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Chapter �

Communication in online social
media fosters cultural
isolation

This chapter is based on joint work with Michael Mäs and Andreas Flache, and appeared in Complexity in
2018 under the same title.

��



Online social networks play an increasingly important role in communication between
friends, colleagues, business partners, and family members. This development sparked
public and scholarly debate about how these new platforms a↵ect dynamics of cultural
diversity. Formal models of cultural dissemination are powerful tools to study dynamics
of cultural diversity but they are based on assumptions that represent traditional dyadic,
face-to-face communication, rather than communication in online social networks. Unlike
in models of face-to-face communication—where actors update their cultural traits after
being influenced by one of their network contacts—communication in online social
networks often follows a one-to-many structure, in that users emit messages directly to a
large number of network contacts. Using analytical tools and agent-based simulation, we
show that this seemingly subtle di↵erence can have profound implications for emergent
dynamics of cultural dissemination. In particular, we show that within the framework
of our model online communication fosters cultural diversity to a larger degree than
o✏ine communication and it increases chances that individuals and subgroups become
culturally isolated from their network contacts.
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�.� Introduction
A major premise of the Internet was that it would create a public sphere that fosters
democratic deliberation and consensus formation (Habermas, 1998a; Gimmler, 2001;
Benkler, 2016). Yet, there is increasing concern that the Internet actually reinforces
processes of opinion polarization through users’ tendencies to interact with like-
minded individuals (McPherson et al., 2001) as well as through personalization
algorithms installed in search engines and online social networks (Pariser, 2011;
Bakshy et al., 2015). These psychological and computational homophily biases
fragment online debate into virtual echo chambers (Sunstein, 2002b). Formal
models of social influence in networks are powerful tools for understanding whether
and under what conditions communication in social networks fosters processes of
consensus formation or opinion polarization (Flache et al., 2017). However, existing
models have been tailored to model o✏ine rather than online communication. Here,
we show that taking into account that online communication is characterized by ‘one-
to-many’ communication rather than ‘one-to-one’ communication drastically changes
the predictions of one of the most prominent models developed (Axelrod, 1997).
Specifically, we show that the one-to-many communication regime characteristic
for online communication fosters the emergence of isolated individuals and the
formation internally homogeneous but mutually dissimilar subgroups.

Scholars have long recognized that online communication di↵ers in important
ways from its o✏ine counterpart (see e.g. Flache, 2004; S.-S. Wong & Burton,
2000), but existing research focused on di↵erences that a↵ect within-individual
processes and largely ignored the complexity arising from the communication between
individuals. A classical finding from social psychology, for instance, is that computer-
mediated communication is much less a↵ected by individuals’ physical appearance
(e.g. age, gender, ethnicity), which frees individuals from the social roles associated
with memberships in high or low status groups (Postmes & Spears, 2002). This, it
is argued, increases the relative impact that members of low-status groups have
on collective dynamics, decreasing inter-group conflict and fostering consensus
formation (Postmes & Spears, 2002; Schumann, Klein, Douglas, & Hewstone, 2017).
Likewise, research showed that online communication allows shy individuals to
overcome the communication barriers that socially isolate them in o✏ine settings
(Roberts, Smith, & Pollock, 2000).

In contrast to the existing research, we focus on the complexity arising from
the interaction between individuals, rather than on within-individual processes. To
this end, we study Axelrod’s prominent formal model of communication that was
developed for o✏ine social networks (and uses the one-to-one communication rule),
keeping all assumptions about individual behavior unchanged but implementing
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communication between actors in a way that captures typical forms of online
communication (one-to-many). With analytical tools and simulation, we demonstrate
that this change in model assumptions drastically changes model predictions and
leads to conclusions that challenge insights from research on within-individual
processes. Contrary to the sketched finding that computer-mediated communication
fosters the emergence of consensus (Postmes & Spears, 2002; Schumann et al., 2017),
we find that the online communication regime fosters the emergence of mutually
disagreeing subgroups in our simulations. Likewise, while social-psychological
research found that online communication allows some individuals to overcome
social isolation (Roberts et al., 2000), we demonstrate that online communication
increases the chances that individuals get socially isolated. We derive these results
using an approach that is very di↵erent from the social-psychological research. While
these studies explored how online communication changes the way individuals
behave and respond to each other, our work demonstrates that di↵erences between
online and o✏ine communication arise through merely a di↵erent communication
structure. In complexity terms, we find that the “whole” changes not because the
“parts” have changed but because the interdependencies between the “parts” are
slightly di↵erent.

