

 University of Groningen

Efficient Heuristic Algorithms for Single-Vehicle Task Planning With Precedence Constraints
Bai, Xiaoshan; Cao, Ming; Yan, Weisheng; Ge, Shuzhi Sam

Published in:
IEEE Transactions on Cybernetics

DOI:
10.1109/TCYB.2020.2974832

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bai, X., Cao, M., Yan, W., & Ge, S. S. (2021). Efficient Heuristic Algorithms for Single-Vehicle Task
Planning With Precedence Constraints. IEEE Transactions on Cybernetics, 51(12), 6274 - 6283.
https://doi.org/10.1109/TCYB.2020.2974832

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 29-10-2022

https://doi.org/10.1109/TCYB.2020.2974832
https://research.rug.nl/en/publications/227016b6-56e2-41f5-8995-4f5e62515c82
https://doi.org/10.1109/TCYB.2020.2974832

6274 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 12, DECEMBER 2021

Efficient Heuristic Algorithms for Single-Vehicle
Task Planning With Precedence Constraints

Xiaoshan Bai , Ming Cao , Senior Member, IEEE, Weisheng Yan ,
Shuzhi Sam Ge , Fellow, IEEE, and Xiaoyu Zhang

Abstract—This article investigates the task planning problem
where one vehicle needs to visit a set of target locations while
respecting the precedence constraints that specify the sequence
orders to visit the targets. The objective is to minimize the vehi-
cle’s total travel distance to visit all the targets while satisfying
all the precedence constraints. We show that the optimization
problem is NP-hard, and consequently, to measure the proximity
of a suboptimal solution from the optimal, a lower bound on the
optimal solution is constructed based on the graph theory. Then,
inspired by the existing topological sorting techniques, a new
topological sorting strategy is proposed; in addition, facilitated
by the sorting, we propose several heuristic algorithms to solve
the task planning problem. The numerical experiments show that
the designed algorithms can quickly lead to satisfying solutions
and have better performance in comparison with popular genetic
algorithms.

Index Terms—Heuristic algorithms, lower bound, precedence
constraints, task planning, topological sorting.

I. INTRODUCTION

TASK assignment, in the context of logistic systems, is to
assign to a fleet of vehicles a set of tasks distributed at

different target locations in a bounded area [1]–[6] or assign
to a single vehicle efficient sequences to visit a set of target
locations [7] while minimizing the total travel distance [8] or
time [9]. The task assignment problem is a variant of the NP-
hard vehicle routing problem (VRP) or the traveling salesman
problem (TSP) [10], [11], implying that unaffordable com-
putational time might be required to calculate the optimal

Manuscript received December 12, 2019; accepted February 14, 2020. Date
of publication March 4, 2020; date of current version December 22, 2021.
This work was supported in part by the National Natural Science
Foundation of China under Grant 61603094 and Grant 61633002. This arti-
cle was recommended by Associate Editor J. Chen. (Corresponding author:
Xiaoshan Bai.)

Xiaoshan Bai is with the College of Mechatronics and Control Engineering,
Shenzhen University, Shenzhen 518060, China, and also with the School of
Marine Science and Technology, Northwestern Polytechnical University, Xi’an
710072, China (e-mail: baixiaoshan.nwpu@gmail.com).

Ming Cao is with the Faculty of Science and Engineering, University of
Groningen, 9747 Groningen, The Netherlands (e-mail: m.cao@rug.nl).

Weisheng Yan is with the School of Marine Science and Technology,
Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
wsyan@nwpu.edu.cn).

Shuzhi Sam Ge is with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 117576 (e-mail:
samge@nus.edu.sg).

Xiaoyu Zhang is with the College of Artificial Intelligence, Nankai
University, Tianjin 300350, China (e-mail: zhangxiaoyu@nankai.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2020.2974832.

Digital Object Identifier 10.1109/TCYB.2020.2974832

solution as the number of target locations grows [12]. So the
existing research works usually either test their algorithms on
some benchmarks or compare the results with those existing
solutions of known performances [13], [14]. Leading meth-
ods and the latest advances on the heuristics for solving TSP
were summarized in [15]. Held and Karp [16] pointed out that
the weight of a minimum-weight 1-tree/1-arborescence can be
used as a lower bound for the optimal solution of the symmet-
ric/asymmetric TSP. Caseau and Laburthe [17] presented a set
of techniques to make constraint programming a chosen tech-
nique for solving small TSPs. They indicated that two lower
bounds, namely, the weight of an undirected minimal spanning
tree and the weight of a minimal spanning arborescence, can
be used for pruning the search tree. The Lin–Kernighan heuris-
tic (LKH) [18] starts with a randomly generated TSP tour and
utilizes the generalized 2-opt exchange of links (2-opt move) to
improve the tour. The LKH is effective for solving the symmet-
ric TSP. However, many design and implementation decisions
need to be determined for constructing an algorithm based
on the LKH, and most of the decisions have a great influence
on the efficiency of the algorithm. A vacancy chain scheduling
was designed by Dahl et al. [19] to formalize robot interactions
for the multirobot task assignment. A game-theoretic approach
was designed by Belhaiza [20] for a multiple-criterion VRP
with multiple time windows where a hybrid neighborhood
search heuristic is applied. Using membership functions and
fuzzy rules, a fuzzy route planning algorithm was developed to
plan routes for ground vehicle operations in urban areas [21].
A marginal-return-based constructive heuristic was designed
in [22] to solve the sensor–weapon–target assignment problem,
where the interdependencies between weapons and sensors are
considered.

