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Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure alters immunological responses. Research concerning PAH exposure on
intestinal immunity of children in electronic waste (e-waste) areas is scarce. The aim of this study was to evaluate the effects
of polycyclic aromatic hydrocarbon (PAH) pollutants on intestinal mucosal immunity of children in e-waste areas. Results
showed higher hydroxylated PAH (OH-PAH) concentrations in e-waste-exposed children, accompanied with higher sialyl
Lewis A (SLA) level, absolute lymphocyte and monocyte counts, decreased of percentage of CD4+ T cells, and had a higher
risk of diarrhea. OH-PAH concentrations were negative with child growth. 1-OHNap mediated through WBCs, along with 1-
OHPyr, was correlated with an increase SLA concentration. 2-OHFlu, 1-OHPhe, 2-OHPhe, 1-OHPyr, and 6-OHChr were
positively correlated with secretory immunoglobulin A (sIgA) concentration. Our results indicated that PAH pollutants caused
inflammation, affected the intestinal epithelium, and led to transformation of microfold cell (M cell). M cells initiating mucosal
immune responses and the subsequent increasing sIgA production might be an adaptive immune respond of children in the e-
waste areas. To our knowledge, this is the first study of PAH exposure on children intestinal immunity in e-waste area, showing
that PAH exposure plays a negative role in child growth and impairs the intestinal immune function.

Keywords Polycyclic aromatic hydrocarbon . E-waste . Secretory immunoglobulin A . Sialyl Lewis A . Intestinal immunity .

Adaptive immunity

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are listed as a kind
of priority environmental pollutants with public health concerns

(Ramirez et al. 2011). Existing studies show that diabetes, met-
abolic syndrome, cardiovascular disease, asthma, dyslipidemia,
hematology, neurobehavioral disorders, and cancer are related
to exposure to PAHs (Hu et al. 2018; Karimi et al. 2015; Kim
et al. 2021; Manoli et al. 2016; Rengarajan et al. 2015;
Roshandel et al. 2012; Yang et al. 2014; Yilmaz et al. 2007;
Wang et al. 2020a; Zhang et al. 2020a). Studies also reveal a
link between PAHs and gastrointestinal (GI) symptoms and
diseases and even GI tumors (Bansal and Kim 2015; Diggs
et al. 2011; Gunter et al. 2007; Henkler et al. 2012; Poirier
et al. 2019; Prince 2015; Roshandel et al. 2012). These findings
strongly suggest an association between PAH exposure and
impairment of the GI tract.

The GI tract is the main organ providing an internal barrier
against environmental exposure and plays an important role in
the physical and immune barriers to entry of harmful com-
pounds in the body (Arnal and Lalles 2016; Ghosh et al.
2020). Breaking the epithelial barrier or even a minor disorder
can lead to serious pathological consequences, including infec-
tion and inflammation (Citi 2018). Mounting studies imply an
association between PAHs andmicroflora. By altering bacterial
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communities and interrupting the function of the intestinal mi-
croflora, PAHs can cause intestinal inflammatory disorders and
immune respond (Defois et al. 2018; Mantey et al. 2014;
Roslund et al. 2019; Roslund et al. 2020). In vitro and in vivo
studies have also shown that PAHs can affect the immune
system (Abdel-Shafy and Mansour 2016; Kim et al. 2013).
However, very few studies have investigated alterations of the
GI immune system (Abdel-Shafy and Mansour 2016).

To maintain gut immune homeostasis, there are multiple
layers of defense in the intestinal mucosa, including innate and
adaptive defenses (Ren et al. 2016). M cells mediate antigen
uptake and specific secretory immunoglobulin A (sIgA) produc-
tion which play a vital role in adaptive defenses (Kobayashi
et al. 2019). M cells initiate mucosal immune responses by
active phagocytosis and transcytosis of luminal bacteria and
antigen presentation to dendritic cells (DCs) in the underlying
lymphoid follicles (Ohno 2016). T cells and B cells are activated
when DCs present antigen. Mucosal B cells then undergo IgA
class switch recombination (CSR), migrate into the lamina
propria and mature into IgA-producing plasma cells to produce
IgA (Li et al. 2020; Liu et al. 2013). IgA binds to the polymeric
immunoglobulin receptor (pIgR) and is transported across the
cell to the lumen to form the molecule sIgA (Li et al. , 2020).

SLA is a lectin largely restricted toM cells within epithelial
tissues (Giannasca et al. 1999; Ragupathi et al. 2009). During
inflammation, M cells are induced in the intestinal tract and
their number increases in inflamed mucosa (Lugering et al.
2004). In vitro, epithelial cells are transformed to cells with
an M cell-like morphology and upregulate SLA antigen pro-
duction (Gullberg et al. 2000). It has been observed that an
increase in IgA level is associated with the increase in SLA
level in colon disease (Iarumov et al. 1998; Jasim et al. 2008).
All these results suggest a link between M cell differentiation
and sIgA production in intestinal inflammation.