Axelrod’s model of the dissemination of culture is one of the most prominent
models of consensus formation and the emergence of dissimilar subgroups. It is also
a typical representative of models implementing o✏ine communication. Axelrod
proposed the model to address what he perceived as a fundamental puzzle in research
on social influence, asking “If people tend to become more alike in their beliefs,
attitudes, and behavior when they interact, why do not all such di↵erences eventually
disappear?” (1997, 203). Axelrod then showed with an agent-based model how
assimilation at the micro-level of individual interactions can be reconciled with
cultural di↵erentiation at the level of society as a whole. Like most contributions
to the literature, Axelrod’s model represents individuals as nodes in a network
that are described by a set of cultural traits representing individuals’ cultural
preferences (like preferences for styles of music, literature, or dress). Furthermore,
Axelrod implemented a so-called “one-to-one” communication regime where in
a social encounter one agent always communicates one cultural trait to one of
its network contacts. This one-to-one communication regime mimics the face-to-
face communication present in many o✏ine contexts, but it di↵ers from a form of
communication that is ubiquitous on the Internet and that we label “one-to-many”
communication. When Internet users blog or post content on online social networks,
for instance, they communicate content to multiple online contacts at once rather
than to just one of them.
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(a) t = 0 (b) t = 1, one-to-one (c) t = 1, one-to-many

Figure 3.1 Illustration of the intuition that one-to-many communication fosters isolation. Nodes have
three characteristics (color, shape, and letter) that are open to influence. The number of traits shared by
two nodes and, thus, the probability that a sender exerts influence on the receiver, is shown by the number
of lines connecting the nodes. Panel a shows the initial setup before the top-left agent communicated
his shape trait either under the one-to-one communication regime (Panel b) or the one-to-many regime
(Panel c).

This chapter was motivated by the following intuition about the complexity
arising from one-to-many communication. Consider, for illustration, the network of
four actors depicted in Figure 3.1a. All actors are described by three cultural traits:
shape (circle or square), color (black or white), and letter (A or B). The number of
lines connecting the nodes represent the number of cultural traits the respective
two nodes have in common. Implementing homophily (Lazarsfeld & Merton, 1954;
Carley, 1991; McPherson et al., 2001), Axelrod assumed that trait overlap increases
the likelihood that nodes will adopt a trait from their neighbor. Suppose that the
top-left agent (in Figure 3.1a) communicates his shape trait under the two di↵erent
communication regimes. Under the one-to-one communication regime assumed in
Axelrod’s model, this agent communicates his trait to one of the two agents with
whom he already shares the letter and color traits. Assume that the top-right agent is
selected for interaction and this agent accepted the trait. Figure 3.1b visualizes this
situation, showing the increased cultural similarity between receiver and sender. As a
side e↵ect, the top-right agent lost overlap with the bottom-left agent, but the overall
network remains connected. Figure 3.1c shows that a di↵erent outcome arises when
agents communicate under the one-to-many regime. The same agent (top-left agent)
communicates his shape trait, but let’s assume now all actors with whom he has
nonzero cultural overlap adopt the communicated trait. This has two consequences
that we study in this chapter. First, a culturally homogeneous cluster forms, because
after the communication three actors hold identical cultural traits. Communication
did not only increase similarity between the sender and the receivers of the message,
but it also preserved the similarity between the nodes who adopted the trait. Under
the one-to-one regime, in contrast, the two nodes on the right-hand side turned less
similar to each other. Second, the bottom-left agent no longer shares any trait with
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the other agents, ending up culturally isolated. The fact that the bottom-left agent
was not influenced by the top-left agent did not only exclude that they grew more
similar, but it also increased the dissimilarity between the bottom-left agent and the
other two agents, as they did adopt the cultural trait communicated by the top-left
agent. Counter-intuitively, this stylized example suggests that cluster formation and
cultural isolation are more likely under the one-to-many communication regime, even
though there are more instances of social influence than under Axelrod’s one-to-one
regime.

The intuition illustrated in Figure 3.1 requires a formal analysis for two
reasons. First, under the online one-to-many communication regime, the sender
transmitted a trait to multiple network contacts, while there was only a single act of
communication under the one-to-one regime. It remains unclear whether repeated
one-to-one communication could account for this apparent di↵erence between the
communication regimes or not. Second, the figure focuses on a tiny population with a
simple network structure, leaving open whether one-to-many communication fosters
isolation also when larger numbers of agents communicate simultaneously.

