py, located in the package’s src/ directory, and
should be called directly by the user.

3.1. The constructor: PAOFLOW

The PAOFLOW constructor acquires information about the python
execution, the names of input/output/working directories, and about
the atomic system. It builds and populates the DataController, which
will maintain the important quantities involved in calculations, han-
dle communication in multi-core runs, and write files to disc when
necessary.

For PAOFLOW to build a Hamiltonian, the constructor must be
passed data with either the location of Quantum ESPRESSO’s .save

directory or required specifications for an analytical TB model. The
QE .save directory contain up to two files from the execution of

http://www.aflow.org/src/aflowpi
http://www.aflow.org/src/paoflow
http://www.aflow.org/src/paoflow
http://www.aflow.org/src/paoflow
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QE: data-file-schema.xml (data-file.xml in previous versions of QE)
generated by the main run with pw.x, and atomic_proj.xml generated
y the post-processing tool projwfc.x, if the projections are computed

with QE. To implement a TB model from scratch, rather than starting
from the KS wave function solutions of DFT, a dictionary containing
the model’s label and other required parameters should be passed into
the model argument (see Section 4).

Arguments for the constructor, PAOFLOW:

• workpath (string) – Default : ’./’ – Path to the working directory.
Defaults to the current working directory.

• outputdir (string) – Default : ’output’ – Name of the directory to
store output data files. The directory is created automatically in
the workpath, if it does not already exist.

• inputfile (string) – Default : None - This argument is primarily for
backwards compatibility with PAOFLOW 1.0. It names the XML
inputfile with control parameters described in Ref. [1]. The XML
inputfile provides also a consistent descriptor format for highly
automated calculations, utilized by AFLOW𝜋.

• savedir (string) – Default : None – Name of the Quantum
ESPRESSO .save directory, relative to the working directory.

• model (dict) – Default : None – Dictionary specifying parameters
required to implement a TB model. See Section 4.

• npool (integer) – Default : 1 – Number of batches to process when
communicating between processors. This value will be automati-
cally increased if the Hamiltonian size exceeds mpi4py’s limit for
a single cross core message.

• smearing (string) – Default : ’gauss’ – Selects the broadening
technique used to smooth computed quantities. Options include
‘gauss’, ’m-p’ (Methfessel–Paxton), and None.

• acbn0 (bool) – Default : False – Read overlaps to construct a
non-orthogonal PAO Hamiltonian. Necessary to perform ACBN0
calculations [15,16].

• verbose (bool) – Default : False – Flag for high verbosity. Set True
to include additional information in the PAOFLOW output.

• restart (bool) – Default : False – Indicates the continuation of a
previous run from the saved state. Once the PAOFLOW object
is instantiated, the restart_load routine should be called with
the save file’s prefix as an argument. An example is provided in
listings 4 and 5.

3.2. projections

Perform projections of the KS eigenfunctions onto the pseudoatomic
orbital basis which is constructed by PAOFLOW based on the in-
formation in the atomic pseudopotential files. This operation requires
that PAOFLOW is instantiated by passing a QE .save directory with
required XML file from the self-consistent and non self-consistent cal-
culations. Listing 2 provides example usage of the projections routine,
and a complete description of the projection methodology can be found
in the Appendix of Ref. [2].

3.3. read_atomic_proj_QE

Read the projections of KS wavefunctions onto the atomic orbital
basis of the pseudopotential, performed by the QE routine projwfc.x

and written to atomic_proj.xml. Any time that the Hamiltonian is
built directly from the projections of QE, this routine should be called
immediately after the constructor.

read_atomic_proj_QE does not accept any arguments.
3

3.4. projectability

The projectability routine determines which bands do not meet
projectability requirements, flagging them for shift into the null space.
The projectability 𝑝𝐤 is a quantity measuring how well a KS Bloch state
is represented by orbitals of the PAO basis, as described in Section 3
of Ref. [1]. If 𝑝𝐤 ≈ 1, the PAO basis set accurately represents that
particular Bloch state for 𝐤. 𝑝𝐤 ≪ 1 indicates that the state is poorly
represented and should be excluded. The projection threshold pthr
selects the minimum allowed projectability for accepting a band. All
bands which do not meet the criteria are projected to the null space
during the Hamiltonian’s construction, in one of two ways. Either as

𝐻̂(𝐤) = 𝐴𝐸𝐴† + 𝜅
(

𝐼 − 𝐴𝐴†) (1)

following Ref. [17] or

𝐻̂(𝐤) = 𝐴𝐸𝐴† + 𝜅
(

𝐼 − 𝐴
(

𝐴†𝐴
)−1 𝐴†

)

(2)

according to Ref. [2]. Unless the shift argument is explicitly set to
a floating point value, the shifting parameter 𝜅 is determined au-
tomatically by this routine. Which method is used to remove low-
projectability bands during the Hamiltonian construction is selected by
argument shift_type, in the pao_hamiltonian routine (Section 3.5).

Arguments for projectability:

• pthr (float) – Default : 0.95 – The projectability threshold [2].
All bands with a minimum projectability of the pthr value or
higher are included in the Hamiltonian. Decreasing this threshold
will, in general, increase the number of included bands. How-
ever, including states with lower projectability risks nonphysical
contributions entering into the Hamiltonian.

• shift (string or float) – Default : ‘auto’ – Float to indicate the
value (in eV) of the null space cutoff (𝜅 in Eqs. (1) and (2)) [2].
Bands beneath the projectability threshold will be shifted to this
value. Providing the default argument ‘auto’ automatically sets
shift’s value to the minimum energy of the first band that fails
the projectability threshold.

3.5. pao_hamiltonian

This routine constructs the Hamiltonian in both real space and
momentum space. After this routine is completed, the data controller
will contain arrays HRs and Hks, for the respective real space and
k-space Hamiltonians.

Listing 1: main.py - Build Hamiltonian

from PAOFLOW import PAOFLOW

pao = PAOFLOW.PAOFLOW(savedir=’system.save’)
pao.read_atomic_proj_QE ()
pao.projectability(pthr =0.95)
pao.pao_hamiltonian ()
...