Although epidemiological studies have revealed a close link
between PAH exposure and human digestive disease, the un-
derlying mechanisms remain unexplored (Mantey et al. , 2014;
Shiue 2016). Previous studies on PAH exposure and serum IgA
expression are not consistent (Gao et al. 2014; Jeng et al. 2011;
Karakaya et al. 1999; Szczeklik et al. 1994). Currently, limited
studies of PAH exposure and human intestinal immunity have
been about occupational exposure, and most of those studies
have focused on IgA levels. Since serum IgA is monomolecular
and sIgA is multimolecular, serum IgA cannot fully reflect the
mucosal immunity (Li et al. , 2020). According to the literature,
most serum sIgA probably originated from the digestive tract,
and its levels of determination can be the most direct way to
assess the amount of sIgA secretion in digestive tract (Pérez-
Griera et al. 2017). The association between PAH exposure and
serum sIgA level has not been studied, especially for the chil-
dren in e-waste areas.

Guiyu is an e-waste recycling town located in Guangdong
province, in southeast China, and has a more than 40-year

history of e-waste disposal (Zeng et al. 2018). It has been re-
ported that environmental medias surrounding e-waste disman-
tling areas extremely contaminated by PAHs from thermal
recycling activities (Liu et al. 2020; Wang et al. 2020a). Our
previous studies have shown that local residents in Guiyu are
exposed to PAHs and have health problems (Guo et al. 2012;
Huang et al. 2020; Wang et al. 2020a; Xu et al. 2013; Xu et al.
2015; Zeng et al. 2020; Zheng et al. 2019). Previous studies
shows PAH exposure affects immune system (Abdel-Shafy
and Mansour 2016; Burchiel and Luster 2001; Dupuy et al.
2014; Ekhator et al. 2018; Gou et al. 2017; Kim et al. , 2013).
To better understand the relationship between PAH exposure
and intestinal immunity, we recruited children from Guiyu and
Haojiang (as a reference area located 31.6 km to the east of
Guiyu) for the current study. We hypothesize that PAH expo-
sure may cause GI tract inflammation and lead to M cell differ-
entiation, which may consequently alter intestinal immunity.

Materials and methods

Study population

A total of 232 children (2-7 years old), all residents in Guiyu
and Haojiang for more than 1 year, were included in this study
(exposed group n = 119 vs. reference group n = 113). All
children were recruited from two kindergartens during
November to December 2018 and were free from general
medical conditions and diseases. Apart from e-waste pollu-
tion, the two regions are very similar in ethnicity, cultural
background, and population. Informed consent with a ques-
tionnaire on general characteristics, dwelling environment,
children’s living habits, family history, monthly household
income, and parental educational level was obtained from
the parents or guardians of all participants. This study was
approved by the Human Ethics Committee of Shantou
University Medical College, China. As previously described,
fasting venous blood was collected by a nurse. The whole
blood was used to measure immune cells and serum was used
tomeasure SLA and sIgA. The rest of the serumwas aliquoted
and stored at – 80 °C until analysis (Zheng et al. 2019). A 15
mL urine were collected into a polypropylene conical centri-
fuge tube from children after getting up in the morning and
preserved in − 20 °C until PAH metabolite measurement (Dai
et al. 2019).

Measurement of PAH metabolites in urine

Eleven urinary PAH metabolites (1-hydroxynaphthalene (1-
OHNap) , 2-hydroxynaphtha lene (2 -OHNap) , 2-
hydroxyfluorene (2-OHFlu), 9-hydroxyfluorene (9-OHFlu),
1-hydroxyphenanthrene (1-OHPhe), 2-hydroxyphenanthrene
(2-OHPhe), 3-hydroxyphenanthrene (3-OHPhe), 4-
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hydroxyphenanthrene (4-OHPhe), 9-hydroxyphenanthrene
(9-OHPhe), 1-hydroxypyrene (1-OHPyr) , and 6-
hydroxychrysene (6-OHChr)) were measured by gas
chromatography/mass spectrometry (GC/MS, 7890A-5975C
Agilent Technologies) according to previous studies, with
electron ionization used in selected ion monitoring mode
(Campo et al. 2008; Cheng et al. 2020; Dai et al. 2019;
Huang et al. 2020; Huo et al. 2019; Wang et al. 2020b;
Zheng et al. 2019). Methods for QA/QC were based on our
previously published methods with minor modifications
(Cheng et al. 2020; Dai et al. 2019). ΣOH-PAHs was defined
as the sum of the eleven congeners in urine. ΣOHNap was
defined as the sum of 1-OHNap and 2-OHNap. ΣOHFlu was
defined as the sum of 2-OHFlu and 9-OHFlu. ΣOHPhe was
defined as the sum of five OHPhe congeners in urine.

General physical tests and biological measurements

General physical examinations, including height, weight, and
chest circumference, were performed by trained physician as
described previously (Dai et al. 2019; Wang et al. 2020b; Xu
et al. 2015; Zeng et al. 2020). A Sysmex XE-2100 automatic
hematology analyzer was used for determining the white blood
cell count in peripheral blood. The serum levels of SLA and
sIgA were measured with a CA19-9/Sialyl Lewis A (Human)
ELISA Kit (KA0207, Abnova, Taiwan) and a Secretory IgA
(Human) ELISA Kit (KA3980, Abnova, Taiwan). Sensitivity
was 10 U/mL and 0.6 μg/mL, respectively. ELISAs were per-
formed following the manufacturer’s instructions.