In order to test the validity of our intuition, we implemented a one-to-many
communication regime in Axelrod’s model of cultural dissemination, keeping
unchanged all other model assumptions (thus, keeping our model ‘fully aligned’;
Axtell et al., 1996). That is, we included that actors simultaneously communicate
a trait to their whole network at once. Subsequently, the alters decide individually
whether to adopt or reject the trait according to the rules specified in the original
Axelrod model. We compared the predictions of the new model with predictions
of Axelrod’s original model, using analytical as well as computational tools. First,
we compared the two models’ predictions for very small but analytically tractable
social networks, conducting a Markov-chain analysis, and find that indeed one-to-
many communication increases the chances that individuals become isolated. Second,
using computational methods, we show that our conclusions also hold for bigger
populations, variations in the structure of the underlying social network and higher
cultural complexity in terms of the number of cultural traits and features. Moreover,
we find that medium sized clusters emerge under one-to-many communication at a
low, but consistent rate.

�.� Literature
Axelrod’s model of the dissemination of culture provides a prominent explanation of
the emergence, di↵usion, and stability of distinct cultural profiles. In this literature,
an individual’s culture is defined as the set of their personal characteristic (e.g.
opinions, beliefs, and cultural behavior) that are susceptible to social influence
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(Axelrod, 1997, 206-7). Cultural dynamics unfold from the conjunction of two
social forces, the selection of culturally similar communication partners and the
social influence resulting from communication. As social influence increases cultural
similarity between communication partners, it creates in conjunction with selection a
positive feed-back loop that results in the emergence of cultural clusters that grow
internally increasingly similar, and, as a consequence, mutually dissimilar. Distinct
cultural clusters remain stable when the cultural overlap between clusters drops to
zero, which rules out subsequent communication according to the selection principle.
Axelrod’s model shares this critical assumption with many alternative models, such as
the prominent models of bounded confidence (Hegselmann & Krause, 2002; De↵uant
et al., 2000), as summarized in a recent literature review by Flache et al. (2017).

Many contributions have extended Axelrod’s work (Xia, Wang, & Xuan, 2011),
testing the sensitivity of his predictions to adjustments in model assumptions about,
for instance, the impact of mass media (González-Avella, Cosenza, & Tucci, 2005),
institutions (Ulloa, Kacperski, & Sancho, 2016), and the scale of the cultural features
(Stivala, Robins, Kashima, & Kirley, 2014; Huckfeldt, Johnson, & Sprague, 2004;
Flache et al., 2006). An important advancement was the introduction of noise in the
process of communication-partner selection and social influence (Klemm, Eguı́luz,
Toral, & San Miguel, 2003b, 2003a; Huckfeldt et al., 2004; Mäs et al., 2010). It turned
out that allowing agents to sometimes deviate from Axelrod’s assumptions with a
small probability can cause the system to inevitably move towards monoculture, i.e.
perfect cultural homogeneity. Model predictions are more robust, however, when
agents are assumed to interact only with network contacts that share multiple cultural
traits (De Sanctis & Galla, 2009; Flache et al., 2006), when network ties to contacts
that are culturally too dissimilar are dissolved (Centola, González-Avella, Eguı́luz,
& San Miguel, 2007), or when agents are allowed to form institutions bottom-up
that, in turn, influence the agents top-down (Ulloa et al., 2016). Recently, Battiston,
Nicosia, Latora, and Miguel (2017) conceptualized exchange discussion networks
as a multiplex system in which di↵erent topics are discussed among di↵erent peers.
Multiple dissemination of culture models are layered on top of each other, creating
distinct and robust clusters of cultural identities.

Another extension to the model that can explain the persistence of cultural
diversity despite random deviations is so-called “multilateral social influence” (Flache
& Macy, 2011a), a form of social influence that is similar to the concept of “complex
contagion” from the literature on the di↵usion in social networks (Centola & Macy,
2007). Unlike Axelrod, who modeled influence as a dyadic, one-to-one process where
an agent adopts a cultural trait from a network contact, Flache and Macy (2011a)
assumed that agents always consider the cultural traits of multiple network contacts
when they reconsider their cultural profile and adopt the trait that dominates in
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their neighborhood. This “many-to-one” form of cultural communication makes
predictions much more robust to noise and is the reverse of the “one-to-many”
communication regime that we study here. That is, while Flache and Macy assumed
that an agent is always influenced by multiple network contacts, we consider that an
individual agents exerts influence on multiple contacts.