For logistic scheduling, some customers/targets can have
priority over the others due to their importance or urgency
to be served. In such cases, the precedence constraints on
the ordering of the visiting sequence of the targets have to
be respected, and consequently the assignment of one tar-
get is directly affected by those other targets which need to
be visited earlier as specified by the associated precedence
constraints. For some instances of the VRP with time win-
dows [23], precedence constraints on visiting the customers
are in the form of the time windows to visit specific cus-
tomers over the planning horizon. For the TSP with precedence
constraints requiring a given subset of targets to be visited in
some prescribed linear order [24], a polynomial-time algorithm
was proposed, guaranteeing quantifiable performances. The

2168-2267 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6782-5571
https://orcid.org/0000-0001-5472-562X
https://orcid.org/0000-0002-6789-4411
https://orcid.org/0000-0001-5549-312X

BAI et al.: EFFICIENT HEURISTIC ALGORITHMS FOR SINGLE-VEHICLE TASK PLANNING WITH PRECEDENCE CONSTRAINTS 6275

TSP with precedence constraints investigated in [24] can be
transformed into the standard TSP by treating each subset of
targets with the linear visiting constraints as one single tar-
get. In [25], an efficient GA integrated with a topological
sorting technique (TST) was designed to solve the TSP with
precedence constraints. The GA uses a new crossover oper-
ator, namely, moon crossover mimicking the changes of the
moon, to adjust the priorities for sequencing the target loca-
tions while the TST is used to guarantee the feasibility of the
planned path. Later on, a new GA based on topological sort-
ing was developed to solve precedence-constrained sequencing
problems [26]. The crossover operator used in [26] needs
only one parent of chromosomes to undergo the crossover
evolution and each chromosome represents a feasible solu-
tion to the problem. For the precedence-constrained TSP,
Kubo and Kasugai [27] presented a branch-and-bound algo-
rithm that incorporates lower bounds computed from the
Lagrangean relaxation. In [28], several families of inequal-
ities were derived to formulate the precedence-constrained
asymmetric TSP (PCATSP). Oberlin et al. [29] formu-
lated the PCATSP as a split dual model, which can be
solved by using standard TSP solvers and linear program
solvers.

In our previous work [30], several clustering-based algo-
rithms have been proposed for a fleet of vehicles to efficiently
visit a set of target locations in a time-invariant drift field
while trying to minimize the vehicles’ total travel time.
As a follow up, a co-evolutionary multipopulation genetic
algorithm was proposed for multiple vehicles to deliver prod-
ucts to a set of target locations in a time-varying drift
field [31], and an auction-based algorithm was designed for
task assignment of multiple vehicles in a drift field with
obstacles [32]. In [33], we investigated the dynamic task
assignment for multiple vehicles to visit a set of target loca-
tions where some target locations are initially known and the
other target locations are dynamically generated during the
vehicles’ movement. In addition, we have investigated the task
assignment for heterogeneous vehicles with precedence con-
straints [34]. Motivated by the discussed research works, this
article investigates the precedence-constrained task planning
problem (PCTPP) for which one vehicle needs to visit a set
of target locations subject to precedence constraints for vis-
iting the targets while trying to minimize the vehicle’s total
travel distance. We solve the problem by inserting the target
locations iteratively into the vehicle’s path taking into account
the precedence constraints. Two critical questions arise: 1)
which target should be inserted in each iteration and 2) where
should it be inserted such that no precedence constraint is
violated. Inspired by the existing TST [25], [26], we first
propose to sort the precedence constraints backward, which
enables us to further design several heuristic task planning
algorithms to put the target locations in sequence respect-
ing the precedence constraints. Our main contributions are as
follows.

1) Using tools from the graph theory, we construct a lower
bound for the optimal solution, which can be used
to approximately measure the performance of a task
planning algorithm.

(a) (b)

Fig. 1. Digraph Gp = (Vp, Ep) shows precedence constraints on visiting
several target locations (a) digraph in [25] and (b) transitive reduction of (a).

2) The proposed TST enables the vehicle to visit all
the target locations while satisfying every precedence
constraint.

3) The designed heuristic algorithms have better perfor-
mances compared with competing genetic algorithms.

The remainder of this article is organized as follows. In
Section II, the mathematical formulation of the PCTPP is
given. Section III analyzes the problem, and Section IV dis-
cusses several task planning algorithms. The simulation results
are shown in Section V and the conclusion of this article is
made in Section VI.

II. MATHEMATICAL FORMULATION

A. Problem Setup

Consider that one vehicle needs to visit n target locations
subject to precedence constraints described by a digraph spec-
ifying which target locations need to be visited before other
target locations. More specifically, a target location is rep-
resented by a vertex in the digraph, and there is a directed
edge/path from one vertex to another if and only if the former
needs to be visited before the latter. A feasible solution to the
problem is a path for the vehicle to visit all target locations
while respecting every precedence constraint. Obviously, the
problem has feasible solutions only if the digraph does not
have direct cycles, that is, the digraph is acyclic.

We assume that the vehicle is not required to return to
its initial location. The objective is to minimize the vehicle’s
total travel distance to visit all target locations while satisfying
every precedence constraint.

B. Formulation as Optimization Problem

Let T = {1, . . . , n} be the set of vertices representing n
target locations, and 0 denote the index of the depot where the
vehicle is initially located. For ∀i, j ∈ I, where I = {0}∪T , let
d = (d(i, j))∀i,j∈I be the distance matrix where d(i, j) denotes
the distance between i and j, and the binary variable pij =
1 if one requires vertex i to be visited before vertex j, and
pij = 0 if there is no such requirement. As an example shown
in Fig. 1(a), we use a digraph Gp = (Vp, Ep), consisting of
a subset of vertices in T and a set of directed edges Ep, to
show the precedence constraints among the vertices. Note that
pij = 1 if and only if there is at least one directed path from
i to j in Gp. The binary decision variable σij, i, j ∈ I, is used,
which equals one if and only if it is planned that the vehicle
travels directly from location i to j, and σij = 0 otherwise.

Inspired by the two-commodity network flow model [35],
we use the network flow model to formulate the problem.

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

6276 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 12, DECEMBER 2021

Here, each target location is assumed to have one unit demand
of a commodity and the vehicle starts serving the targets from
its initial location with n units of commodities. The variable
ci is used to denote the quantity of the commodity when the
vehicle leaves vertex i, and correspondingly it holds c0 = n.
Then, the problem is to minimize the vehicle’s total travel
distance to visit all target locations

f =
∑

i∈I,j∈T
d(i, j)σij (1)

subject to ∑

i∈I
σij = 1 ∀j ∈ T (2)

(
ci − cj

)
σij = σij ∀i ∈ I ∀j ∈ T (3)

∑

j∈T
σij ≤ 1 ∀i ∈ I (4)

(
cj − ci

)
pij ≤ 0 ∀i ∈ I ∀j ∈ T (5)

∑

i,j∈S
σij ≤ |S| − 1 ∀S ⊆ T with |S| ≥ 2. (6)

Constraint (2) ensures that each target is visited once and only
once; (3) means that the vehicle’s commodity quantity at loca-
tion j decreases by 1 compared with that at location i if j is
visited directly after i; (4) ensures that the vehicle’s initial
location and each target is departed at most once; (5) ensures
that the vehicle’s commodity quantity at location i is larger
than that at j if i is a predecessor of j; and (6) guarantees that
no subtour exists when visiting the target locations.

