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Abstract
Temperature fluctuation is one of the most frequent threats to which organisms are exposed in nature. The activation of 
gene expression programs that trigger the transcription of heat stress-protective genes is the main cellular response to resist 
high temperatures. In addition, reversible accumulation and compartmentalization of thermosensitive proteins in high-order 
molecular assemblies are emerging as critical mechanisms to ensure cellular protection upon heat stress. Here, we summa-
rize representative examples of membrane-less intracellular bodies formed upon heat stress in yeasts and human cells and 
highlight how protein aggregation can be turned into a cytoprotective mechanism.

Introduction

High temperature induces the unfolding and exposure of 
hydrophobic stretches in thermosensitive proteins, which can 
establish non-native intra- and inter-molecular interactions 
leading to aggregation into high-order protein assemblies 
(Chiti and Dobson 2006; Kammerer et al. 2004; Tyedmers 
et al. 2010). Furthermore, a significant part of the proteome 
contains intrinsically disordered domains (IDD) (Oldfield 
and Dunker 2014; Uversky 2017). IDDs usually show high 
structural flexibility and, under environmental perturbations, 
such as high temperature, they can acquire new folding states 
that make them more prone to establish interactions with 
other proteins. This leads to phase separation and the con-
centration of molecules in intracellular condensates (Alberti 
and Hyman 2021; Dyson and Wright 2005; Fomicheva and 
Ross 2021; Franzmann and Alberti 2019; Uversky and 

Dunker 2010). The dynamic properties of IDDs also con-
tribute to the formation of protein aggregates under more 
extreme stress conditions (Kim et al. 2013; Molliex et al. 
2015; Patel et al. 2015).

Cells respond to protein folding stress by activating 
the heat stress response (HSR), a transcriptional program 
that induces the expression of heat stress-response pro-
teins (HSPs) such as chaperones and other cytoprotective 
factors, which boost the refolding of damaged proteins or 
their clearance by proteolytic mechanisms (Richter et al. 
2010; Verghese et al. 2012). However, conditions of high 
proteotoxic stress that overcome the protein quality-control 
system may result in persistent protein aggregates which 
have been classically linked to a pervasive cellular decline 
and the development of degenerative and age-related dis-
eases (pathological aggregation) (Diaz-Villanueva et al. 
2015; Hipp et al. 2014; Klaips et al. 2018; Schneider and 
Bertolotti 2015). Interestingly, the accumulation of pro-
teins in aggregates has also been more recently described 
as an organized and reversible process that displays cyto-
protective functions (physiological aggregation) (Audas 
et al. 2016; Franzmann and Alberti 2019; Marijan et al. 
2019; Tyedmers et al. 2010). This protective protein aggre-
gation results in the formation of a variety of specific 
membrane-less inclusion bodies or biomolecular conden-
sates, with different cellular locations, physico-chemical 
properties, and functions (Gallardo et al.2020; Shav-Tal 
et al. 2005; Sontag et al. 2017; Tyedmers et al. 2010; van 
Leeuwen and Rabouille 2019; Wallace et al. 2015; Wang 
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et al. 2018). This review summarizes current knowledge 
on biomolecular condensates induced by HS in yeasts and 
humans with a focus on the recently described nucleolar 
rings (NuRs) in Schizosaccharomyces pombe. We discuss 
the function of the Hsf1-dependent HSR in the regulation 
of NuRs and its role in the maintenance of cell viability in 
high proteotoxic conditions such as acute HS.

Stress granules and cytoplasmic protein 
aggregation centers.

One of the most conserved and well-described inclusion 
bodies are the cytoplasmic stress granules (SGs) that are 
rapidly formed as a response to several environmental 
stresses, including high temperature (Fig. 1) (Buchan and 
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Parker 2009). SGs are biomolecular condensates contain-
ing mainly RNA-binding proteins (RBPs), translationally 
repressed mRNAs, translation factors, and 40S ribosomal 
subunits. SG formation is driven by the unfolding and pro-
miscuous interactions of IDDs present in RNA-binding 
proteins (RBPs) and involves a number of post-transla-
tional protein modifications (Hofmann et al. 2021; Molliex 
et al. 2015). SGs are dynamic structures that contribute to 
the repression of protein synthesis upon stress and are con-
sidered sites of mRNA triage, sorting towards the decay 
or the storage of mRNAs (Alberti et al. 2017; Anderson 
and Kedersha 2009).