Modelers have also incorporated assumptions about one-to-many communication
in existing models (Lim, Lee, Zo, & Ciganek, 2014; Pulick, Korth, Grim, & Jung, 2016).
However, while there are social-influence models that implement communication
regimes similar to the one-to-many communication that we study, the literature
lacks an analysis of whether and under what conditions one-to-many communication
generates di↵erent cultural dynamics than one-to-one communication. Thus, unlike
earlier contributions, we implement one-to-many communication in Axelrod’s model
keeping all other model assumptions unchanged. Next, we compare predictions of
the new model with the predictions of the original approach.

�.� Model
The aim of the present analysis is to test our intuition that one-to-many
communication generates more isolation than one-to-one communication. To this end,
we compare the predictions of Axelrod’s prominent model of cultural dissemination,
which assumed one-to-one communication, with a novel extension of the same model
that captures one-to-many communication. Like in the original Axelrod model we
generate populations of N agents. Every agent has a cultural profile; a vector Ci with
F nominal features with Q possible traits. Features represent cultural attributes that
are open to social influence, and traits refer to the distinctive content of a feature for
a given agent. Formally:

Ci = (qi1, qi2, ..., qiF ), qix 2 {0,1, ...,Q � 1}

Axelrod’s used a very abstract representation of agents’ cultural characteristics.
Features can represent something as basic as the person’s favorite song, or something
as complex and multidimensional as the person’s music taste. Likewise, it can model
the person’s view on abortion or their much more complex preference for a specific
political party which may be a function of their view on abortion and many other
aspects. In Section 3.4.2 we study how the dynamics emerging from one-to-one and
one-to-many communication are a↵ected by cultural complexity measured in terms
of the number of features and traits per feature.

Table 3.1 summarizes and compares the two variants of Axelrod’s model. At
every time step t, an agent i is selected at random from the population. This agent
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Table 3.1 Basic assumptions of the dissemination of culture model with one-to-one communication and
our implementation with one-to-many communication.

One-to-one communication One-to-many communication
1. Select active agent
i

Every time step t pick an agent i
from the population1

Every time step t pick an agent i
from the population

2. Select communica-
tion partner

Pick a neighbor j of agent i (not needed)

3. Select communi-
cated trait

Pick a feature f on which i and j
di↵er (qif , qjf )

Pick a feature f on which i and at
least one neighbor j di↵er (qif , qjf ,
for any j)

4. Homophilous
social influence

With a probability pij equal to the
proportion of traits that i and j share
(qif = qjf over F), let j adopt trait
qif from i

With a probability pij equal to the
proportion of traits that i and j share
(qif = qjf over F), let each neighbor
j adopt trait qif from i

is the source of influence. Second, in the original model, one of i’s neighbors is
selected for communication with i, a step that is not necessary under one-to-many
communication where i communicates with all of its neighbors who are open to
influence and not yet culturally identical. In Step 3, one of the cultural features on
which there is not yet consensus between agent i and its neighbors is selected. In
Axelrod’s original model, this translates into the exclusion of all features where i
and j hold the same trait. In the variant with one-to-many communication, however,
one of the features where i disagrees with at least one of its neighbors is picked.
Unlike in Axelrod’s model with one-to-one communication, this implies that i might
transmit a trait to one of its neighbors j that j already adopted, making this dyadic
communication ine↵ective. However, similar to Axelrod’s model, the variant with
one-to-many communication also excludes that a feature is chosen in which cultural
change is impossible, as there must be at least one neighbor who disagrees with i on
the selected cultural dimension. Step 4 implements social influence and is, therefore,
the part where one-to-one and one-to-many communication are implemented. In
Axelrod’s original model, actor j adopts the selected trait with a probability equal to
the overall cultural overlap between i and j . For instance, when i and j hold the same
trait on half of the features, then the chance that j will adopt the trait chosen in Step
3 is 50 percent. This implements homophily, the notion that individuals tend to be
influenced by like-minded communication partners. Empirical research showed that
homophily is a strong force both online and o✏ine (McPherson et al., 2001; Boutyline
& Willer, 2017; Del Vicario et al., 2016). The same principle is implemented in the
new version of the model but here every neighbor of j adopts the selected trait with
a probability equal to the pairwise cultural similarity between i and the respective
neighbor j .
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�.� Comparison of communication regimes
We compared the models with two di↵erent methods. First, we studied small
populations of only four agents, each having only three dichotomous cultural features.
The simplicity of this setup allowed us to conduct a detailed analysis and provide
an analytical proof using a Markov-chain analysis. Second, we conducted agent-
based simulations in order to test whether the conclusions from the Markov-chain
analysis also hold in more complex settings with more agents, higher numbers of
cultural traits and features, di↵erent neighborhood sizes, and more complex network
structures. Using a larger population size in the second analysis also allowed us to
address what Axelrod was primarily interested in, cultural diversity. More precisely,
we could test in the second analysis how the communication regime a↵ects the degree
of and conditions for cultural clustering, the co-existence of local consensus and
global diversity highlighted by Axelrod’s original analysis.