Flow cytometry

To determine the B lymphocytes (CD3-CD19+) and
CD3+CD4+CD8-T (CD4+T cells) cell phenotype, 100 μL
whole blood was mixed with appropriate volume of the fol-
lowing monoclonal antibodies: CD3-APC-Cy7, CD4-PE-
CF594, CD8-FITC, and CD19-PE-Cy7 (BD Bioscience,
USA) and incubated for 15 min away from light at room
temperature, then 2 mL of 1× lysing solution (BD
Bioscience, USA) was added and vortexed gently and incu-
bated for 10 min away from light at room temperature. After
centrifugation at 500g for 5 min, the supernatant was
discarded, the cells were washed twice with 2 mL of 1×
PBS, followed by resuspension in 500 μL of 1× PBS. Cells
were analyzed by FACS using an CYTEK Aurora
flowcytometer (CYTEK Biosciences inc., USA). Data was
analyzed with Spectro Flo (CYTEK Biosciences inc., USA).

Statistical analysis

Data were analyzed by SPSS (Statistical Package for Social
Sciences) version 22. All data were expressed as median and
ranges or mean and standard deviation. We used the Pearson

chi-square test, independent sample t test, or Mann-Whitney U
test to assess demographic and other characteristic differences
between the two groups. Spearman’s correlation analysis was
performed to assess the relevant factors contributing to urinary
PAH metabolites and the effects of PAH metabolites on the
other indicators. Variables with skewed distributions were ln-
transformed prior to regression and mediation analysis. P <
0.05 was set as the significance level in a two-tailed test.

Results

Basic characteristics of the study population

A total of 232 children were enrolled in the study (Table 1).
Children in the two groups have no significant differences in
gender and age (P > 0.05). The weight, height, chest circum-
ference, and BMI of children are lower in the exposed group
(P < 0.05). Children in the exposed group reside in a poorer
residential environment, and the majority of the children re-
side in a residence near a road or an e-waste site or live in
family workshops and have a family member who smoking
(all P < 0.05). All these provide potential exposure to envi-
ronmental pollution. The education level of the parents
and monthly household income are lower for exposed
children. Moreover, children in the exposed group more
commonly display irritable bowel symptoms and diarrhea
(more than three movements of loose stools a day) com-
pared to the reference (odds ratio (OR) = 2.21; 95% CI:
1.16, 4.21; P = 0.014).

Urinary PAH metabolite concentrations and factors
influencing OH-PAHs

Except for 9-OHFlu, 2-OHPhe, 3-OHPhe, and 9-OHPhe, the
other seven urinary OH-PAH concentrations are significantly
higher in the exposed than the reference group (Table 2).
Spearman correlation analysis showed that most urinary
PAH metabolites are highly correlated with BMI, height,
weight, and chest circumference (Table 3). In order to inves-
tigate the potential influencing factors of PAH exposure, a
Spearman correlation analysis is performed (Table 4).
Results show that urinary 1-OHNap concentration is posi-
tively correlated with e-waste contact, family workshops,
residence within 50 m from an e-waste site and family
member smoking. Urinary 1-OHNap, ΣOHNap, and
ΣOHPAHs concentrations are negatively correlated with
distance between residence and road, and urinary 1-
OHNap, 1-OHPyr, ΣOHNap, ΣOHPhe, and ΣOHPAH
concentrations are negatively correlated with the educa-
tional level of children’s parents.
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Peripheral leukocyte count and associations between
urinary OH-PAHs

As shown in Fig. 1, the absolute lymphocyte and monocyte
counts in the exposed group children are significantly higher
than the reference group (both P < 0.05). Both white blood cells
(WBCs) and absolute neutrophil counts of children in the

exposed group tended to be higher than the reference group,
but there is no significant difference (both P > 0.05). Spearman
correlation analysis show that urinary 1-OHNap is positively
correlated with WBCs and the absolute lymphocyte and mono-
cyte counts (rs = 0.142, rs = 0.147, and rs = 0.206, respectively,
all P < 0.05); urinary 1-OHPyr is positively correlated with the
absolute lymphocyte counts (rs = 0.132, P < 0.05)

Table 1 General characteristics of the study population

N Reference group N Exposed group P

Gender (boys/girls) 113 68 (60.2%)/45 (39.8%) 119 66 (55.5%)/53 (44.5%) 0.467a

Age (median (IQR), years) 113 4.88 (4.37, 5.80) 119 5.11 (4.39, 5.76) 0.431b

Height (mean ± SD, cm) 113 109.29 ± 7.24 119 107.13 ± 7.52 0.027*b

Weight (median (IQR), kg) 113 18.50 (16.50, 20.25) 119 16.50 (15.00, 19.00) 0.000*b