Other cytosolic biomolecular condensates termed pro-
tein aggregate centers (PACs) have been recently described 
to form in the fission yeast upon exposure to a mild HS 
(37 ℃) (Fig. 1B) (Cabrera et al. 2020). PACs are dynamic 
assemblies that contain chaperones and components of the 
translational machinery; however, misfolded proteins also 
accumulate at PACs and this is required to avoid their deg-
radation during the HS. Therefore, PACs have been proposed 
to protect these non-terminally misfolded proteins from 
degradation. PACs behave as liquid-like condensates that 
change to a more compacted state upon incubation of cells at 
higher temperatures, which suggests that PACs can function 
as seeds for SG formation. The assembly and disassembly 
of SGs and PACs are regulated by Hsp70 chaperones (Boro-
nat et al. 2021; Cabrera et al. 2020; Cherkasov et al. 2013; 

Kroschwald et al. 2015; Mateju et al. 2017; O’Driscoll et al. 
2015; Walters et al., 2015), and the disaggregase Hsp104 
is key for their dissolution (Cabrera et al. 2020; Cherkasov 
et al. 2013; Kroschwald et al. 2015).

Insoluble protein deposit, CytoQ, 
and Intranuclear quality‑control 
compartment.

Other protein deposition centers have been observed in 
Saccharomyces cerevisiae as a result of HS. These include 
insoluble protein deposit (IPOD) and CytoQ in the cyto-
plasm, and intra-nuclear quality-control compartment (INQ) 
in the nucleus (Fig. 1A). IPODs are perivacuolar deposits 
constituted by immobile, terminally aggregated proteins, 
including the amyloidogenic prion proteins Rnq1 and Sup35 
(Kaganovich et al. 2008; Kumar et al. 2016), while CytoQ 
refers to different cytoplasmic condensates containing cyto-
solic non-terminally misfolded proteins. On the contrary, 
INQ, also termed juxtanuclear quality-control compartment 
(JUNQ), localize inside the nucleus, adjacent to the nucleo-
lus, and harbor nuclear and cytosolic misfolded proteins 
(Kaganovich et al. 2008; Miller et al. 2015). CytoQ and 
INQ share similarities in their formation, which is dependent 
on cell-compartment-specific aggregases: the cytoplasmic 
small HSP (sHSP) Hsp42 for CytoQs and the nuclear aggre-
gase Btn2 for INQs. Hsp42 and Btn2 function as sorting 
factors that promote the partitioning of misfolded proteins 
into CytoQs or INQs, respectively (Malinovska et al. 2012; 
Miller et al. 2015; Specht et al. 2011), and their activities 
are key to avoid the overload of the proteostatic capacity 
and, consequently, to prevent the loss of cell viability. Non-
terminally unfolded proteins stored at CytoQs and INQs will 
be mainly targeted to the refolding pathway (Ho et al. 2019; 
Miller et al. 2015; Wallace et al. 2015), whereas terminally 
misfolded substrates accumulated at IPODs are either tar-
geted for clearance (mainly by autophagy) or diluted by cell 
division (Kaganovich et al. 2008). Of note, in both cases, the 
Hsp70 chaperone system and the disaggregase Hsp104 par-
ticipate in their sorting and re-solubilization (Gallina et al. 
2015; Ho et al. 2019; Kaganovich et al. 2008; Malinovska 
et al. 2012; Miller et al. 2015; O’Driscoll et al. 2015).

Aggresomes, nuclear stress bodies, 
and amyloid bodies

Human cells have also been shown to form specialized inclu-
sion bodies for sequestering misfolded proteins under HS. 
These include SGs and aggresomes in the cytoplasm, and 
nuclear stress bodies (nSBs) and amyloid bodies (AB) in the 
nucleus (Fig. 1C).