After formulating the task planning problem as a con-
strained minimization problem, we present in the following
section the analysis of the optimization problem.

III. PROBLEM ANALYSIS

The graph Gp = (Vp, Ep) that specifies the precedence
constraints on visiting the target locations has a transitive
reduction whenever the following two conditions hold at the
same time: 1) one vertex i has multiple directed paths to
another vertex j and 2) i has one edge directly pointing at j.
An example is shown in Fig. 1(a), where target vertex T1 has
three independent directed paths to T4 as T1 → T2 → T4,
T1 → T3 → T4, and T1 → T4. Here, we call the prece-
dence constraint corresponding to the edge from T1 to T4 in
Fig. 1(a) the immediate precedence constraint. Since T1 needs
to be visited before T2 and T2 needs to be visited before T4, the
immediate precedence constraint from T1 to T4 is redundant.
As a result, the digraph shown in Fig. 1(a) can be simplified to
Fig. 1(b) by deleting some redundant precedence constraints.

If the digraph Gp is empty, the PCTPP reduces to the TSP
which is an NP-hard problem [12]. However, when precedence
constraints exist, it is not clear whether the PCTPP is still NP-
hard. On the one hand, the solution space for planning reduces
when there are some precedence constraints specifying which
target locations need to be visited before other target loca-
tions, which can lead to faster optimization processes if the
solution space is somehow structured. On the other hand, sort-
ing the precedence constraints to generate a feasible solution
for visiting all the target locations requires more computational

operations in solving the optimization problem. As a result, it
is necessary to investigate the computational complexity for
optimally solving the investigated problem.

Remark 1: The precedence-constrained TSP (PTSP) has
been shown to be NP-hard by Charikar et al. [36]. As a result,
the PCTPP is NP-hard as PTSP is a special case of the PCTPP.

A. Lower Bound on the Optimal Solution

Due to the NP-hardness of the PCTPP, computing for an
optimal solution to the problem can be time consuming. As
a result, one natural idea is to develop heuristic algorithms to
look for suboptimal solutions. However, evaluating the quality
of one suboptimal solution in terms of its comparison with the
optimal is another issue to be solved. Thus, we will construct
a lower bound of (1) to measure the proximity of a suboptimal
solution from the optimal. To construct a lower bound of (1)
rigorously, the definition of the arborescence of a digraph from
graph theory is first introduced.

Definition 1: An arborescence is a digraph with a single
root, where exactly one directed path starts from the root to
any other vertex [37].

In this section, a lower bound on the minimum travel
distance for the vehicle to visit all target locations while
respecting every precedence constraint is obtained by calcu-
lating a min-cost arborescence (MCA) of a weighted digraph
Gd introduced later. The sum of the edge weights of an
MCA is the minimum among all arborescences of Gd, and
Edmonds’ algorithm [38] can be used to achieve an MCA
within polynomial computational time.

Now consider the undirected graph G = (V, E, D) consist-
ing of the n + 1 vertices in I, a set of weighted undirected
edges E, and a distance matrix D that contains the weight of
each edge in E which is the distance between the two vertices
associated with the edge. The digraph Gp and the weighted G
are the inputs to the problem (1). We integrate G(V, E, D) and
Gp = (Vp, Ep) that specifies the precedence constraints on vis-
iting the target vertices, and then obtain the weighted directed
graph Gd = (V, Ed, Dd) consisting of the n+1 vertices in V , a
directed edge set Ed where an edge orienting from vertex i to j
exists if vertex i can be visited before vertex j as shown in Gp,
and a distance matrix Dd that contains the weight of each edge
in Ed based on D. We give an example of how to formulate the
digraph Gd based on the digraph Gp shown in Fig. 1(b) and the
corresponding weighted undirected graph G. For each vertex i
in I, a vertex set Si is used to keep the indices of the vertices
before which i can be visited. Si is calculated in a backward
manner. First, Si = I \{0, i} for every vertex i /∈ Vp. Then, for
Fig. 1(b), S6 is first obtained as S6 = ∪i∈I\{Vp}i. Afterward,
Si = ∪p′

ij=1({j} ∪ Sj), where p′
ij = 1 if the vertex i has one

edge directly pointing at j in the simplified digraph Gp as T1
and T2 in Fig. 1(b). Thus, S7 = {6} ∪ S6. Iteratively, Si can
be obtained for every i ∈ Vp. Then, an edge (i, j) exists in Ed

connecting vertex i and every j ∈ Si, and the corresponding
Dd(i, j) stores the distance between vertices i and j; for the
other cases, Dd(i, j) = ∞. We use fa as the sum of every edge
weight of an MCA of the weighted directed graph Gd, and fo
is the optimal value for the objective function in (1). Now, we
investigate the property of the optimal solution.

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: EFFICIENT HEURISTIC ALGORITHMS FOR SINGLE-VEHICLE TASK PLANNING WITH PRECEDENCE CONSTRAINTS 6277

Fig. 2. Relationship between the MCA and a lower bound on the optimal
solution to the PCTPP.

Proposition 1: It holds that fa ≤ fo.
Proof: According to Definition 1, an optimal path for the

vehicle starting from its initial location to visit all target loca-
tions while satisfying every precedence constraint on visiting
them is in fact an arborescence of the digraph Gd. Since fa is
the sum of every edge weight of an MCA of Gd, it holds that
fa ≤ fo. Fig. 2 shows the relationship between the MCA and
a lower bound on the optimal solution to the PCTPP.

Having performed the theoretical analysis, in the next
section, we construct heuristic algorithms.

IV. TASK PLANNING ALGORITHMS

Inspired by [25] and [26], the PCTPP can be solved by
iteratively inserting a “viable” target vertex into a path until all
the targets are inserted, where a TST is needed for determining
which targets are viable to be inserted into the current vehicle
path at each iteration and an inserting method (IM) is required
to choose the proper position for inserting each target. We will
give the definition of viable target vertex later. In this section,
we first present two TSTs, and then we propose several task
planning algorithms facilitated by the sorting.

A. Topological Sorting Techniques

Through topological sorting, one can obtain all the feasible
paths in a directed graph [39]. During sorting, the vehicle’s
path can be built either forward or backward. Initially, we let
Gp′ = Gp.