�.�.� Markov-chain analysis
To be able to compare the two models with analytical tools, we first analyzed a setting
that is very simple but where the intuition outlined above, nevertheless, suggests that
predictions of the two model variants di↵er. According to the described intuition,
isolation in the one-to-many model might arise when an actor j is not influenced
by a network neighbor i, but their joint neighbors are influenced. Clusters form
because an actor j exerts the same influence on multiple network contacts. Testing
this intuition requires a network consisting of sender i, receiver j , and at least two
other receivers k and l, that is fully connected. Furthermore, we set the number F
of cultural features to 3, as this creates su�cient variation in probability that agents
influence each other. If two agents do not share a trait on any of the three features,
their communication probability pij = 0. If they share 1 trait, then pij = 1/3. If they
share 2 traits, then pij = 2/3; and if they share all traits, pij = 1. Finally, we assumed
that all three features are dichotomous (Q = 2).

The system with N = 4, F = 3 and Q = 2 has a finite number of cultural
configurations. A cultural configuration is a mapping that assigns to each of the F
features of each of the N agents a value from the set of possible trait values (0 or 1).
The total number of possible configurations is QFN = 212 = 4096.

The dynamics of this system can be fully represented as a Markov chain that
assigns to every ordered pair of cultural configurations a probability to move from
one configuration to the other within one iteration of the simulation of the model.
With 4096 configurations this Markov model of the system is prohibitively large
for an exhaustive analyses. However, we can partition the set of all configurations
into subsets, called classes hereafter, which have the property that for every ordered
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pair of configurations X and Y of which X falls into class S1 and Y falls into class
S2, the transition probability from X to Y is the same. Analyzing the dynamics of
the Markov Chain constituted by these classes and transition probabilities between
them is equivalent to analyzing the Markov Chain of all configurations. As we will
show, we can reduce the system to a number of classes that is small enough to derive
analytically the probabilities that cultural isolation arises from a random start under
one-to-one and one-to-many communication, respectively.

To arrive at a partition of the configurations into classes, we first observe that each
feature f is always in exactly one of three di↵erent states:

Consensus All agents adopt the same trait on feature f . According to Rule 3 of both
models, any future communication changing this feature is excluded because
consensus has been reached.

1-3 split One agent adopted trait q, while the three others have q0 .

2-2 split Two agents share trait q, while the other two agents adopted q0 .

A first classification of configurations can be obtained from distinguishing
configurations that have a di↵erent distribution of states over the three features.
All configurations that have the same number of features in the states C (consensus),
13 (1-3 split), or 22 (2-2 split) fall into the same semi-class. The number of distinct
semi-classes can be obtained from computing the number of possible outcomes if for
every feature its state is drawn randomly and independently with replacement from
the three possible values C, 13 or 12. Thus, for the case where a feature can be in
r = 3 di↵erent states, and there are n = 3 features constituting a cultural vector, this
number is given as the number of unordered permutations for a set when sampling
with replacement as follows:

(r +n� 1)!
r!(n� 1)! =

(3 + 3� 1)!
3!(3� 1)! = 10

However, a semi-class can consist of several classes, thus the number of classes is
larger than 10. The reason is that transition probabilities from a configuration
containing features with more than one 1-3 split or 2-2 split may be di↵erent,
depending on whether the splits separate the set of agents along the same lines,
or are asymmetrical. We distinguish three degrees of symmetry within the semi-
classes with more than one non-consensus feature, and assign the labels: symmetrical
(s), semi-symmetrical (ss) or non-symmetrical (ns).2