Fig. 1  Cytoprotective aggregation centers under HS. Schematic rep-
resentation of different intracellular biomolecular condensates formed 
in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and 
human cells at different cellular locations upon HS. A Biomolecular 
condensates in S. cerevisiae upon HS. SGs and CytoQ encompass dif-
ferent cytoplasmic condensates, which contain non-terminally mis-
folded proteins mainly destined for refolding after the stress, similar 
to the INQ formed in the nucleus adjacent to the nucleolus. IPODs, 
however, are aggregate deposits formed in the cytoplasm adjacent to 
the vacuole, which accumulate terminally misfolded proteins destined 
for degradation. B Two types of cytoplasmic condensates have been 
described in S. pombe; PACs and SGs. PACs form upon mild HS and 
accumulate non-terminally misfolded proteins whose fate is refolding. 
PACs have been proposed to constitute the precursors of SGs formed 
upon more severe stress conditions. In the nucleus, misfolded pro-
teins accumulate at NuRs upon acute HS. NuRs form at the nucleo-
lar region and function as reversible protein sequestering centers. 
Upon stress relief, NuRs dissolution is linked to the restoration of cell 
growth. C Upon stress conditions, human cells form different cyto-
plasmic deposition sites, such as SGs or aggresomes. Aggresomes 
represent sites of terminal aggregation of damaged proteins whose 
destiny is degradation by autophagic mechanisms. In the nucleus, 
human cells protect thermosensitive proteins by their coalescence 
along with lncRNAs transcribed from ribosomal intergenic spacers in 
nucleolar structures known as amyloid bodies (ABs). AB are revers-
ible structures and have been shown to promote local nuclear transla-
tion during the stress. On the other hand, nSBs are nuclear assemblies 
of RNA and proteins formed upon HS which function by sequestering 
transcription-related factors facilitating the HS-induced inhibition of 
bulk RNA transcription

◂



852 Current Genetics (2021) 67:849–855

1 3

Aggresome assembly depends on the active delivery (by 
dynein motor complex) and the accumulation of aggresomal 
particles containing misfolded proteins near the centrosome 
(Johnston et al. 1998) (Fig. 1). Aggresomes recruit chaper-
ones, ubiquitination enzymes, and proteasomes and, in con-
ditions of insufficient proteasome degradation, the prolonged 
presence of aggresomes results in their autophagic clearance 
(Johnston et al. 1998; Tyedmers et al. 2010). Therefore, they 
are considered as garbage depositories that aid in the clear-
ance of terminally aggregated proteins (Kawaguchi et al. 
2003; Tyedmers et al. 2010).

On the other hand, ABs are formed in the nucleus by 
the rapid and reversible interaction between heterogeneous 
proteins and ribosomal intergenic non-coding RNA (rIG-
SRNA). rIGSRNAs are expressed in a stress-inducible man-
ner and act as the seeding elements for AB formation in 
subnuclear foci, trapping, and immobilizing proteins that are 
characterized by their insolubility. Upon stress relief, ABs 
are disaggregated in an HSP70-dependent manner and their 
components return to their normal localization (Audas et al. 
2016, 2012). Interestingly, a new and unexpected function 
has been recently ascribed to ABs as solid-like condensates 
that support nuclear translation of Hsf1 targets during aci-
dosis and HS (Theodoridis et al. 2021).

Another subnuclear foci that is found exclusively in pri-
mates upon heat and chemical stresses are the nuclear stress 
bodies (nSBs) (Biamonti and Vourc’h 2010). nSB formation 
is initiated by binding of Hsf1 to pericentric tandem repeats 
of satellite III (Sat 3). Hsf1-dependent transcription of Sat 3 
transcripts promotes the binding and sequestration of tran-
scription factors and RBPs to these long non-coding RNAs 
(lncRNAs). Sat3 transcripts tend to stay associated with the 
transcription site, forming subnuclear foci that concentrate 
and sequester several nuclear factors required for transcrip-
tion, mainly at the 9q12 locus (Biamonti and Vourc’h 2010). 
nSBs do not seem to colocalize with Hsf1 canonical targets 
of the HSR, suggesting that nSB formation is not required 
for the transcription of HSR genes (Jolly et al. 1997). How-
ever, nSB assembly is required to sustain the HS-induced 
transcriptional repression and to maintain cell viability after 
the HS (Goenka et al. 2016) and, therefore, they have been 
proposed to function as sequestering centers which facilitate 
the downregulation of general transcription during the stress.