1) Forward Topological Sorting Technique: In [25]
and [26], the precedence-constrained TSP is solved by iter-
atively employing a TST which can sort the target vertices in
Gp′

that do not have any predecessor in each iteration. The
target vertices without any predecessor are called the viable
target vertices for the forward topological sorting. For for-
ward topological sorting, once a target vertex is inserted, we
update Gp′

by deleting the vertex denoting the target vertex
and the corresponding edges leaving the vertex in the current
Gp′

. We give an example of how to generate a feasible path
from the representation scheme by considering the precedence
constraints shown in the simplified digraph Fig. 1(b) assum-
ing n = 7. In the digraph, the first target vertex sorted to be

inserted into the vehicle’s path is T1, since it is the only tar-
get vertex in the digraph without any predecessor. Then, T1
is stored in the path, and at the same time T1 and the edges
(T1, T2), (T1, T3) coming from T1 are removed from Gp′

. In
the next iteration, T2 and T3 are viable target vertices of the
resulting Gp′

, which can then be inserted in the vehicle path
after T1. The process continues until all the target vertices in
the digraph Gp are inserted into the path.

2) Backward Topological Sorting Technique: Similar to the
forward topological sorting just discussed, one can also con-
struct a backward topological sorting which constructs the
vehicle path backward by iteratively inserting one target vertex
in Gp′

without any successor into the feasible position on the
current path in each iteration. The target vertices without any
successor are called viable targets for the backward topolog-
ical sorting. For backward topological sorting, once inserting
a target vertex, the vertex denoting the target vertex and the
precedence constraints corresponding to the edges pointing at
the vertex in the current Gp′

are deleted to update Gp′
. We

also give an example of how to generate a feasible vehicle
path from the representation scheme by considering Fig. 1(b)
assuming n = 7. In the digraph, the first target vertex to be
inserted into the vehicle’s path is T6, since it is the only target
vertex without any successor. Then, T6 is stored in the path,
and at the same time T6 and the edge (T7, T6) pointing at T6
are removed from Gp′

. In the resulting Gp′
, T7 is viable to

be inserted into the path before T6 as it has no successor in
Gp′

after deleting T6. One feasible path will be generated by
continuing the procedure.

B. Forward Task Planning Algorithms

Let Rt contain the ordered target vertices already inserted
into the path after iteration t, and the vertex set T A

Rt
contain the

indices of those target vertices that have not been inserted and
have no predecessor in Gp′

after iteration t. Let (i, j) denote
an edge from i to j in the simplified Gp, and T j

Rt
= {i ∈

Rt : (i, j) ∈ Ep} for each j ∈ T A
Rt

. We use the set T j
a to

contain the ordered locations in Rt after which target vertex j
can be inserted while satisfying all the precedence constraints
on visiting j. It is straightforward to check that j can only be
inserted into Rt after all the target vertices in T j

Rt
. If T j

Rt
= ∅,

j can be inserted at any position of Rt. For the forward task
planning algorithms, Rt is initially set as {0} where the vehicle
is initially located.

1) Forward Nearest Inserting Algorithm: The first heuristic
algorithm is the forward nearest inserting algorithm (FNIA)
where the target vertex j� ∈ T A

Rt
to be inserted and its inserting

position (q� + 1) in iteration (t + 1) satisfy
(
q�, j�

) = argmin
q∈T j

a , j∈T A
Rt

d(Rt(q), j) (7)

where T j
a = {p, . . . , |Rt|}; p = max

i∈T j
Rt

find(Rt, i) is the

farthest position to the end of Rt after which target vertex j
can be inserted; and Rt(q) is the qth ordered target vertex on
the route Rt. The operator find(Rt, i) finds the location in Rt

where the target vertex i is inserted. Afterward, the path Rt

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

6278 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 12, DECEMBER 2021

is updated to

Rt+1 =
{ {Rt, j�}, if q� = |Rt|

{Rt(1 : q�), j�,Rt(q� + 1 : |Rt|)}, otherwise
(8)

where |Rt| is the size of Rt and Rt(1 : q�) contains the ordered
target vertices located between the first and the q�th locations
of Rt.

After inserting j�, we delete j� and all the precedence con-
straints initiating from j� to update Gp′

. Then, the forward TST
is used to update T A

Rt+1
which contains the viable target ver-

tices after iteration t + 1. The inserting procedure continues
according to (7) and (8) until all the vertices in T are inserted
into the vehicle’s path.

An example of how FNIA works is shown as follows.
Assume that the current vehicle path for visiting the tar-
gets under the precedence constraints shown in Fig. 1(b) is
Rt = {T1, T2, T5}. Then, the viable target set is T A

Rt
= {T3}

as T3 is the only target vertex without any predecessor after
deleting the target vertices already in Rt and the correspond-
ing edges in Gp′

. As T1 is the only target vertex that should be
visited before T3, and T3 can be inserted at any place after T1.
Assume that Rt = {T1, T3, T2, T5} after inserting T3. Then, the
next viable target vertex T4 can only be inserted after T5 as T5
has the precedence constraint over T4, where p = 4 according
to (7). One feasible path is Rt = {T1, T3, T2, T5, T4, T7, T6}
after operating the inserting procedure iteratively.

2) Forward Minimum Marginal-Cost Algorithm: The other
forward task planning algorithm is the forward minimum
marginal-cost algorithm (FMMA), which finds the target ver-
tex j� ∈ T A

Rt
to be inserted and its inserting position q� in Rt

in iteration (t + 1) by
(
q�, j�

) = argmin
p+1≤q≤|Rt|+1, j∈T A

Rt

{
d
(
Rt ⊕q j

) − d(Rt)
}

(9)

where p = max
i∈T j

Rt
find(Rt, i) is the farthest position to the

end of Rt after which target vertex j can be inserted; and the
operation Rt ⊕q j inserts j at the qth position of Rt. Target
vertex j is inserted to the end of Rt if q = |Rt|+1, and d(Rt)

denotes the total travel distance for the vehicle to visit all the
targets in Rt. Then, path Rt is updated to

Rt+1 = Rt ⊕q� j�. (10)

C. Backward Task Planning Algorithms

For constructing the backward task planning algorithms, let
T A
Rt

contain the indices of those target vertices in G that have

not been inserted and have no successor in Gp′
after iteration

t. Let T A
∅ contain the indices of those target vertices in G that

have no successor in Gp, which is the initialization of T A
R0

.