BMI (median (IQR), kg/m2) 113 15.49 (14.71, 16.30) 118 14.93 (13.87, 15.75) 0.000*b

Chest circumference (median (IQR), cm) 113 52.50 (50.40, 54.95) 116 51.25 (49.63, 53.58) 0.026*b

Contact with electronic waste (yes/no) 113 12 (11.65%)/101 (89.38%) 119 33 (27.73%)/86 (72.27%) 0.002*a

Diarrhea (never/1~2 times monthly) 109 91 (83.5%)/18 (16.5%) 115 80 (70.7%)/35 (29.3%) 0.020*a

Distance between residence and road (n (%), m) 111 119 0.000*a

< 10 15 (13.52%) 48 (40.3%)

~ 50 30 (27.03%) 34 (28.6%)

~ 100 24 (21.62%) 22 (18.5%)

> 100 42 (37.83%) 15 (12.6%)

Residence within 50 m from an e-waste site (yes/no) 112 3 (2.68%)/109 (97.32% 116 27 (23.28%)/89 (76.72%) 0.000*a

Residence as a workshop (yes/no) 110 6 (5.5%)/104 (94.5%) 119 32 (26.9%)/87 (73.1%) 0.000*a

Family member daily cigarette consumption (n (%)) 112 118 0.032*a

Non-smoking 56 (50.0%) 40 (33.9%)

~ 2 cigarettes 12 (10.7%) 24 (20.3%)

~ 10 cigarettes 15 (13.4%) 20 (17.0%)

~ 20 cigarettes 25 (22.3%) 23 (19.5%)

> 20 cigarettes 4 (3.6%) 11 (9.3%)

Father’s educational level (n (%)) 113 119 0.000*a

Middle school or lower 23 (20.4%) 90 (75.6%)

Secondary school 19 (16.8%) 8 (6.7%)

High school 17 (15.0%) 12 (10.1%)

College/university 54 (47.8%) 9 (7.6%)

Mother’s educational level (n (%)) 113 118 0.000*a

Middle school or lower 31 (27.4%) 87 (73.7%)

Secondary school 21 (18.6%) 10 (8.5%)

High school 15 (13.3%) 9 (7.6%)

College/university 46 (40.7%) 12 (10.2%)

Monthly household income (n (%), Yuan) 111 112 0.000*a

< 3000 12 (10.8%) 11 (9.8%)

~ 4500 27 ( 24.3%) 26 (23.2%)

~ 6000 19 (17.1%) 46 (41.1%)

> 6000 53 (47.8%) 29 (25.9%)

BMI, body mass index; SD, standard deviation. Statistical significance, *P < 0.05
aAnalysis by the Pearson chi-square test
b Analysis by the independent-sample t test
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Comparison of SLA, sIgA concentration, and immune
cells

The SLA concentration of children in the exposed group is
significantly higher compared with the reference group (Fig. 2,

P < 0.05). The percentage of CD4+ T cells is lower in the
exposed group than the reference group (P < 0.05). The percent-
age of B cells tended to be higher in the exposed children, but no
significance difference is obtained when compared with the ref-
erence (49.83% vs. 46.58%, P > 0.05).

Table 2 Urinary PAH metabolite concentrations in e-waste-exposed and reference groups

Reference group (N = 113) Exposed group
(N = 119)

P

OH-PAH (μmol/mmol Cr)/median (25th, 75th)

Urine-Cre 12.48 (7.25, 26.07) 12.27 (6.89, 24.12) 0.777

1-OHNap 0.18 (0.08, 0.34) 0.85 (0.47, 1.51) 0.000*

2-OHNap 3.16 (1.58, 5.48 ) 4.49 (2.57, 6.99) 0.008*

2-OHFlu 0.54 (0.26, 0.93 ) 0.64 (0.34, 1.11) 0.046*

9-OHFlu 1.86 (0.82, 4.59 ) 2.31 (1.13, 5.25) 0.167

1-OHPhe 0.77 (0.38, 1.40 ) 1.18 (0.59, 2.05) 0.001*

2-OHPhe 0.89 (0.46, 1.53) 1.04 (0.59, 1.82) 0.067

3-OHPhe 1.66 (1.12, 2.53 ) 1.85 (1.22, 3.17) 0.081

4-OHPhe 0.87 (0.46, 1.50 ) 1.06 (0.63, 1.85) 0.015*

9-OHPhe 0.79 (0.36, 1.37) 0.87 (0.48, 1.73) 0.117

1-OHPyr 1.26 (0.60,3.40 ) 2.49 (1.27, 5.49) 0.000*

6-OHChr 0.44 (0.23, 0.81) 0.56 (0.33, 0.95) 0.033*

ΣOHNap 3.46 (1.72, 5.82) 5.43 (3.14, 7.91) 0.000*

ΣOHFlu 2.50 (1.11, 5.64) 2.93 (1.47, 6.06) 0.136

ΣOHPhe 4.98 (2.75, 8.32) 6.15 (3.55, 10.80) 0.027*

ΣPHAs 13.77 (6.65, 23.01) 19.20 (11.18, 32.16) 0.002*

Cre, creatinine

Analysis by independent-sample t test

*P < 0.05

**P < 0.01

Table 3 Spearman analysis of the
association between urinary PAH
metabolites and characteristics of
children