Arguments for pao_hamiltonian:

• shift_type (integer) – Default : 1 – Determines which method
(Eq. (2) by default) is used to remove bands into the null space.
0 — Eq. (1), 1 — Eq. (2), or 2 — No shift.

• insulator (bool) — Default : False — Setting this flag as True

asserts that the system is insulating, setting the top of the high-
est occupied band to 0 eV. The Fermi energy is calculated for
metallic systems, which corrects numerical discrepancies from the
projection routine and irreducible wedge unfolding. This flag is
set True automatically if the QE output does not contain smearing
parameters.
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• write_binary (bool) – Default : False – Flag to write the files
necessary for the ACBN0 routine [18]. Overlaps from projwfc.x

are required from prerequisite QE calculations, and this flag is
required for further use with ACBN0.

• expand_wedge (bool) – Default : True – Applies symmetry oper-
ations to the k-mesh unfolding the irreducible wedge into the
complete Brillouin zone, and evaluates the Hamiltonian matrix
elements for every k-point. PAOFLOW routines act on the full
grid of k-points (True), while ACBN0 only requires the irreducible
wedge (False).

• symmetrize (bool) – Default : False – The Hamiltonian incurs nu-
merical errors during the process of unfolding the wedge. Certain
routines, such as find_weyl_points, are sensitive to the Hamil-
tonian’s symmetric components. Setting this flag to True sym-
metrizes the Hamiltonian with an iterative procedure to reduce
numerical errors in the Hamiltonian’s symmetry.

• thresh (float) – Default : 1e-6 – The tolerance of symmetrization,
if the procedure is performed.

• max_iter (integer) – Default : 16 – The maximum number of
iterations that the symmetrization procedure will perform.

3.6. bands

Computes the band structure along the AFLOW standard path for
the specified Bravais lattice. Alternatively, a custom path can be created
by defining the high symmetry points in a dictionary and the band
path as a string (see Listing 2). The path is Fourier interpolated to an
arbitrary resolution, controlled by argument nk.

Listing 2: main.py - Bands

from PAOFLOW import PAOFLOW

pao = PAOFLOW.PAOFLOW(savedir=’system.save’)
pao.projections ()
pao.projectability ()
pao.pao_hamiltonian ()

path = ’G-X-S-Y-G’
sym_points = {’G’:[0.0, 0.0, 0.0],

’S’:[0.5, 0.5, 0.0],
’X’:[0.5, 0.0, 0.0],
’Y’:[0.0, 0.5, 0.0]}

pao.bands(ibrav=8,
nk=1000,
band_path=path ,
high_sym_points=sym_points)

...

Arguments for bands:

• ibrav (integer) – Default : None – The Bravais lattice identifier, as
specified by Quantum ESPRESSO.

• band_path (string) – Default : None – String of high symmetry
point labels separated by ‘-’ for a line connecting two points or ‘|’
to place the points directly adjacent on the path (see Listing 2). If
band_path is None the standard AFLOW path will be used [19].

• high_sym_points (dictionary) – Default : None – A dictionary map-
ping the string label of a high symmetry point to its three-
dimensional crystal coordinate. (Listing 2)

• fname (string) – Default : ‘bands’ – File name prefix for the bands.
One file is written for each spin component (see listing 2).

• nk (int) – Default : 500 – Number of points to compute along the
band path.
4

.7. interpolated_hamiltonian

Fourier interpolation of the PAO Hamiltonian can increase the
-grid to an arbitrary density, as described and illustrated in the
anuscript for PAOFLOW 1.0. The new desired dimension should be

pecified for nk1, nk2, and nk3. The default behavior is to double the
riginal nk dimension of any unspecified nfft argument. This routine
opulates the DataController with a new array ‘Hksp’, the interpolated
amiltonian.

Arguments for interpolated_hamiltonian:

• nfft1 (integer) – Default : None – The desired new dimension for
the Hamiltonian’s previous dimension nk1. The nfft dimension
should be greater than or equal to the previous nk dimension. If
no argument is provided the original k-grid dimension is doubled.

• nfft2 (integer) – Default : None – New interpolated dimension for
nk2, following the same scheme as nfft1.

• nfft3 (integer) – Default : None – New interpolated dimension for
nk3, following the same scheme as nfft1 and nfft2.

• reshift_Ef (bool) – Default : False – Shift the Hamiltonian’s diag-
onal elements such that zero lies at the recomputed Fermi energy
or at the top of the valence band.

.8. spin_operator

The spin operator plays important role in several calculations per-
ormed by the PAOFLOW code. Generally, when the spin operator 𝐒𝑗 is
equired, PAOFLOW automatically constructs it. However, 𝐒𝑗 can be
xplicitly computed by calling this routine. The shell levels and their
ccupations are automatically read from pseudopotentials in the .save

irectory.
Arguments for spin_operator:

• spin_orbit (bool) – Default : False – Set this flag to True if spin or-
bit coupling is added at the PAO level (with the adhoc_spin_orbit

routine).

.9. add_external_fields

PAOFLOW supports the addition of electric fields, onsite Zeeman
ields, or Hubbard corrections directly to the PAO Hamiltonian [15,20].
ields must be added after the Hamiltonian’s construction. Listing 3
rovides an example where an electric field and Hubbard correction
re simultaneously added to a Hamiltonian.

Listing 3: main.py - External fields

from PAOFLOW import PAOFLOW

pao = PAOFLOW.PAOFLOW(savedir=’system.save’)
pao.projections ()
pao.projectability ()
pao.pao_hamiltonian ()

hubbardU = np.zeros(32, dtype=float)
hubbardU [1:4] = .1
hubbardU [17:20] = 2.31
pao.add_external_fields(Efield =[.1,0.,0.],

HubbardU=hubbardU)
...

Arguments for add_external_fields:

• Efield (ndarray or list) – Default : [0.] – An array of the form
[𝐸 , 𝐸 , 𝐸 ], added to the diagonal elements of the Hamiltonian.
𝑥 𝑦 𝑧
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Listing 3 provides an example of adding an electric field with one
non-zero component.