Let T j
Rt

= {i ∈ Rt : (j, i) ∈ Ep} for each j ∈ T A
Rt

, and T j
a

contain the ordered locations in Rt before which j can be
inserted while satisfying every precedence constraint from j.
It is straightforward that j can only be inserted in Rt before
all the target vertices in T j

Rt
. If T j

Rt
= ∅, j can be inserted at

any position of Rt. For backward task planning algorithms, it
should be noted that Rt is initially empty, which differs from

TABLE I
TST AND IM USED TO CONSTRUCT EACH HEURISTIC

the forward task planning algorithms. The difference leads to
the importance to insert the first target vertex into Rt properly.

1) Backward Nearest Inserting Algorithm: The third heuris-
tic algorithm is the backward nearest inserting algorithm
(BNIA) where the route Rt, t = 0, is initialized to contain
the target

j� = argmin
k∈T A

R1j
, j∈T A∅

d(k, j) (11)

where T A
R1j

is the viable target set in iteration t = 1 if the first
viable target vertex to be inserted is R0 = {j}.

Then, the target vertex j� ∈ T A
Rt

to be inserted and its
inserting position q� in iteration t + 1 are

(
q�, j�

) = argmin
q∈T j

a , j∈T A
Rt

d(Rt(q), j) (12)

where T j
a = {1, . . . , p} and p = min

i∈T j
Rt

find(Rt, i) is the

farthest position to the start of Rt before which target vertex
j can be inserted. Afterward, Rt is updated to

Rt+1 =
{ {j�,Rt}, if q� = 1

{Rt(1 : q� − 1), j�,Rt(q� : |Rt|)}, otherwise.
(13)

After inserting j�, we delete j� and all the precedence con-
straints directly pointing at j� in Gp′

. Then, the backward TST
is used to update T A

Rt+1
which contains the viable target vertices

after iteration t + 1. Finally, the inserting procedure contin-
ues according to (12) and (13) until all the vertices in T are
inserted into the vehicle’s path.

2) Backward Minimum Marginal-Cost Algorithm: The
other backward task planning algorithm is the backward mini-
mum marginal-cost algorithm (BMMA) where the initial route
R0 is initialized as (11). Then, in iteration t+1 BMMA deter-
mines the target vertex j� ∈ T A

Rt
to be inserted into Rt and its

inserting position q� in Rt by
(
q�, j�

) = argmin
1≤q≤p−1, j∈T A

Rt

{
d
(
Rt ⊕q j

) − d(Rt)
}

(14)

where p = min
i∈T j

Rt
find(Rt, i). Then, the path Rt is updated

according to (10). Fig. 3 shows the process of the proposed
heuristics, and Table I presents the mechanisms for construct-
ing the heuristics.

D. Computational Complexity

We discuss the computational complexity for running FNIA,
FMMA, BNIA, and BMMA in this section. The four algo-
rithms iteratively insert a target vertex to the vehicle’s path
whose length is |Rt| = t after the tth iteration of the inserting

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: EFFICIENT HEURISTIC ALGORITHMS FOR SINGLE-VEHICLE TASK PLANNING WITH PRECEDENCE CONSTRAINTS 6279

Fig. 3. Process of the proposed heuristics.

operation. The computational complexity of FNIA is deter-
mined by (7) where finding p requires at most |T j

Rt
||Rt| basic

operations in the (t + 1)th iteration of the assignment. Thus,
to find q� and j� in (7), at most |T j

a ||T A
Rt

||T j
Rt

||Rt| basic oper-

ations are needed in the (t +1)th iteration, where |T j
a | ≤ |Rt|,

|T A
Rt

| ≤ n − |Rt|, and |T j
Rt

| ≤ |Rt|. As a consequence, at
most t3(n − t) basic operations are required in the (t + 1)th
iteration. Taking the sum for t to change from 1 to n, we obtain
the computational complexity of FNIA

∑n
t=1 t3(n − t), result-

ing in O(n5). Here, a function f (x) is O(g(x)) if constants
c and x′ exist such that f (x) ≤ cg(x),∀x ≥ x′. Similar to
FNIA, the computational complexity of FMMA is determined
by (9) where at most 2|Rt||T A

Rt
||T j

Rt
||Rt| basic operations are

required in the (t + 1)th iteration. Thus, the computational
complexity of FMMA is also O(n5).

The analysis of the computational complexity of the back-
ward task planning algorithms BMMA and BNIA is similar
to those of FMMA and FNIA. The extra operations required
by BMMA and BNIA are to achieve the first target to be
inserted into the vehicle’s path Rt when t = 1 as shown
in (11). When t = 1, one of the maximum n target vertices
is chosen to be inserted into Rt and for each candidate target
vertex at most n − 1 basic operations are required to calculate
the best target j� in (11). Thus, the computational time for
BMMA is n(n − 1) + ∑n

t=2 2t3(n − t) while that for BNIA is
n(n − 1) + ∑n

t=2 t3(n − t). Then, the computational complex-
ity of BMMA is O(n5), and the computational complexity of
BNIA is O(n5).

Fig. 4. Precedence-constrained digraph Gp contains 40 target vertices.

V. SIMULATIONS

For the precedence-constrained planning problems, exten-
sive simulations are carried out to test the proposed algorithms
compared with the GAs [25], [26]. We name the compared
algorithms [25], [26] respectively, GA02 and GA11 to dis-
tinguish them, and set the genetic parameters for the two
algorithms as follows according to [25] and [26]. For GA02,
500 is the maximum generation number; 150 is the population
size; 0.5 is the crossover rate; and 0.2 is the mutation rate [25].
For GA11, 2000 is the maximum generation number; 20 is the
population size; 0.5 is the crossover rate; and 0.05 is the muta-
tion rate [26]. We implement the comparing experiments on
an Intel Core i5-4590 CPU 3.30 GHz with 8-GB RAM, and
compile the algorithms by MATLAB under Windows 7. For
each algorithm, the solution quality is quantified by the ratio

r = f

fa
(15)

where f is the objective value resulting from (1) and fa is
the sum of every edge weight of an MCA of the weighted
directed target-vehicle graph Gd. Since fa ≤ fo as shown in
Proposition 1 where fo is the vehicle’s minimum travel dis-
tance, the value r closer to 1 implies a better quality of the
solution.