BMI High Weight Head circumference Chest circumference

1-OHNap − 0.219** − 0.211** − 0.307** 0.002 − 0.199**

2-OHNap − 0.090 − 0.245** − 0.250** − 0.091 − 0.222**

2-OHFlu − 0.078 − 0.178** − 0.182** − 0.036 − 0.162*

9-OHFlu − 0.077 − 0.083 − 0.099 0.025 − 0.084

1-OHPhe − 0.043 − 0.232** − 0.219** − 0.061 − 0.180**

2-OHPhe − 0.067 − 0.228** − 0.221** − 0.090 − 0.200**

3-OHPhe − 0.075 − 0.196** − 0.201** − 0.051 − 0.167*

4-OHPhe − 0.092 − 0.205** − 0.216** − 0.051 − 0.187**

9-OHPhe − 0.060 − 0.204** − 0.190** − 0.068 − 0.175**

1-OHPyr − 0.075 − 0.237** − 0.254** − 0.092 − 0.187**

6-OHChr − 0.077 − 0.223** − 0.220** − 0.091 − 0.186**

ΣOHNap − 0.115 − 0.253** − 0.272** − 0.083 − 0.230**

ΣOHFlu − 0.074 − 0.096 − 0.107 0.022 − 0.092

ΣOHPhe − 0.070 − 0.221** − 0.218** − 0.064 − 0.190**

ΣOHPHAs − 0.085 − 0.213** − 0.219** − 0.048 − 0.182**

*P < 0.05

**P < 0.01
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SLA and sIgA concentration of the 4- and 5-year-old
children

Due to the fact that children included in this study had sample
bias, we only analyzed the subgroup of 4- and 5-year-old
children from the two areas (Fig. 3). Results show that for
the 4-year-old children, both SLA and sIgA are both higher
in the exposed group than reference (both P < 0.05), but no
significance difference in the 5-year-old children. The sIgA
concentration of the 5-year-old children is lower than that in 4-
year-old in the exposed group (P < 0.05), but no significance
difference in the reference group.

Urinary PAH metabolite concentrations of the 4- and
5-year-old children

In the reference group, urinary ΣOHPAHs, 2-OHNap, 2-
OHFlu, 1-OHPhe, 2-OHPhe, 4-OHPhe, 9-OHPh, 1-OHPyr,
6-OHChr, ΣOHNap, and ΣOHPhe concentrations are higher
in the 4-year-old group compared with that in the 5-year-old
group (all P < 0.05). In the exposed area, the urinary OH-PAH
concentrations between the two age groups show no signifi-
cant difference (Fig. 4).

Associations between urinary OH-PAHs with sIgA,
SLA, and B cell percentage

A multivariable linear regression model was performed to
identify the contributions of OH-PAHs to sIgA, SLA, and B
cell percentage in children (Fig. 5). Unadjusted regression
analysis shows that 2-OHFlu, 1-OHPhe, 2-OHPhe, 1-
OHPyr, and 6-OHChr are positively correlated with sIgA con-
centration; 1-OHPyr is positively correlated with SLA con-
centration, and 1-OHNap, 2-OHNap, 1-OHPyr, ΣOHNap,
and ΣOH-PAHs are positively correlated with the percentage
of B cells. The correlations between 1-OHPhe, 2-OHPhe, 1-

OHPyr, 6-OHChr, and sIgA concentration; 1-OHPyr level
and SLA concentration; and 1-OHNap and B cell percentage
remain significant after further adjustment for gender, age,
BMI, contact with e-waste, parental educational level, and
monthly household income.

Mediation effect analysis

Mediation model analysis shows that WBC concentration
is a mediator in the correlation of 1-OHNap and SLA level
(Fig. 6). In increasing WBC concentration, each 1-unit in-
crease in 1-OHNap concentration is estimated to be corre-
lated with a 0.020 μg/mL increase in SLA level. However,
the direct effect of 1-OHNap on SLA level is not statically
significant in mediation effect analysis, indicating that
WBC concentration is completely responsible for the
mediation.

Discussion

In this study, we find that exposure group children had higher
risk for diarrhea (odds ratio (OR) = 2.21) compared to the
reference children. PAH exposure is negatively correlated
with BMI, height, weight, and chest circumference of the chil-
dren. Most of hydroxylated polycyclic aromatic hydrocarbon
(OH-PAH) concentrations of children were higher in the ex-
posed group and positively correlates with inflammation cells
and intestinal immune biomarkers. Our results demonstrate
that PAH exposure may be associated with gastrointestinal
inflammation and immune responses. To our knowledge, this
is the first study to provide evidence about the relationship
between PAH exposure and intestinal immunity.