• Bfield (ndarray or list) – Default : [0.] – An array of the form
[𝐵𝑥, 𝐵𝑦, 𝐵𝑧], specifying the strength and direction of an on-site
magnetic field.

• HubbardU (ndarray or list) – Default : [0.] – An array with one U
entry for each orbital, e.g. [𝑈1, 𝑈2, . . . , 𝑈𝑛] where 𝑛 is the number
of orbitals. An example is provided in Listing 3.

3.10. adhoc_spin_orbit

This routine allows the addition of spin–orbit coupling (SOC) at the
PAO level. SOC is implemented for the following shell configurations,
provided as the orb_pseudo argument: s, sp, spd, ps, ssp, sspd, and
ssppd.

Arguments for adhoc_spin_orbit:

• naw (ndarray or list) – Default : [1] – List containing the number
of wave functions for each pseudopotential.

• phi (flaot) – Default : 0. – Spin orbit azimuthal angle.
• theta (float) – Default : 0. – Spin orbit polar angle.
• lambda_p (ndarray or list) – Default : [0.] – Array of p-orbital

coupling strengths.
• lambda_d (ndarray or list) – Default : [0.] – Array of d-orbital

coupling strengths.
• orb_pseudo (list) – Default : [’s’] – List of strings, containing the

orbital configuration for each pseudopotential.

3.11. doubling_Hamiltonian

Doubles the real space dimensions of the Hamiltonian, creating a
supercell in any desired direction. Naturally, the number of wavefunc-
tions in the Hamiltonian increases by a factor 2𝐧𝐱 × 2𝐧𝐲 × 2𝐧𝐳. Doubling
is performed one time in each dimension by default, and doubling can
be suppressed by setting the argument for a dimension to 0.

Arguments for doubling_Hamiltonian:

• nx (int) – Default : 1 – Number of times to double the x dimension.
If nx is set to 2 the resulting cell is 4 times larger in the x

direction.
• ny (int) – Default : 1 – Number of times to double the y dimension.
• nz (int) – Default : 1 – Number of times to double the z dimension.

3.12. topology

The topology routine calculates various quantities along the AFLOW
standard k-path. If the user generates a custom path with bands, prior to
this routine, this path will be used when calculating the Z2 invariance
and topological properties.

Arguments for topology:

• eff_mass (bool) – Default : False – Setting this flag True computes
the Hamiltonian’s second derivative along the k-path. The effec-
tive mass is calculated and saved to file with naming convention
effmass_IJ_S.dat. The indices I and J are specified by the argu-
ments ipol and jpol. Index S is specified by spin polarization at
the DFT level.

• Berry (bool) – Default : False – Set True to calculate the Berry cur-
vature along the k-path and writes results to file as Omega_IJ.dat.
Here, I and J are indices of the Berry curvature (𝛺𝑖𝑗) and are
specified by ipol and jpol respectively.

• spin_Hall (bool) – Default : False – Setting True calculates the spin
Berry curvature (𝛺𝑠

𝑖𝑗) along the k-path and writes the results to
files Omegaj_S_IJ.dat. Here, the indices I, J, and S are specified
by the arguments ipol, jpol, and spol. This routine automatically
computes the Berry curvature, but no files for Berry are written
unless its flag is explicitly set True.
5

Fig. 1. Fermi surface of FeP calculated on a ultra-dense k-grid in PAOFLOW and
visualized in FermiSurfer [21].
Source: For description of DFT calculations see Ref. [22].

• spol (integer) – Default : None – Spin polarization index of the spin
Berry curvature calculation. This selects which component of the
spin operator is used.

• ipol (integer) – Default : None – The index 𝑖 in effective mass and
(spin) Berry calculations.

• jpol (integer) – Default : None – The index 𝑗 in effective mass and
(spin) Berry calculations.

3.13. pao_eigh

The routine pao_eigh computes the eigenspectrum for the entire
k-grid, saving the eigen-values and -vectors as new arrays in the
DataController under keys ‘E_k’ and ‘v_k’ respectively. Some of the
previously described functions compute the eigenvalues and eigenvec-
tors along a path, such as bands and topology. This routine replaces
values computed by such routines with a new set of eigenfunctions,
running across the entire Brillouin zone.

No arguments are accepted when calling pao_eigh.

3.14. trim_non_projectable_bands

Removes eigenvalues and momenta which do not meet the pro-
jectability requirement set by projectability from respective data
arrays. This routine should be called after pao_eigh, if such trimming
is desired.

No arguments are accepted by
trim_non_projectable_bands.

3.15. fermi_surface

Computes the bands with energies between fermi_up and fermi_dw.
The results are saved in the NumPy npz format with naming convention
Fermi_surf_band_N_M.npz, where N is the band index and M is the spin
index. The Fermi surface is saved with resolution of the existing k-grid
(see Fig. 1).

Arguments for fermi_surface:

• fermi_up (float) – Default : 1 – The upper energy bound for
selecting bands. Bands within the range [fermi_dw, fermi_up] are
included.

• fermi_dw (float) – Default : 1 – The lower energy bound for
selecting bands.
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3.16. gradient_and_momenta

The Hamiltonian’s gradient is initially calculated in real space, as
it takes a simpler form. Afterward, it is Fourier transformed back into
reciprocal space. Thus, the Hamiltonian’s k-space gradient is given by

∇⃗𝐤𝐻̂(𝐤) =
∑

𝛼
𝑖𝐑 exp (𝑖𝐤 ⋅ 𝐑) 𝐻̂ (𝐑) (3)

where 𝐻̂ (𝐑) is the real space PAO matrix and |

|

𝜓𝑛(𝐤)⟩ = exp(−𝑖𝐤 ⋅ 𝐫)
|

|

𝑢𝑛(𝐤)⟩ are Bloch’s functions [23]. The Hamiltonian’s derivative is saved
as a new array key ‘dHksp’ in the DataController.