Nucleolar rings

In fission yeast, acute heat stress (42 ℃), which prevents 
bulk protein synthesis and blocks general mRNA metabo-
lism (Cabrera et al. 2020; Gallardo et al. 2020; Ribeiro 
et al. 1997), results in a dramatic reorganization of the 
nucleus. These nuclear architectural changes include 
nucleolar contraction and the formation of ring-shaped 

nucleolar aggregation centers, named Nucleolar Rings 
(NuR) (Gallardo et al. 2020). NuRs assemblies contain 
a wide and functionally divergent group of nuclear fac-
tors, including factors involved in mRNA processing and 
export, nuclear pore complex (NPC) components, mRNA, 
chromatin-associated factors, and cell cycle regulators. 
The formation of these assemblies is triggered by HS-
induced unfolding and aggregation of proteins and RNAs 
(Gallardo et al. 2020). While the aggregation of cell cycle 
factors at NuRs could contribute to the arrest of cell divi-
sion observed under this extreme temperature, the rear-
rangement of the NPC and mRNA machinery could be 
responsible for the block of housekeeping mRNA metabo-
lism and export and for the formation of a reservoir of 
messenger ribonucleoprotein (mRNPs) particles, which 
would be ready for export once stress conditions cease. 
This rearrangement bears similarities with the compo-
sitional changes of mRNPs under heat stress described 
for other organisms, including budding yeast and higher 
eukaryotes (Bond 1988; Bracken and Bond 1999; Hoch-
berg-Laufer et al. 2019; Kay et al. 1987; Lutz et al. 1988; 
Mahl et al. 1989; Mayrand and Pederson, 1983; Sadis et al. 
1988). In fact, in S. cerevisiae, heat stress leads to the 
uncoupling of several RBPs from the mRNA and their 
accumulation in nuclear foci, in a manner dependent on 
the nucleoporins Mlp1 and Mlp2. This reorganization has 
been proposed to prevent the quality control and export 
of regular mRNAs, while promoting the export of HS 
mRNAs (Carmody et al. 2010; Zander et al. 2016; Zander 
and Krebber 2017).

The study of NuRs has shed light on the dynamic nature 
of these stress-induced assemblies. NuRs are formed by the 
rapid aggregation of multiple nuclear proteins, which remain 
mostly immobile, while the stress persists. However, when 
the stress is relieved, NuRs disaggregate and their multiple 
components relocate back to their functional localization 
(Gallardo et al. 2020). This shows that fission yeast cells can 
modulate protein aggregation, turning deleterious protein 
aggregates into cytoprotective protein sequestering centers 
which contribute to maintain cellular homeostasis.

Hsf1 is the main transcription factor involved in the acti-
vation of the HSR (Akerfelt et al. 2010). Upon incubation of 
fission yeast cells at 42 ℃, Hsf1 rapidly accumulates in the 
nucleoplasm; however, it does not localize at NuRs. Inter-
estingly, once the heat stress is over, cell growth recovery 
tightly correlates with a peak in Hsf1 expression (Gallardo 
et al. 2020). This delayed Hsf1 upregulation is also observed 
in S. cerevisiae during the recovery from severe heat shock 
(Yamamoto et al. 2008). Furthermore, a partial Hsf1 deple-
tion significantly delays NuRs dissolution and cell growth 
reinitiation during the recovery from acute HS. This suggests 
that Hsf1 expression during the acute HS is limited, and that 
a burst in newly synthesized Hsf1 during the recovery period 
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is required to trigger the refolding of most heat-denatured 
proteins in order to reactivate cellular metabolism (Gallardo 
et al. 2020; Yamamoto et al. 2008).