Urinary levels of OH-PAHs are widely used as a biomarker
for estimating human exposure to PAHs from all routes of
exogenous compounds (Lu et al. 2016; Yang et al. 2016). In

Table 4 Spearman correlation analysis between urinary metabolites of PAHs and related factors

Related factors 1-OHNap 1-OHPyr ΣOHNap ΣOHPhe ΣOHPAHs

rs rs rs rs rs
Electronic waste contact 0.207** 0.095 0.105 0.058 0.095

Residence as a workshop 0.237** 0.119 0.126 0.078 0.119

Distance between residence and road − 0.271** − 0.129 − 0.138* − 0.093 − 0.133*

Residence within 50 m from an e-waste site 0.161* 0.092 0.063 0.065 0.070

Family member cigarette smoker 0.136* 0.057 0.079 0.041 0.061

Father’s educational level − 0.416** − 0.217** − 0.214** − 0.149* − 0.201**

Mother’s educational level − 0.343** − 0.183** − 0.210** − 0.133** − 0.186**

Monthly household income 0.073 0.095 0.095 0.101 0.097

*P < 0.05

**P < 0.01
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this study, eight of eleven urinary OH-PAH concentrations of
children are significantly higher in the exposed group than in
the reference group, which is consistent with our previous
studies indicating that children from e-waste recycling areas
have elevated OH-PAH levels (Dai et al. 2019; Wang et al.
2020b; Xu et al. 2015; Zeng et al. 2020; Zheng et al. 2019).
We find that 1-OHNap is negative with BMI, whereas most of
the OH-PAHs negatively correlate with height, weight, and
chest circumference, suggesting that PAH exposure has ad-
verse effects on the development of children. As the recent
studies described, we used biomonitoring studies to reveal the

relationships between urinary PAHmetabolite levels and sev-
eral lifestyle and/or demographic variables (Keir et al. 2020;
Oliveira et al. 2020). The results show that urinary 1-OHNap
metabolites are positively correlated with e-waste contact,
family workshops, residence within 50 m from an e-waste site
and family member smoking. We also find that OH-PAHs are
negatively correlated with parental education levels, which
corroborates previous studies suggesting that child health is
associated with parental educational attainment reflecting
knowledge-related assets, as well as other health-related char-
acteristics (Carozza et al. 2010; Faught et al. 2019). In total,

Fig. 1 White blood cells, neutrophils, lymphocytes, and monocytes
between the two groups. Reference group, n =113; exposed group, n =
119. a Results are presented as mean ± standard deviation, analyzed by

independent-sample t test. b–d Results are presented as median (inter-
quartile range), analyzed by the Mann-Whitney U test. *P < 0.05, **P <
0.01, ***P < 0.001
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our findings indicate that pollution in e-waste areas and living
habits affect children’s urinary OH-PAH levels and have ad-
verse effects on child growth.

Many studies have reported associations of PAH expo-
sure and inflammation (Alshaarawy et al. 2013; Kamal
et al. 2014; Zhang et al. 2020b). PAH exposure is known
to induce oxidative stress and promote the production of

reactive oxygen species (Dupuy et al. 2014; Huang et al.
2018; Jeng et al. 2011; Lu et al. 2016; Yang et al. 2014;
Yilmaz et al. 2007; Zhang et al. 2020b). The results of the
present study showed that 1-OHNap and 1-OHPyr corre-
late with inflammatory cells, and both compounds are ele-
vated in the exposed group, consistent with our prior stud-
ies demonstrating that PAH exposure is associated with

Fig. 2 Biomarkers in exposed and reference groups. a Serum SLA and
sIgA concentration in the two groups (SLA: exposed group, n = 108;
reference group, n = 105; sIgA: exposed group, n = 113; reference
group, n = 113). b Percentage of CD4+ and B cells between the two

groups (exposed group, n = 113; reference group, n = 119). Results are
presented as mean ± standard deviation (median interquartile range),
obtained with an independent-sample t test. *P < 0.05

Fig. 3 Subgroup analysis serum
SLA and sIgA concentration of 4-
and 5-year-old children. a The 4-
year-old group (SLA: exposed
group, n = 31; reference group, n
= 42; sIgA: exposed group, n =
38; reference group, n =45). bThe
5-year-old group (SLA: exposed
group, n = 46; reference group, n
= 31; sIgA: exposed group, n =
40; reference group, n =34). c
Reference group (SLA: 4-year-
old group, n = 42; 5-year-old
group, n = 31; sIgA: 4-year-old
group, n = 45; 5-year-old group, n
= 34). d Exposed group (SLA: 4-
year-old group, n = 31; 5-year-old
group, n = 46; sIgA: 4-year-old
group, n = 38; 5-year-old group, n
= 40). Results are presented as
median (interquartile range) and
analyzed by the Mann-WhitneyU
test. *P < 0.05
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inflammation (Cheng et al. 2020; Dai et al. 2019; Zheng
et al. 2019).