Next, the momenta are computed from the Hamiltonian’s gradient
as

𝐩𝑛𝑚(𝐤) = ⟨𝜓𝑛(𝐤)|| 𝑝̂ ||𝜓𝑚(𝐤)⟩ = (4)

= ⟨𝑢𝑛(𝐤)||
𝑚0
ℏ

∇⃗𝐤𝐻̂(𝐤) |
|

𝑢𝑚(𝐤)⟩

Additionally, the Hamiltonian’s second derivative can be computed
by setting the band_curvature argument to True.

Arguments for gradient_and_momenta:

• band_curvature (bool) – Default : False – Compute the Hamilto-
nian’s second derivative, stored as an array in the DataController

under the key ‘d2Ed2k’.

3.17. adaptive_smearing

Generates the adaptive smearing parameters, stored in the
DataController as ‘deltakp’, used to compute quantities on energy
intervals, such as the density of states or spin Hall conductivity.
Allowed adaptive smearing types are gaussian (’gauss’), Methfessel–
Paxton (’m-p’), or None. Implementation of the Gaussian broadening
parameters are described in Section 3 of Ref. [1].

Arguments for adaptive_smearing:

• smearing (string) – Default : ‘gauss’ – Method of broadening used
to smooth the discrete sampling of quantities computed on energy
intervals.

3.18. dos

Compute the density of states (DOS) and/or projected density of
states (PDOS) within a user defined energy range. If this routine is
called after adaptive_smearing, the ‘deltakp’ smearing parameter is
used to smooth the DOS calculations.

Arguments for dos:

• do_dos (bool) – Default : True – Flag to control whether the DOS
is computed.

• do_pdos (bool) – Default : True – Flag to control whether the PDOS
is computed.

• delta (float) – Default : 0.01 – Width of the gaussian at each en-
ergy, used to smooth the dos curves. If it has been computed with
the adaptive_smearing routine, ‘deltakp’ replaces this quantity.

• emin (float) – Default : -10 – Lower limit for the energy range
considered.

• emax (float) – Default : 2 – Upper limit for the energy range
considered.

• ne (int) – Default : 1000 – The number of points to evaluate within
the energy range [emin,emax].

3.19. z2_pack

Writes the real space Hamiltonian to a dat file, for use with the
Z2Pack code [24] (see Fig. 2).

Arguments for z2_pack:

• fname (string) — Default : ’z2pack_hamiltonian.dat’ — Name for
the dat file, written to PAOFLOW’s output directory.
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Fig. 2. Spin texture (𝑆𝑧) of two-dimensional ferroelectric SnTe along high-symmetry
lines (example08).
Source: See Ref. [25]. for details.

3.20. spin_texture

Compute spin texture as the spin operator’s expectation value for
each band and for each k-point:

𝜴𝑛(𝐤) = ⟨𝜓𝑛(𝐤)|𝐒𝑗 |𝜓𝑛(𝐤)⟩ (5)

𝐒𝑗 is the spin operator, and |𝜓𝑛(𝐤)⟩ are the momentum space PAO
wavefunctions for band index 𝑛. The spin texture is computed for
bands which have values within energy range specified by fermi_up
and fermi_dw. Calling this routine after bands results in the spin
texture along the same k-path as bands, while calling it after pao_eigh

computes spin texture across the entire BZ. Results are written to a file
named spin-texture-bands.dat for bands along a path and to NumPy

.npz format with naming convention spin_text_band_N.npz for bands
across the BZ. Here, N is the band index, and each file contains spin
texture computed on PAOFLOW’s k-grid.

Arguments for spin_texture:

• fermi_up (float) – Default : 1 – The spin texture is computed only
for bands which contain energies beneath this upper bound.

• fermi_dw (float) – Default : 1 – The spin texture is computed only
for bands which contain energies above this lower bound.

3.21. anomalous_Hall

Calculating anomalous Hall conductivity (AHC, 𝜎𝑖𝑗) relies on ac-
curate evaluation of the Berry curvature and requires a preliminary
run of gradient_and_momenta. PAOFLOW implements a standard Kubo
formula for evaluating the k-resolved Berry curvature [26]. Details are
given in the previous paper and in the comprehensive reference by
Gradhand et al. [27]. The AHC is computed with adaptive smearing,
provided that the broadening parameters are calculated beforehand by
adaptive_smearing.

Arguments for anomalous_Hall:

• do_ac (bool) – Default : False – Compute the magnetic circular
dichroism (MCD) on the energy range [emin, emax].

• emin (float) – Default : -1 – The minimum energy in the range on
which the AHC is computed.

• emax (float) – Default : 1 – The maximum energy in the range.
500 points are evaluated within the interval [emin, emax].



Computational Materials Science 200 (2021) 110828F.T. Cerasoli et al.
• fermi_up (float) – Default : 1 – Selects the upper energy bound for
evaluating the Berry curvature.

• fermi_dw (float) – Default : -1 – Selects the lower energy bound
for evaluating the Berry curvature.

• a_tensor (list) – Default : None – List of tensor elements to evaluate.
For example, setting this argument to [[0,0], [1,2]] calculates
the two components 𝜎𝑥𝑥 and 𝜎𝑦𝑧. All 9 components are computed,
if the argument is left as None.

3.22. spin_Hall

The spin Hall conductivity (SHC, 𝜎𝑘𝑖𝑗) for spin polarization along k
and charge (spin) current along i (j), is computed in a similar manner
to AHC [28]. Here, evaluation of the spin Berry curvature is per-
formed with the spin operator and Hamiltonian gradient as ingredients.
Again, the gradient_and_momenta routine is a prerequisite, and running
adaptive_smearing beforehand controls the inclusion of broadening
parameters in the calculation.

Arguments for spin_Hall:

• twoD (bool) – Default : False – Setting this flag True outputs
the spin_Hall quantities in 2-dimensional units 𝛺−1, removing
any dependence on the sample height. It is assumed that the
dimensions of interest are oriented in the x-y plane, and the slab
is oriented along z.

• do_ac (bool) – Default : False – Compute the spin circular dichro-
ism (SCD) on the energy range [emin, emax].

• emin (float) – Default : -1 – The minimum energy in the range on
which the SHC and SCD are computed.