2Non-consensus features of the same type are symmetrical if the agents who agree on one feature also
agree on the other. If there are three non-consensus features of the same type and only two features are
aligned, we label this class semi-symmetrical. In principal, the alignment on features of di↵erent types
does not matter for state classification, with the exception of the 13-13-22 semi-class where the two 1-3
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Figure 3.2 Example states of the 13-13-13 classes, traits on features (rows) by agents (columns)

For example, the 13-13-13 semi-class (i.e. all three features contain a ‘1-3 split’)
falls apart into three di↵erent classes: symmetrical, semi-symmetrical, and non-
symmetrical, of which examples are shown in Figure 3.2. Even though the three
configurations are part of the same semi-class, they have very di↵erent probabilities
of communication and transition into another class. The symmetrical 13-13-13 class
(13-13-13s) is an absorbing state of the dynamic and is characterized by one cluster
of three culturally identical agents and one isolate. The isolated agent in this class
is di↵erent from the same three others on all three features, and thus no further
communication is possible. The configurations 13-13-13ss and 13-13-13ns shown in
Figure 3.2 instead allow for communication between some, or all agents. An overview
of all classes and the proportion of states that fall into each class is included in
table B.1 in appendix B.1.

For both model variants, one can identify a partition into a small number of
classes of configurations and calculate for every pair of classes the probability that the
corresponding transition occurs within one iteration. Figures 3.3a and 3.3b visualize
the transition probabilities for both models variants. In the figures, nodes are colored
according whether they represent an absorbing class (black), a class from which
consensus is the only reachable equilibrium (grey)3 or whether more equilibria are
still reachable (white). Edge color corresponds to the probability that the system
moves from one state to another with darker edges indicating higher transition
probability. Recursive paths (self-loops) are not shown.

Both model variants have three possible absorbing classes, these are classes that
once selected by the dynamics will never be left again: the consensus class (C-C-C), the
isolation class (13-13-13s), and the polarization class (22-22-22s). Consensus is stable
since social influence will never lead to changes in agents’ features. Isolation and
polarization are group split states, they are stable because actors are either perfectly
similar or perfectly dissimilar from their neighbors. In both cases, communication

split features are not symmetrical. Here we label the class semi-symmetrical if the outliers on the 1-3 split
features are members of the same group on the 2-2 split feature, and non-symmetrical if they are not.

3Consensus is inevitable in these classes because there is at least one feature on which the agents have
reached consensus. As a consequence all pairs of neighbors will always exert influence on each other with
a positive probability. This will eventually generate consensus. Likewise, it is not possible that a state of
consensus on one or more features can be left.



(a) One-to-one

(b) One-to-many

Figure 3.3 Markov chains for the one-to-one and one-to-many communication regimes in the N = 4,
F = 3, Q = 2 model. Nodes represent classes and the directed edges are colored according to between-class
transition probabilities. Black nodes are absorbing classes, grey nodes are classes from which consensus
is the only reachable equilibrium, and white nodes indicate that from there multiple equilibria are still
reachable.
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Table 3.2 Stationary distributions for the N=4, F=3, Q=2 model with two communication regimes

Communication regime
Class One-to-one One-to-many
C-C-C (consensus) .801 .713
22-22-22s (polarization) .064 .073
13-13-13s (isolation) .135 .215

will never lead to changes in the cultural features. As can be seen in the transition
diagram, as well as in the transition matrix’ diagonal, these are the only classes that
are “sinks” with an out-degree of zero in the Markov graph. Given that from every
other class there is path towards at least one of the absorbing classes, we know that
in the long run the system must end up in one of the absorbing classes.

Figure 3.3 illustrates how isolation can more readily emerge under one-to-many
communication. For example, once the system has reached a configuration in which
one agent is “almost isolated, but still agrees with the three others on one single
feature (13-13-22s, upper-right corners of Figures 3.3a and 3.3b), it is under one-
to-many communication three times as likely that this agent will end up isolated
after the next influence than it is under one-to-one communication.4 More generally,
using the Markov chain convergence theorem, one can calculate for each of the three
absorbing classes the probability to be reached under both communication regimes,
given the initial distribution of configurations. This requires a row vector q of the
initial distribution of states, and the transition matrix T . The stationary distribution
p⇤ is then given by:

p⇤ = qT1

Table 3.2 reports the stationary distributions for both model variants given a
uniform probability of initializing the system in any of its 4096 configurations. These
results support our intuition that isolation is a more likely outcome of the dynamics
of cultural influence under the one-to-many communication regime than under the
one-to-one communication regime. More precisely, we find that the probability
of the outcome of cultural isolation is about 1.6 times higher under one-to-many
communication (.215 vs. .135). We also observe that one-to-many communication
reduces the likelihood of consensus to emerge and thus increases the likelihood that
cultural diversity persists despite social influence. Next, we turn to exploring how
one-to-many communication a↵ects the likelihood and persistence of isolation and
cultural clustering in larger populations.