Relationship between PAH exposure and GI inflammation
has been poorly studied in human. An animal study has

indicated that PAHs can be metabolized, and the metabolic
products secreted into the GI tract to cause toxicity to epithe-
lial cells (Mantey et al. 2014). Except for the direct impact on
the digestive tract, PAHs can also affect intestinal flora to

Fig. 4 Subgroup analysis of
urinary PAH metabolite
concentrations (μg/g Cre) of the
4- and 5-year-old children. a
Reference group (4-year-old
group, n = 45; 5-year-old group, n
= 36). b Exposed group (4-year-
old group, n = 38; 5-year-old
group, n = 46). Analysis by
independent-sample t test. *P <
0.05, **P < 0.01

Fig. 5 Effect estimates and 95% confidence intervals for OH-PAHs with
sIgA, SLA, and B cells. Adjusted model adjusting for gender, age, BMI,
contact with e-waste, parental educational level, and monthly household

income. BMI, body mass index; B, unstandardized coefficient; CI, con-
fidence interval. *P < 0.05, **P < 0.01
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cause intestinal inflammatory disorders by secreting toxic
metabolic products, altering bacterial communities and
interrupting the functions of the intestinal microflora (Defois
et al. 2018; Mantey et al. 2014; Roslund et al. 2019; Roslund
et al. 2020). Under inflammatory conditions, intestinal epithe-
lial cells may be converted to M cells (Gullberg and
Soderholm 2006; Lugering et al. 2004). We applied a linear
mediation model with adjustment for factors to quantify the
association between PAH exposure and SLA expression.
Results show that 1-OHPyr affects the SLA level directly
while 1-OHNap affects the SLA level through WBC media-
tion. For each 1-unit increase in concentration of 1-OHPyr and
1-OHNap, the SLA concentration increases 0.093 μg/mL and
0.020 μg/mL, respectively. Collectively, our results suggest
that PAH exposure may be linked to GI inflammation and
leads to M cell differentiation. Previous studies indicated that
1-OHNap present almost exclusively in vapor phase and is
associated with inhalation exposure while 1-OHPyr as partic-
ulate matter with dietary exposure (Kim et al. 2021; Lao et al.
2018; Manoli et al. 2016; Nethery et al. 2012; Onyemauwa
et al. 2009). We speculate that atmospheric PAH exposure
causes a systemic inflammatory reaction and impairs the epi-
thelium of the GI tract, whereas dietary PAH exposure directly
modulates the gastrointestinal immune response, and both
lead to M cell differentiation in the intestinal epithelium, as
manifested by increased SLA concentrations in children.

Diarrhea is the manifestation of a disturbed gut environment
as a symptom of an intestinal tract infection usually caused by a
host of pathogens, which most likely results from disturbances
in antigen-specific mucosal immune responses (Dong et al.
2017; Nagai et al. 2019; Yaya et al. 2018). We find that chil-
dren in exposure group had higher risk for diarrhea (odds ratio
(OR) = 2.21) compared to the reference. Previous studies have
shown that PAH exposure was associated with suppression of
T cell proliferation and decreased the percentage of CD4+ T
cells, while lower numbers of CD4+ T cells are predictive of
chronic diarrhea (Gou et al. 2017; Lauer et al. 2019; Navin et al.

1999). In this study, the percentage of CD4+ T cell decrease in
the exposed group may associate with PAH exposure, which
may be the reason for the diarrhea in exposed children. The
correlation and regression analysis for OHPAHs and B cells is
also consistent with a prior study reporting that exposure to
PAHs might affect the differentiation of B cells (Huang et al.
2018). Together, our results suggest that PAH exposure may
impair intestinal immune function, raise the risk of GI tract
pathogen infection, lead children diarrhea, and favor B cell
differentiation as an adaptive response.

Previous studies indicate that PAH exposure alters immu-
nological responses and changes the expression of serum IgA.
However, those results are not consistent. An increase of se-
rum IgA level has been suggested in bitumenworkers exposed
to PAHs compared to the control group, but this disparity was
not significant (Karakaya et al. 1999). By contrast, Jeng et al.
(2011) found an inverse association between levels of PAHs
and IgA (Jeng et al. 2011). Szczeklik et al. (1994) also found
that workers chronically exposed to PAHs had depression of
mean IgA levels (Szczeklik et al. 1994). Gao et al. (2014)
showed that individuals exposed to high levels of PAHs had
significantly lower mean IgA level (Gao et al. 2014). Limited
studies about associations between PAH exposure and serum
IgA expression have yielded inconsistent findings. All of
those studies focused on adult occupational exposure, by an-
alyzing the association between PAH exposure with serum
IgA, which cannot totally reflect the mucosal immunity.
According to the literature, serum sIgA is presumed to be a
reliable indicator of mucosal immunity and the increase levels
are evidence of subclinical intestinal compromise (Arias et al.
2020; Pérez-Griera et al. 2017). Here, we explored the rela-
tionship of PAH exposure and serum sIgA in the children in
an e-waste area, which has not been studied. Results show that
1-OHPhe, 2-OHPhe, 1-OHPyr, and 6-OHChr are estimated to
be correlated with an increase in sIgA level, suggesting that
PAH exposure might affect child mucosal immunity and ele-
vate the level of serum sIgA.