• emax (float) – Default : 1 – The maximum energy in the range.
Again, 500 points are evaluated in the interval [emin, emax].

• fermi_up (float) – Default : 1 – Selects the upper energy bound for
evaluating the spin Berry curvature.

• fermi_dw (float) – Default : -1 – Selects the lower energy bound
for evaluating the spin Berry curvature.

• s_tensor (list) – Default : None – List of tensor elements to evaluate.
To calculate 𝜎𝑥𝑥𝑥 and 𝜎𝑧𝑥𝑦 components use [[0,0,0],[0,1,2]]. If
the argument is left as None, all 27 components are computed.

3.23. doping

Determine the chemical potential corresponding to a specified dop-
ing concentration and temperature range.

Arguments for doping:

• tmin (float) – Default : 300 – Minimum temperature for which to
evaluate the chemical potential.

• tmax (float) – Default : 300 – Maximum temperature to compute
chemical potential.

• nt (int) – Default : 1 – The number of temperatures to evaluate in
the range [tmin, tmax].

• delta (float) – Default : 0.01 – Gaussian broadening width, used
to smooth the density of states along the energy range. Doping
calculation involves an integration over density of states and
therefore includes a call to the dos module.

• emin (float) – Default : -1 – Lowest value of energy of the occupied
bands.

• emax (float) – Default : 1 – At least the energy of the minimum of
the conduction bands to obtain accurate results.

• ne (int) – Default : 1000 – Number of points in the energy grid.
• doping_conc (float) – Default : 0 – The doping concentration in

carriers/cm3 for which to compute the chemical potential. Specify
negative value for n-type doping and positive value for p-type
doping.

• core_electrons (int) – Default : 0 – If the total number of electrons
in the lower energy bands is known, this value can be introduced
here. In this case, emin does not have to be the lowest energy
value of occupied bands but can instead be set above energies of
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the core bands, to speed up integration.
• fname (string) – Default : ‘doping_’ – Prefix for the output file
containing doping versus temperature.

3.24. density

Calculate the electronic density on a real space grid, performed for
silicon in Listing 4 and displayed in Fig. 3. Wavefunctions in k-space
(produced by pao_eigh) are required as a prerequisite, and the PAO
projections must be performed by PAOFLOW’s projections method.
This algorithm serves as a recipe for constructing the real space PAO
wavefunctions. Although this is currently the only routine to utilize
such construction, future versions of PAOFLOW will include other
methods for computing spatially resolved quantities. The real space grid
dimension defaults to 48x48x48 but can be specified with the optional
arguments nr1, nr2, and nr3.

Arguments for density:

• nr1 (int) – Default : 48 – Number of points in the first dimension
of the real space grid, over which to compute the charge density.

• nr2 (int) – Default : 48 – Number of points in the second dimension
of the real space grid.

• nr3 (int) – Default : 48 – Number of points in the third dimension
of the real space grid.

Listing 4: main.py - Density

from PAOFLOW import PAOFLOW

pao = PAOFLOW.PAOFLOW(savedir=’system.save’)
pao.projections ()
pao.projectability ()
pao.pao_hamiltonian ()
pao.pao_eigh ()

pao.density(nr1=48, nr2=48, nr3 =48)

pao.finish_execution ()

3.25. transport

Calculate the transport properties, such as electrical conductivity,
Seebeck coefficients, and thermal conductivity. The transport prop-
erties are computed in the constant relaxation time approximation,
unless built-in or user defined 𝜏 models are provided. See example09 for
detailed information on specifying models for the relaxation time 𝜏.

Arguments for transport:

• tmin (float) – Default : 300 – Minimum temperature for which to
evaluate transport properties.

• tmax (float) – Default : 300 – Maximum temperature to evaluate
transport properties.

• nt (float) – Default : 1 – The number of temperatures to evaluate
in the range [tmin,tmax].

• emin (float) – Default : 1 – Minimum value in the energy grid
[emin,emax].

• emax (float) – Default : 10 – Maximum value of energy in the grid.
• ne (int) – Default : 1000 – Number of points in the energy range

[emin,emax].
• scattering_channels (list) – Default : None – List of strings and/or
TauModel objects containing the scattering models to be included
in the calculation of 𝜏.

• scattering_weights (list) – Default : None – Initial guess for the
parameters 𝑎𝑖𝑚𝑝, 𝑎𝑎𝑐 , 𝑎𝑜𝑝 etc to be used for the fitting procedure if
fit is set to True. The default behavior with this argument set to
None is to use unity as every scattering weight.



Computational Materials Science 200 (2021) 110828F.T. Cerasoli et al.
Fig. 3. Electronic density for diamond structure of silicon on the ⟨1, 0,−1⟩ plane cut,
calculated from the real space PAO wavefunctions (example01).

• tau_dict (dict) – Default : {} – Dictionary of parameters required
for the calculation of scattering models.

• write_to_file (bool) – Default : True – Controls the output of the
several data fields produced by this routine. No files are written
if the flag is set to False.

• save_tensors (bool) – Default : False – Setting this flag True stores
the resulting electrical conductivity, Seebeck coefficient, and ther-
mal conductivity to the data_arrays dictionary with respective
keys ‘sigma’, ‘S’, and ‘kappa’.

3.26. find_weyl_points

Perform a search for Weyl points within the first Brillouin zone. The
search identifies Weyl point candidates by utilizing Scipy’s minimize
function with the ‘L-BFGS-B’ algorithm.

Arguments for find_weyl_points:

• symmetrize (bool) – Default : False – Use QE symmetry oper-
ations to unfold equivalent k-points. If equivalent k-points are
Weyl points, all such points are reported.

• search_grid (list) – Default : [8, 8, 8] – Dimensions of the grid on
which the minimization routine is performed. Bands are Fourier
interpolated on this grid to improve resolution.

3.27. restart_dump

PAOFLOW’s computational state can be saved at any time with
the restart_dump routine. Data is stored in the json format, and the
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naming convention for such files can be chosen with the fname_prefix
argument. Each processor saves a file in the workpath directory with
name fname_prefix_N.json, where N is the core’s rank. For this reason,
restarted calculations must be executed with the same number of cores.
See Listing 5 for an example where the gradient and momenta are
computed and dumped for reuse in another calculation.