We first test the algorithms on the task planning problem
where 40 target locations are subject to the precedence con-
straints shown in Fig. 4 which is simplified from [25, Fig. 11].
Ten instances of the initial positions of the targets and the vehi-
cle are randomly distributed in a square area with edge length
103m. We perform 20 trials of the GAs for each instance to
eliminate their randomness. The ratio r of the proposed algo-
rithms and the average r of the GAs on each instance, and the
average computational time are shown in Tables II and III,
respectively. First, GA11 betters than GA02 since its r val-
ues of every instance shown in Table II are smaller than that
of GA02. Second, GA11 is better than BNIA and FNIA as
most of its r are smaller than that of BNIA and FNIA, and
so does BMMA to BNIA. Furthermore, it is difficult to com-
pare the performance of BNIA and FNIA as the ratio r of
BNIA on almost half of the instances is smaller than that
of FNIA. Finally, FMMA is the best algorithm among all
the algorithms as it achieves the smallest r for most of the
instances in Table II.

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

6280 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 12, DECEMBER 2021

TABLE II
RATIO r OF THE ALGORITHMS (A) FOR THE PCTPP WITH 40 TARGET

LOCATIONS UNDER DIFFERENT INSTANCES (I)

TABLE III
CORRESPONDING COMPUTATIONAL TIME (s) FOR THE ALGORITHMS (A)
TO OBTAIN THE SOLUTION TO THE PCTPP WITH 40 TARGET LOCATIONS

UNDER DIFFERENT INSTANCES (I)

To further evaluate the solution quality r for the instances,
we carry out the Wilcoxon signed-rank test in a two-tail test
with the 5% significance level to compare the performance
of each pair of the algorithms. The Wilcoxon signed-rank
test uses two steps to check which algorithms have signifi-
cantly better performance over which other algorithms: 1) first
check whether any two of the algorithms have significant
performance difference between each other and 2) compare
the performances between the two algorithms. For solving the
PCTTP with 40 target locations, Table IV shows the upper
triangular part of the difference index matrix (DIM) result-
ing from the Wilcoxon signed-rank test, where DIM(i, j) = 1
if there is a significant performance difference (5% level)
between algorithms i and j and DIM(i, j) = 0 otherwise.
Table V shows the upper triangular part of the quality index
matrix (QIM) due to its symmetry, where QIM(i, j) = 1 if
algorithm i performs worse compared with algorithm j and
QIM(i, j) = 0 otherwise. Table IV shows that:

1) GA02 has a significant performance difference com-
pared with GA11 and FMMA;

2) GA11 has a significant performance difference com-
pared with BNIA, FNIA, and FMMA;

3) BNIA has a significant performance difference com-
pared with BMMA and FMMA;

4) FNIA has a significant performance difference compared
with FMMA;

5) BMMA has a significant performance difference com-
pared with FMMA.

Table V shows that GA02 performs worse than GA11 and
FMMA; GA11 performs better than BNIA and FNIA, but

TABLE IV
UPPER TRIANGULAR PART OF THE DIM, WHERE DIM(i, j) = 1 IF THERE

IS A SIGNIFICANT PERFORMANCE DIFFERENCE (5% LEVEL) BETWEEN

ALGORITHM (A) i AND ALGORITHM j FOR SOLVING THE PCTTP WITH 40
TARGET LOCATIONS AND DIM(i, j) = 0 OTHERWISE

TABLE V
UPPER TRIANGULAR PART OF THE QIM, WHERE QIM(i, j) = 1 IF

ALGORITHM (A) i PERFORMS WORSE COMPARED WITH ALGORITHM j
FOR SOLVING THE PCTTP WITH 40 TARGET LOCATIONS AND

QIM(i, j) = 0 OTHERWISE

worse than FMMA; BNIA performs worse than BMMA and
FMMA; FNIA is worse than FMMA, and so as BMMA to
FMMA. It is clear that the ratio r of the ten instances differ
significantly between the algorithms (r from small to large
corresponds to FMMA → GA11 → GA02; FMMA →
BMMA → BNIA; GA11 → BNIA and GA11 → FNIA)
while there is no significant difference between GA02, BNIA,
and FNIA. This implies that the algorithms have an increas-
ingly better performance as GA02−GA11−FMMA; BNIA−
BMMA − FMMA; BNIA − GA11; and FNIA − GA11, which
agrees with the previous performance analysis for the algo-
rithms. The better performance of FMMA over FNIA and
respectively, BMMA over BNIA show that the marginal-cost-
based target inserting strategy (9) is more efficient than (7).
The reason lies partly in the fact that the minimum marginal-
cost algorithms FMMA and BMMA achieve the sequences
for visiting the target locations after calculating the incurred
travel distance at every possible position on the vehicle’s path;
in contrast, FNIA and BNIA are myopic in the sense that they
connect the target location to be inserted to the nearest feasible
target location already in the vehicle’s route. The algorithms
BMMA and FMMA both use the minimum marginal-cost
strategy integrating one topological sorting technology to con-
struct the vehicle route. For FMMA, the first target vertex
to be inserted is based on the position of the depot where
the vehicle is initially located while for BMMA there is no
fixed position taken as a reference to insert the first target.
According to (9) and (14), the target vertex to be inserted
in each iteration and the corresponding inserting place are
affected by the targets already on the vehicle route. As a
result, FMMA generally performs better than BMMA. Another
encouraging observation is the smaller computational time of
the proposed algorithms compared with those of the GAs as

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: EFFICIENT HEURISTIC ALGORITHMS FOR SINGLE-VEHICLE TASK PLANNING WITH PRECEDENCE CONSTRAINTS 6281

TABLE VI
RATIO r OF THE ALGORITHMS (A) FOR THE PCTPP WITH 120 TARGET

LOCATIONS UNDER DIFFERENT INSTANCES (I)

TABLE VII
CORRESPONDING COMPUTATIONAL TIME (s) FOR THE ALGORITHMS (A)

TO SOLVE THE PCTPP WITH 120 TARGET LOCATIONS UNDER

DIFFERENT INSTANCES (I)

shown in Table III. Small computational time not only can alle-
viate the burden on equipping expensive computers but also
enables the vehicle to quickly respond to the environmental
changes such as the request to visit newly generated target
locations.