Hsf1 activation leads to the expression of HSPs, such as 
chaperones and disaggregases (Akerfelt et al. 2010). These 
proteins localize at aggregates and are responsible for aggre-
gate dissolution once the stress is over. In addition, chaper-
ones are commanders in the triage of aggregated proteins 
for recycling or degradation during the recovery from HS 
(Balchin et al. 2016; Escusa-Toret et al. 2013; Hartl et al. 
2011; Malinovska et al. 2012; Mogk et al. 2015; Vabulas 
et al. 2010). Consistently, NuRs accumulate several HSPs, 
such as the Hsp70 homologs Ssa1 and Ssa2, and the disag-
gregase Hsp104.

Importantly, Hsp104 is required for NuR aggregate dis-
solution, for the relocalization of NuRs components, and for 
the resumption of cell growth after acute HS (Gallardo et al. 
2020). This is in agreement with previous studies that have 
demonstrated that Hsp104, in concert with the chaperones 
Hsp70/Hsp40, functions in the reassembly of small nuclear 
RNPs after HS (Bracken and Bond 1999; Cherkasov et al. 
2013; Haslbeck et al. 2005). Interestingly, a recent study 
in budding yeast shows that the Hsp70/Hsp40 chaperone 
partners aid in the solubilization of intra-nuclear inclusions 
formed after incubation of the cells at 42 ℃, independently 
on Hsp104. In these conditions, Hsp40 and Hsp104 com-
pete for protein disaggregation, targeting proteins towards 
turnover or refolding, respectively (den Brave et al. 2020). 
Metazoans lack Hsp104 orthologues and the disaggregase 
activity is accomplished by Hsp70 and Hsp110, among oth-
ers (Mogk et al. 2015; Rampelt et al. 2012; Shorter 2011).

In conclusion, fission yeast NuRs are reversible molec-
ular assemblies rapidly formed upon acute heat stress by 
the aggregation of nuclear and nucleolar factors along with 
RNA. Their formation correlates with nucleolar contraction 
and the inhibition of cell growth and their Hsp104-depend-
ent dissolution is required for cell growth restoration once 
the heat stress is relieved. Therefore, NuRs can be consid-
ered emergency storage deposits for thermolabile proteins 
and its assembly might contribute to the inhibition of nuclear 
functions under acute HS.

Concluding remarks

As discussed above, HS elicits the formation of a variety of 
high-order-molecular assemblies, which are formed both in 
the cytoplasm and the nucleus, by the promiscuous interac-
tion of misfolded proteins, IDD-containing proteins and usu-
ally RNA. Although the functions of all these intracellular 
protein deposits are still under investigation, they share a 
common role as protective mechanisms preserving cellu-
lar homeostasis during stress conditions and promoting cell 

survival. The concentration of proteins in biomolecular con-
densates contributes to inactivate unneeded or energetically 
consuming cellular functions and avoids the interference of 
misfolded proteins with stress-response cellular pathways. 
The local recruitment and concentration of HSPs at these 
condensates facilitates the refolding or clearance of stress-
sensitive proteins and can also promote the efficiency of 
essential processes, such as translation in the case of ABs.

Understanding how chaperones modulate and reverse pro-
tein aggregation is of prime importance, since the forma-
tion of amyloid deposits has been linked to the development 
of a variety of degenerative diseases, such as Amyotrophic 
Lateral Sclerosis, Alzheimer’s, Huntington’s, or Parkinson’s 
disease, among others (Chiti and Dobson 2017). In addition, 
recent advances have shown that aging is associated with 
progressive exhaustion of the proteostatic capacity of cells 
and the formation of pathogenic aggresomes, which compro-
mises multiple cellular processes (Hipp et al. 2019, 2014; 
Moreno-Blas et al. 2018; Morimoto 2008; Thiruvalluvan 
et al. 2020). Therefore, achieving a better knowledge of what 
factors and mechanisms are involved in the aggregation and 
disaggregation processes would be extremely valuable for 
future therapeutic strategies of age-related diseases. In this 
sense, yeasts as model organisms represent a valuable tool 
for genetic or drug screening purposes to find new modula-
tors that could potentially alleviate pathologic aggregation 
in humans.
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