Arguments for restart_dump:

• fname_prefix (string) – Default : ’paoflow_dump’ – The name
prefix for the dump files, written to the working directory.

Listing 5: main.py - Restart (dump)

from PAOFLOW import PAOFLOW

pao = PAOFLOW.PAOFLOW(savedir=’system.save’)
pao.projections ()
pao.projectability ()
pao.pao_hamiltonian ()
pao.pao_eigh ()
pao.gradient_and_momenta ()
pao.restart_dump(fname_prefix=’pao’)

3.28. restart_load

Recover PAOFLOW’s calculation state from a previous run, saved
to the json format with restart_dump. A restarted run must be executed
with the same number of cores as the run which produced the dump
files. Listing 6 provides example usage for restart_load.

Arguments for restart_load:

• fname_prefix (string) – Default : ’paoflow_dump’ – The name
prefix for the dump files, written to the working directory.

Listing 6: main.py - Restart (load)

from PAOFLOW import PAOFLOW

pao = PAOFLOW.PAOFLOW(restart=True)
pao.restart_load(fname_prefix=’pao’)
pao.adaptive_smearing ()
...

3.29. finish_execution

Conclude the PAOFLOW run and remove references to memory in-
tensive quantities. Details about the execution are provided, such as run
duration and total memory requirements. This routine should be called
once all desired calculations are performed for a given PAOFLOW
object, especially if the code continues to create other PAOFLOW
Hamiltonians.

finish_execution accepts no arguments.

4. Tight-binding models

PAOFLOW is capable of generating a Hamiltonian from analytical
TB models, such as the Kane–Mele or Slater–Koster models [29,30].
For each type of model, one needs to specify a few system properties,
such as hopping parameters, lattice constant, etc. These parameters,
including the label selecting the model to implement, should be initially
stored in a dictionary, which is subsequently passed into PAOFLOW’s
constructor as the model argument. Once the Hamiltonian is con-
structed, PAOFLOW’s class methods can be applied in the standard
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way to compute any desired quantities. Two examples are provided in
Listing 7 and 8, and more are provided in the examples/ directory.

4.1. Cubium

Creates a Hamiltonian for a single atom in the simple-cubic geom-
etry, containing one orbital per site. The hopping parameter is defined
by including an entry in the parameters dictionary with key ‘t’, and
hould have units of eV.

Required dictionary entries:

• Key : ‘label’ — Keyword identifier for the model: ‘cubium’, in this
case. The labels are not case sensitive.

• Key : ‘t’ — The hopping parameter for nearest neighbor interac-
tions, in units of eV.

.2. Cubium II

Creates a Hamiltonian for a single atom in the simple-cubic geom-
try, implementing the double band model with two orbitals per site.
he hopping parameter and band gap energy are given by ‘t’ and ‘Eg’
espectively.

Required dictionary entries:

• Key : ‘label’ — Keyword identifier for the model: ‘cubium2’
• Key : ‘t’ — The hopping parameter for nearest neighbor interac-

tions.
• Key : ‘Eg’ — Band gap energy, in eV.

.3. Graphene

A simple TB model for graphene, considering only nearest neighbor
nteractions. The hopping parameter is specified with parameter ‘t’. The
attice constant is taken as 𝑎 = 2.46 Å, and lattice vectors are given in
standard form: 𝐚𝟏 = 𝑎⟨1, 0, 0⟩, 𝐚𝟐 = 𝑎⟨ 12 ,

√

3
2 , 0⟩, 𝐚𝟑 = 𝑎⟨0, 0, 10⟩.

Required dictionary entries:

• Key : ‘label’ — Keyword identifier for the model: ‘graphene’
• Key : ‘t’ — The hopping parameter for nearest neighbor interac-

tions.

4.4. Kane–Mele model

Constructs a Kane–Mele Hamiltonian for graphene. The first nearest
neighbors are handled in the standard manner, with hopping param-
eter ‘t’. Second nearest neighbors are treated with spin dependent
amplitude, characterized by the parameter ‘soc_par’. See an example
in Listing 7.

Required dictionary entries:

• Key : ‘label’ — Keyword identifier for the model: ‘kane_mele’.
• Key : ‘alat’ — The lattice parameter, 𝑎. The lattice vectors are the

same as in Section 4.3.
• Key : ‘t’ — The hopping parameter for nearest neighbor interac-

tions.
• Key : ‘soc_par’ — The spin–orbit coupling parameter for second

nearest neighbor interactions.

Listing 7: main.py - Kane–Mele model

from PAOFLOW import PAOFLOW

model = {’label’:’Kane_Mele ’, ’t’:1.0,
’soc_par ’:0.1, ’alat’:1.0}

paoflow = PAOFLOW.PAOFLOW(model=model ,
outputdir=’./ kane_mele ’)

...
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4.5. Slater–Koster model

A generalized Slater–Koster TB model in the two-center approxima-
tion, that includes only s and p orbitals of first nearest neighbors. The
user must specify the lattice vectors, the atomic positions, the included
orbitals for each atom, and the hopping parameters. See Listing 8 for
further details.

Required dictionary entries:

• Key : ‘label’ — Keyword identifier for the model: ‘slater_koster’.
• Key : ‘a_vectors’ — A numpy array containing the three primitive

lattice vectors.
• Key : ‘atoms’ — A dictionary with entries specifying atomic infor-

mation for each atom. Dictionary keys label the atoms numeri-
cally with strings (e.g. the first atom has key ‘0’), and the corre-
sponding values are dictionaries with information about the atom.
The species, position (in crystal coordinates), and string identifier
for each represented orbital should be saved in the atomic dictio-
nary with respective keys: ‘name’, ‘tau’, and ‘orbitals’. The name
is simply a string, the atomic position is a 3-vector, and orbitals
are a list of strings denoting the orbitals belonging to each atom.

• Key : ‘hoppings’ — A dictionary defining different hopping pa-
rameters, in eV. The Slater–Koster hopping parameters should be
labeled: sss, sps, pps, and ppp.