Then, we test the algorithms on the problem with 120 target
locations where every target location has only one precedence
requiring it to be visited either before or after another target
location as in the dial-a-ride problem [40]. For the simulation,
ten instances of the targets’ locations and the vehicle’s ini-
tial position are randomly distributed in a square area with
edge length 103 m. For each instance, we perform 20 tri-
als of the GAs. The ratio r of the proposed algorithms and
the average r of the GAs on each instance, and the average
computational time are shown in Tables VI and VII. First,
Table VI shows that the proposed algorithms BNIA, FNIA,
BMMA, and FMMA perform better than the GAs since all the
ratio r of the proposed algorithms are smaller than those of
GA02 and GA11. Second, in Table VI, the ratio r of BNIA,
FNIA, BMMA, and FMMA is in general around twice the
optimal for all the instances, which again verifies the satis-
fying performance of the proposed algorithms. Furthermore,
the forward algorithm FNIA (FMMA) is better than the back-
ward algorithm BNIA (BMMA) as the latter generally has a
larger r for most instances shown in Table VI. This is due to
the direction on constructing the vehicle route as analyzed in
the previous test scenario in which n = 40. Finally, FMMA
is in general the best among the algorithms as it obtains the
smallest r for most of the instances in Table VI. The Wilcoxon

Fig. 5. Box plots for the solution quality r of the proposed algorithms with
the number of target locations n ∈ {200, 400, 600}.

signed-rank test is also carried out in a two-tail test with the
5% significance level for each pair of the algorithms. It is
clear that the ratio r of the ten instances differ significantly
between the algorithms (r from left to right corresponds to
FMMA → BMMA → FNIA → BNIA → GA11 → GA02).
This implies that the algorithms have an increasingly better
performance as GA02 − GA11 − BNIA − FNIA − BMMA −
FMMA. The computational time of the proposed algorithms
is still far smaller compared with those of the GAs accord-
ing to Table VII. Comparing the computational times shown
in Tables III and VII, one can conclude that the proposed
algorithms are more scalable for the task planning problem
compared with GA02 and GA13.

To further verify the performance of the proposed algo-
rithms, we increase the number of the target locations to
n ∈ {200, 400, 600, 800, 1000, 1200} wherein each scenario
every target location has only one precedence requiring it to
be visited either before or after another target location. For
each scenario, 20 instances of the targets’ locations and the
vehicle’s initial position are randomly distributed in a square
area with edge length 103 m. The box plots of the ratio r of the
proposed algorithms and the average computational time are
shown in Figs. 5–7, respectively. First, the box plots denoting
the performance of BNIA and FNIA shown in Figs. 5 and 6 are
comparatively taller than those of BMMA and FMMA with
FMMA generally having the lowest box plots, which shows
the better performance of BMMA and FMMA as those illus-
trated in Table VI. Second, with the increasing target number
n, the box plots for the solution quality r of FMMA do not
vary much, and are shorter in comparison with the other algo-
rithms, suggesting that FMMA is more robust than the other
algorithms. Third, with the increasing target number n, the
box plots for the solution quality r of BMMA and FMMA are
generally below 2, which implies that BMMA and FMMA
can achieve near-optimal solutions for the challenging task
planning problem. The average computational time of the algo-
rithms shown in Fig. 7 increases as increasing the number of
the target locations, where BMMA and BNIA require more
time to calculate the solutions. However, it is still fast for the
FMMA and FNIA to obtain the solutions for the challenging
problem when the number of target locations is 1200.

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

6282 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 12, DECEMBER 2021

Fig. 6. Box plots for the solution quality r of the proposed algorithms with
the number of target location n ∈ {800, 1000, 1200}.

Fig. 7. Corresponding average computational time (s) for the proposed algo-
rithms to achieve the solution to the PCTPP with different numbers of target
locations.

VI. CONCLUSION

In this article, we have investigated the PCTPP, in which
one vehicle needs to efficiently visit a set of target locations
while satisfying the precedence constraints on visiting the
targets. The problem has been shown to be NP-hard and a
lower bound on the optimal solution has been found. Inspired
by the existing TST, we have proposed a new topological
sorting strategy, ensuring the generated solution to be feasible.
Integrating these TSTs, four heuristic task planning algorithms
have been designed. The simulation results have shown that
the designed algorithms can achieve satisfying solutions to the
PCTPP quickly in comparison with the existing competing
algorithms. The proposed algorithms will be extended for
the multivehicle task assignment with precedence constraints.
Another research direction is to investigate the task planning
problem with strict precedence constraints where some
subsets of vertices must be visited in some prescribed
order.

REFERENCES

[1] R. J. Duro, M. Graña, and J. de Lope, “On the potential contribu-
tions of hybrid intelligent approaches to multicomponent robotic system
development,” Inf. Sci., vol. 180, no. 14, pp. 2635–2648, 2010.

[2] W. Zhao, Q. Meng, and P. W. Chung, “A heuristic distributed task allo-
cation method for multivehicle multitask problems and its application
to search and rescue scenario,” IEEE Trans. Cybern., vol. 46, no. 4,
pp. 902–915, Apr. 2016.

[3] J. Turner, Q. Meng, G. Schaefer, A. Whitbrook, and A. Soltoggio,
“Distributed task rescheduling with time constraints for the optimization
of total task allocations in a multirobot system,” IEEE Trans. Cybern.,
vol. 48, no. 9, pp. 2583–2597, Sep. 2018.

[4] A. T. Hafez and M. A. Kamel, “Cooperative task assignment and tra-
jectory planning of unmanned systems via HFLC and PSO,” Unmanned
Syst., vol. 7, no. 02, pp. 65–81, 2019.

[5] D. Zhu, Y. Qu, and S. X. Yang, “Multi-AUV SOM task allocation algo-
rithm considering initial orientation and ocean current environment,”
Front. Inf. Technol. Electron. Eng., vol. 20, no. 3, pp. 330–341, 2019.

[6] X. Ge, Q.-L. Han, X.-M. Zhang, L. Ding, and F. Yang, “Distributed
event-triggered estimation over sensor networks: A survey,” IEEE Trans.
Cybern., vol. 50, no. 3, pp. 1306–1320, Mar. 2020.

[7] M. M. Flood, “The traveling-salesman problem,” Oper. Res., vol. 4,
no. 1, pp. 61–75, 1956.

[8] J. Yu, S.-J. Chung, and P. G. Voulgaris, “Target assignment in robotic
networks: Distance optimality guarantees and hierarchical strategies,”
IEEE Trans. Autom. Control, vol. 60, no. 2, pp. 327–341, Feb. 2015.

[9] S. L. Smith and F. Bullo, “Monotonic target assignment for robotic
networks,” IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2042–2057,
Sep. 2009.

[10] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and
Applications. Philadelphia, PA, USA: Soc. Ind. Appl. Math., 2014.