Fig. 6 Mediation effect of WBCs
on the relationship between 1-
OHNap and SLA. B, unstandard-
ized coefficient; CI, confidence
interval, BMI, body mass index;
5000 bootstrap samples; n = 203.
P < 0.05 were considered statisti-
cally significant.
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Younger children are more seriously exposed to PAHs be-
cause they prefer to play and crawl around on the floor and
ground and display hand-to-mouth behavior (Huang et al.
2019; Oliveira et al. 2019). Our results showing that the con-
centrations of most OHPAHs decrease in the 5-year-old chil-
dren than 4-year-old children in the reference group supports
this suggestion. However, in the exposed group, no significant
difference of OHPAH concentration was observed between
the 4- and 5-year-old children. We speculate that the high
urine OHPAH levels of children in e-waste area are associated
with the high concentration of PAHs in the environment. Even
though behavioral changes with age can reduce PAH expo-
sure, the urinary OH-PAH levels of older children remain
high, indicating that environmental PAH pollution continues
to pose a long-term serious threat to local children.

M cells have critical roles in intestinal sIgA production
(Ren et al. 2016). For the 4-year-old, both SLA and sIgA are
significantly elevated in the exposed group. Depending on
various parameters, PAHs exert complex effects on the im-
mune system resulting in immune suppression or immune
potentiation (Abdel-Shafy and Mansour 2016). Low levels
of PAH exposure may lead to immune enhancement or an
adjuvant effect (Burchiel and Luster 2001). In the current
study, we found that PAH exposure increases children’s
sIgA levels. The reason may be that occupational PAH expo-
sure is more serious than lifestyle exposure of children in e-
waste areas. In addition, children enrolled in this study are all
healthy individuals, and the concentrations of PAHs are esti-
mated to be low, even in the exposed group. The effects of low
levels of PAHs on human health, particularly in children, are
unknown (Ekhator et al. 2018). We speculate that the increase
level of sIgA might be an adaptive protective response of
children to the external PAHs related to toxic intestinal in-
flammation, suggesting that mucosal immunity strengthens,
to some degree, the protective mechanism against environ-
mental irritants.

There are more toxic substances in e-waste site than refer-
ence area, which also had impact on children mucosal immu-
nity (Fitch et al. 2020; Kish et al. 2013; Woodby et al. 2020).
We hypothesize that except the PAH pollutants, other toxic
substances may irritate and lead to initiate the mucosal immu-
nity, with an increase of children’s sIgA levels. Our result
shows that compared with the 4-year-old children, the sIgA
levels of the exposure group were decreased in the 5-year-old
children (Fig. 3d). According to the literature, toddlers aged 2-
4 years were estimated to have the highest exposure to con-
taminants and gradually decreased with the increase of chron-
ic exposure duration (Rodriguez et al. 2008; Song et al. 2017).
The decrease of sIgA levels of the 5-year-old children in the
exposure group may be associated with reduced exposure to
other e-waste pollutants. But in the reference group, both SLA
and sIgA levels of the 4- and 5-year-old group showed no
significance (Fig. 3c). Further analyses of the urine OH-

PAH levels show that most of them decrease in the 5-year-
old group. We speculate that children urine OH-PAHs were
estimated to be low and had less effect of mucosal immunity.

The limitations of this study are as follows. Firstly, though
our study provides an association between PAHs and intestinal
immune responses, this may not necessarily indicate a cause-
and-effect relationship between PAH exposure and intestinal
immune-mediated inflammation. Secondly, children included
in this study have sample bias, due to the insufficient number of
samples of the 2-, 3-, and 6-year-old children, we only compare
the subgroups of the 4- and 5-year-old children for some pa-
rameters.We are not able to determine the trend of the influence
of PAHs on mucosal immunity, so a large-sample follow-up
observation is necessary. Thirdly, there is a wide variety of
toxic substances in e-waste site. We only analyze the effect of
PAH metabolites on mucosal immunity and only collected
morning urine samples at one point. To confirm our findings,
more samples of contaminants and multiple measurements of
PAH metabolites are needed for analyses.

Conclusion

In summary, this is the first study to identify the relationship
between mucosal immune response and PAH exposure of
children from an e-waste area. The results show diarrhea oc-
curs more often in e-waste-exposed children, and PAH expo-
sure has adverse effects on child growth. We also find that
PAH exposure causes inflammation and leads to M cell dif-
ferentiation, with subsequently initiating an adaptive immune
response by secreting sIgA. Younger children are more sus-
ceptible to PAH exposure, especially in e-waste areas. These
available data support the hypothesis that for young children
in e-waste areas, low level of PAH exposure may lead to
intestinal inflammation and alter the intestinal immune re-
sponse, which may raise the risk of GI tract pathogen infec-
tion, lead children diarrhea, and affect development. The ele-
vation of sIgA levels may be a protective immune response to
PAH exposure. Even though behavioral changes with age can
reduce PAH exposure, urinary OH-PAH levels remain high in
older children in e-waste areas, suggesting PAH exposure
poses a long-term health threat to the local children. It is nec-
essary to take more preventive measures to further reduce
organic pollutant exposure in e-waste areas and pay more
attention to protect children from e-waste contamination.
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