Listing 8: main.py - Slater-Koster model

from PAOFLOW import PAOFLOW
import numpy as np

model = {’label’:’slater_koster ’}

avecs = np.array ([[.5,.5,0],
[.5,0,.5],
[0 ,.5 ,.5]])

atoms = {’0’ :
{’name’:’Si’,
’tau’:[0,0,0],
’orbitals ’:[’s’,’px’,’py’,’pz’]},

’1’ :
{’name’:’Si’,
’tau’:[.25 ,.25 ,.25] ,
’orbitals ’:[’s’,’px’,’py’,’pz’]}}

hops = {’sss’: -2.36233 , ’sps’: 1.86401 ,
’pps’: 2.85882 , ’ppp’: -0.94687}

model[’a_vectors ’] = avecs
model[’atoms’] = atoms
model[’hoppings ’] = hops

paoflow = PAOFLOW.PAOFLOW(model=model ,
outputdir=’./ kane_mele ’)

...

5. Scattering models

PAOFLOW supports a diverse set of scattering effects by allowing
users to implement temperature and energy dependent models for the
relaxation time parameter 𝜏. Functional models are defined with the
TauModel class. There are many built-in models, which only require the
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specification of empirical constants, and users can define new models to
pass into PAOFLOW directly. A Python dictionary containing required
arameters for any selected built-in models must be passed to the trans-
ort routine as the tau_dict argument (see Listing 9). Table 1 details
he various constant parameters and their key strings for dictionary
ntries. Models for 𝜏 models are necessarily dependent on two quanti-
ies, the temperature and the Hamiltonian’s energy eigenvalues. Other
arying parameters can be supplied to TauModels through the params
ictionary. As such, a python function accepting three arguments (the
emperature, the energy, and the parameters dictionary) is the required
ormat when constructing a custom TauModel object. The 𝜏 for each
ncluded model are computed, by evaluating the TauModel functions.
hen, the 𝜏s are harmonically summed to obtain the effective 𝜏 for all

scattering channels. The functional form for a TauModel is presented in
Listing 9 and a usage case in example10.

Listing 9: Define TauModel

from PAOFLOW.defs.TauModel import TauModel
from PAOFLOW import PAOFLOW

# Compute quantites required for transport
pao = PAOFLOW.PAOLFOW(savedir=’system.save’)
pao.projections ()
pao.projectability ()
pao.pao_hamiltonian ()
pao.pao_eigh ()
pao.gradient_and_momenta ()
pao.adaptive_smearing ()

# Define the functional model
# for acoustic scattering.
rho = 5.3e3; v = 5.2e3; D = 7*1.6e-19
m = .7*9.11e-13; h_bar = 6.58e-16;
ac_const = 2*np.pi*h_bar **4* rho*v**2
ac_const /= ((2*m)**(3/2)*D**2)
def acoustic_scat ( temp , ene , params ):

return ac_const /(temp*np.sqrt(ene))

# Define TauModel object
ac_model = TauModel(function=acoustic_scat)

channels = [ac_model , ’optical ’]

# Define parameters for built -in models
tau_params = {’ms’:0.7’,␣’hwlo’:[0.03536]
␣␣␣␣␣␣␣␣␣␣␣␣␣␣’eps_inf ’:11.6,␣’eps_0’:13.5}

pao.transport(scattering_channels=channels ,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣tau_dict=tau_params)

pao.finish_execution ()

5.1. Charged impurity scattering

In order to include the effect of electron scattering from impuri-
ties, include ’impurity’ in the list scattering_channels [31,32]. This
calculates the relaxation time as

𝜏𝑖𝑚(𝐸, 𝑇 ) =
𝐸

3
2
√

2𝑚∗4𝜋𝜀2

(𝑙𝑜𝑔(1 + 1 ) − 1 )𝜋𝑛 𝑍2𝑒4
(6)
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𝑥 1+𝑥 𝐼 𝐼
𝑥 = 𝐸
𝑘𝐵𝑇

(7)

Required parameters are 𝑚∗, 𝜀0, 𝜀inf , 𝑛𝐼 , 𝑍𝐼 .

5.2. Acoustic scattering

In order to include the effect of electron scattering from acous-
tic phonons, include ‘acoustic’ in the list scattering_channels. This
calculates the relaxation time according to [31,32]

𝜏𝑎𝑐 (𝐸, 𝑇 ) =
2𝜋ℏ4𝜌𝑣2

(2𝑚∗)
3
2 𝑘𝐵𝑇𝐷2

𝑎𝑐

√

𝐸
(8)

Required parameters are 𝑚∗, 𝜌, 𝑣,𝐷𝑎𝑐 .

5.3. Optical scattering

In order to include the effect of electron scattering from opti-
cal phonons, include ‘optical’ in the list scattering_channels. This
calculates the relaxation time following [31,32]

𝜏𝑜𝑝(𝐸, 𝑇 ) =

√

2𝑘𝐵𝑇𝜋𝑥𝑜ℏ2𝜌

(𝑚∗)
3
2𝐷2

𝑜𝑝𝑁𝑜𝑝
√

𝑥 + 𝑥𝑜 + (𝑁𝑜𝑝 + 1)
√

𝑥 − 𝑥𝑜
(9)

𝑁𝑜𝑝 =
1

exp ℏ𝜔𝑙
𝑘𝐵𝑇

− 1
, 𝑥 = 𝐸

𝑘𝐵𝑇
, 𝑥𝑜 =

ℏ𝜔𝑙
𝑘𝐵𝑇

, (10)

Required parameters are 𝑚∗, 𝜌, 𝜔𝑙 , 𝐷𝑜𝑝, 𝑁𝑜𝑝.