[11] M. Burger, Z. Su, and B. De Schutter, “A node current-based 2-index
formulation for the fixed-destination multi-depot travelling salesman
problem,” Eur. J. Oper. Res., vol. 265, no. 2, pp. 463–477, 2018.

[12] E. L. Lawler et al., The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization, vol. 3. New York, NY, USA: Wiley, 1985.

[13] C. Prins, “A simple and effective evolutionary algorithm for the vehicle
routing problem,” Comput. Oper. Res., vol. 31, no. 12, pp. 1985–2002,
2004.

[14] C. Ma, W. Liang, M. Zheng, and B. Yang, “Relay node place-
ment in wireless sensor networks with respect to delay and reliability
requirements,” IEEE Syst. J., vol. 3, no. 3, pp. 2570–2581, Sep. 2019.

[15] V. Raman and N. S. Gill, “Review of different heuristic algorithms for
solving travelling salesman problem,” Int. J. Adv. Res. Comput. Sci.,
vol. 8, no. 5, pp. 423–425, 2017.

[16] M. Held and R. M. Karp, “The traveling-salesman problem and min-
imum spanning trees,” Oper. Res., vol. 18, no. 6, pp. 1138–1162,
1970.

[17] Y. Caseau and F. Laburthe, “Solving small TSPS with constraints,” in
Proc. Int. Conf. Logic Program. (ICLP), vol. 97, 1997, pp. 316–330.

[18] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Oper. Res., vol. 21, no. 2, pp. 498–516,
1973.

[19] T. S. Dahl, M. Matarić, and G. S. Sukhatme, “Multi-robot task allocation
through vacancy chain scheduling,” Robot. Auton. Syst., vol. 57, no. 6,
pp. 674–687, 2009.

[20] S. Belhaiza, “A game theoretic approach for the real-life multiple-
criterion vehicle routing problem with multiple time windows,” IEEE
Syst. J., vol. 12, no. 2, pp. 1251–1262, Jun. 2018.

[21] P. J. Durst, C. T. Goodin, C. L. Bethel, D. T. Anderson, D. W. Carruth,
and H. Lim, “A perception-based fuzzy route planing algorithm for
autonomous unmanned ground vehicles,” Unmanned Syst., vol. 6, no. 04,
pp. 251–266, 2018.

[22] B. Xin, Y. Wang, and J. Chen, “An efficient marginal-return-based
constructive heuristic to solve the sensor–weapon–target assignment
problem,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 12,
pp. 2536–2547, Dec. 2019.

[23] J. Michallet, C. Prins, L. Amodeo, F. Yalaoui, and G. Vitry, “Multi-start
iterated local search for the periodic vehicle routing problem with time
windows and time spread constraints on services,” Comput. Oper. Res.,
vol. 41, pp. 196–207, Jan. 2014.

[24] H.-J. Böckenhauer, T. Mömke, and M. Steinová, “Improved approx-
imations for TSP with simple precedence constraints,” J. Discrete
Algorithms, vol. 21, pp. 32–40, Jul. 2013.

[25] C. Moon, J. Kim, G. Choi, and Y. Seo, “An efficient genetic algorithm
for the traveling salesman problem with precedence constraints,” Eur. J.
Oper. Res., vol. 140, no. 3, pp. 606–617, 2002.

[26] Y. Yun and C. Moon, “Genetic algorithm approach for precedence-
constrained sequencing problems,” J. Intell. Manuf., vol. 22, no. 3,
pp. 379–388, 2011.

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: EFFICIENT HEURISTIC ALGORITHMS FOR SINGLE-VEHICLE TASK PLANNING WITH PRECEDENCE CONSTRAINTS 6283

[27] M. Kubo and H. Kasugai, “The precedence constrained traveling sales-
man problem,” J. Oper. Res. Soc. Jpn., vol. 34, no. 2, pp. 152–172,
1991.

[28] E. Balas, M. Fischetti, and W. R. Pulleyblank, “The precedence-
constrained asymmetric traveling salesman polytope,” Math. Program.,
vol. 68, nos. 1–3, pp. 241–265, 1995.

[29] P. Oberlin, S. Rathinam, and S. Darbha, “Combinatorial motion planning
for a dubins vehicle with precedence constraints,” in Proc. Dyn. Syst.
Control Conf., 2009, pp. 715–722.

[30] X. Bai, W. Yan, and M. Cao, “Clustering-based algorithms for
multivehicle task assignment in a time-invariant drift field,”
IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2166–2173,
Oct. 2017.

[31] X. Bai, W. Yan, S. S. Ge, and M. Cao, “An integrated multi-population
genetic algorithm for multi-vehicle task assignment in a drift field,” Inf.
Sci., vol. 453, pp. 227–238, Jul. 2018.

[32] X. Bai, M. Cao, W. Yan, and D. Xue, “Distributed multi-
vehicle task assignment in a time-invariant drift field with obsta-
cles,” IET Control Theory Appl., vol. 13, no. 17, pp. 2886–2893,
Nov. 2019.

[33] X. Bai, M. Cao, and W. Yan, “Event-and time-triggered dynamic task
assignments for multiple vehicles,” Auton. Robots, to be published.

[34] X. Bai, M. Cao, W. Yan, and S. S. Ge, “Efficient routing for precedence-
constrained package delivery for heterogeneous vehicles,” IEEE Trans.
Autom. Sci. Eng., vol. 17, no. 1, pp. 248–260, Jan. 2020.

[35] A. J. D. Lambert, “Exact methods in optimum disassembly sequence
search for problems subject to sequence dependent costs,” Omega,
vol. 34, no. 6, pp. 538–549, 2006.

[36] M. Charikar, R. Motwani, P. Raghavan, and C. Silverstein, “Constrained
TSP and low-power computing,” in Proc. Workshop Algorithms Data
Struct., 1997, pp. 104–115.

[37] S. G. Williamson, Combinatorics for Computer Science.
North Chelmsford, MA, USA: Courier Corp., 1985.

[38] J. Edmonds, “Optimum branchings,” J. Res. Nat. Bureau Stand. B,
vol. 71, no. 4, pp. 233–240, 1967.

[39] M. A. Weiss, Data Structures and Algorithm Analysis in C. Redwood
City, CA, USA: Benjamin-Cummings Publ., 1993.

[40] Y. Molenbruch, K. Braekers, and A. Caris, “Operational effects of ser-
vice level variations for the dial-a-ride problem,” Central Eur. J. Oper.
Res., vol. 25, no. 1, pp. 71–90, 2017.

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2022 at 04:07:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