5.4. Polar acoustic scattering

In order to include the effect of electron scattering from acoustic
phonons in polar materials, include ‘polar_acoustic’ in the list scat-
tering_channels. This calculates the relaxation time following [31,32]

𝜏𝑝𝑎𝑐 (𝐸, 𝑇 ) =

√

2𝐸2𝜋𝜀2ℏ2𝜌𝑣2

𝑝2𝑒2
√

𝑚∗𝑘𝐵𝑇

×
⎡

⎢

⎢

⎣

1 −
𝜖𝑜
2𝐸

log(1 + 4𝐸
𝜖𝑜
) + 1

1 + 4 𝐸𝜖𝑜

⎤

⎥

⎥

⎦

(11)

Required parameters are 𝑚∗, 𝜀0, 𝜀inf , 𝜌, 𝑣, 𝑝.

5.5. Polar optical scattering

In order to include the effect of electron scattering from optical
phonons in polar materials, include ‘polar_optical’ in the list scatter-
ing_channels. This calculates the relaxation time based on [31–33].

𝜏𝑝𝑜𝑝(𝐸, 𝑇 ) =
∑

𝑖

𝑍(𝐸, 𝑇 , 𝜔𝑙𝑖)𝐸
3
2

𝐶(𝐸, 𝑇 , 𝜔𝑙𝑖) − 𝐴(𝐸, 𝑇 , 𝜔
𝑙
𝑖) − 𝐵(𝐸, 𝑇 , 𝜔

𝑙
𝑖)

(12)

𝐴(𝐸, 𝑇 , 𝜔𝑙) = 𝑛(𝜔𝑙 + 1)
𝑓0(𝐸 + ℏ𝜔𝑙)

𝑓0(𝐸)
[(2𝐸 + ℏ𝜔𝑙)

𝑠𝑖𝑛ℎ−1( 𝐸
ℏ𝜔𝑙

)
1
2 − [𝐸(𝐸 + ℏ𝜔𝑙)]

1
2 ]

(13)

𝐵(𝐸, 𝑇 , 𝜔𝑙) = 𝜃(𝐸 − ℏ𝜔𝑙)𝑛(𝜔𝑙)
𝑓0(𝐸 − ℏ𝜔𝑙)

𝑓0(𝐸)
[(2𝐸 − ℏ𝜔𝑙)

𝑐𝑜𝑠ℎ−1( 𝐸
ℏ𝜔𝑙

)
1
2 − [𝐸(𝐸 − ℏ𝜔𝑙)]

1
2 ]

(14)

𝐶(𝐸, 𝑇 , 𝜔𝑙) = 2𝐸[𝑛(𝜔𝑙 + 1)
𝑓0(𝐸 + ℏ𝜔𝑙)

𝑓0(𝐸)

𝑠𝑖𝑛ℎ−1( 𝐸
ℏ𝜔𝑙

)
1
2 + 𝜃(𝐸 − ℏ𝜔𝑙)𝑛(𝜔𝑙)

𝑓0(𝐸 − ℏ𝜔𝑙)
𝑓0(𝐸)

𝑐𝑜𝑠ℎ−1( 𝐸 )
1
2 ]

(15)
ℏ𝜔𝑙
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Table 1
Symbols, units, and corresponding key in tau_dict for the parameters required in
various scattering models.

Parameter Symbol Units Key

Mass density 𝜌 kg/m3 rho
Low freq. dielectric constant 𝜖0 – eps_0
High freq. dielectric constant 𝜖∞ – eps_inf
Acoustic velocity v m/s v
Effective mass ratio 𝑚∗ – ms
Acoustic deformation potential 𝐷𝑎𝑐 eV D_ac
Optical deformation potential 𝐷𝑜𝑝 eV D_op
Optical phonon energy ℏ𝜔𝑙 eV hwlo
Number of impurities 𝑛𝐼 cm−3 nI
Charge on impurity 𝑍𝐼 – Zi
Piezoelectric constant p C∕m2 piezo

Fig. 4. Selected examples (see examples/ on GitHub) performed on an increasing
number of processors. Parallelized routines provide run time scaling nearly proportional
to the number of cores used in a calculation, closely approaching the speed increase
limit of Amdahl’s Law.

Fig. 5. Memory scaling per core (in GB), for selected examples. An increasing core
count reduces the memory requirements per processor.

𝑍(𝜔𝑙) =
2

𝑊0(ℏ𝜔𝑙)
1
2

, 𝑊0(𝜔𝑙) =
𝑒2
√

2𝑚∗𝜔𝑙𝜀−1

4𝜋ℏ
3
2

(16)

Required parameters are 𝑚∗, 𝜀0, 𝜀inf , 𝜔𝐿𝑂.

5.6. Effective scattering time

1 = 1 + 1 +⋯ (17)
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𝜏𝑡𝑜𝑡𝑎𝑙(𝐸, 𝑇 ) 𝜏𝑖𝑚(𝐸, 𝑇 ) 𝜏𝑎𝑐 (𝐸, 𝑇 )
The total scattering time is calculated as a harmonic sum of the speci-
fied scattering mechanisms, evaluated for each energy and temperature,
Eq. (17). The effective scattering time 𝜏𝑡𝑜𝑡𝑎𝑙 is computed for each energy
and temperature during the execution of the transport routine.

6. Performance

Benchmark performance tests reveal excellent scaling for mas-
sively parallelized calculations. PAOFLOW exploits parallelization
over bands whenever possible, primarily in the calculation of gradients.
However, most routines are parallelized across the k-point mesh or
path. PAOFLOW also possesses excellent scaling of memory require-
ments, in parallel runs. Increasing the number of processors can reduce
the memory load on each processor, as many of the large arrays are
distributed evenly among the cores. Because quantities must be stored
on every processor, the total memory requirements are slightly higher
for increasing number of cores. Performance is analyzed on a Dell
PowerEdge R730 server with two 2.4 GHz Intel Xeon E5-2680 v4
fourteen-core processors, and results for several examples are presented
in Figs. 4 and 5. PAOFLOW demonstrates excellent scaling properties
on manycore systems and possesses massively parallel capabilities.

7. Conclusions

PAOFLOW provides a lightweight, robust tool for efficient materials
and Hamiltonian analysis. Continuous development of the package has
streamlined its functionality and enabled many new tools for effec-
tively characterizing the electronic properties of solids. The updated
framework offers an ideal tool for high throughput condensed matter
simulations and generation for materials genomics [34].
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