4The transition probabilities for going from the 13-13-22s to the 13-13-13s class are: p = .33 under
one-to-many communication, and p = .11 under one-to-one communication.
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�.�.� Isolation and cultural clustering in bigger networks
The Markov-chain analysis supported our intuition that isolation and polarization
are more prevalent in the one-to-many communication regime. However, with only
4 agents, we cannot distinguish polarization (separation in exactly two culturally
opposed subgroups) from cultural clustering into a larger number of distinct local
clusters. To test whether and under which conditions, our analytical finding is
robust and generalizes to cultural clustering also in larger networks we conducted
computational experiments with bigger populations, always starting from a random
initial assignment of traits and 1,000 independent replications per experimental
condition. All simulations were executed until dynamics had reached an equilibrium.

In the following subsections, we first compare one-to-one and one-to-many
communication in three di↵erent network configurations. First, we focused on a
regular torus network, as this is the framework that Axelrod used (Section 3.4.2).
Second, we compared the two communication regimes in ring networks with di↵erent
degrees of network transitivity, in order to test whether the micro-level intuition
illustrated in Figure 3.1 is indeed responsible for the macro di↵erences that we
observe in bigger populations (Section 3.4.2). Using the ring networks, we also varied
the size of the agents’ neighborhoods to test whether or not cultural clustering and
isolation persist when individual’s communication networks grow bigger under one-
to-many communication (Section 3.4.2). Next, we studied spatial random graphs, as
these networks have been argued to mimic human social networks better than torus
networks and ring networks (Section 3.4.2). Subsequently, we describe ideal-typical
simulation runs under one-to-one and one-to-many communication to illustrate
di↵erences (Section 3.4.2) and replicate our main findings for populations consisting
of agents with more features (F) and a higher number Q of possible traits per feature.

Population size e�ects

There are at least two reasons for increasing the number of agents in the model. First,
already Axelrod found that monoculture (perfect cultural consensus) is virtually
unavailable once population size exceeds a critical threshold (Axelrod, 1997, pp.
214-5), because dynamics last longer in bigger populations. This increases chances
that two subgroups A and B that have grown maximally dissimilar at some moment
restart communication because one of them adopted a trait from a third subgroup C
that increased cultural similarity between A and B. This finding raises the question
whether the di↵erences between the two communication regimes persist when bigger
populations are assumed. Second, the aim of the present analysis is to contribute to
the development of a valid representation of online communication, a setting where
huge numbers of individuals interact.
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Figure 3.4 E↵ect of population size N on the share of runs with at least one isolate (in black), and share
of runs characterized by monoculture (grey) in a torus network with F = 3, Q = 2, 1,000 replications per
condition, measured at equilibrium

Manipulating the communication regime whilst keeping all remaining
characteristics of Axelrod’s model unchanged, we first compared the two models in
the same cellular-world structure that Axelrod assumed in his seminal work and that
many follow-up studies adopted (e.g. Axelrod, 1997; Flache & Macy, 2011a; Klemm
et al., 2003b). That is, we assumed that N agents are distributed over a wrapped
square lattice (a torus) such that every agent occupies one cell. All agents are linked to
their neighbors in the so-called Moore neighborhood, and can thus interact with eight
other agents.5 The first simulation experiment focused on populations characterized
by a torus network and agents with three cultural features with two possible traits. To
study population-size e↵ects, we created populations with m2 =N agents and varied
m between 2 and 10. In Appendix B.2, we show that our findings are robust when m
is increased to 30 which translates into populations of 900 agents.

Figure 3.4 compares the two communication regimes in terms of the share of runs
that ended with at least one isolated agent. An isolate is defined as an agent that
is maximally di↵erent from all of its network contacts. The black lines show that
isolation still occurs under one-to-many communication even in larger populations,
while isolation virtually disappears in the one-to-one regime. Under the one-to-many
regime, isolation is most likely in very small populations, but once population size
exceeds 36, the model with one-to-many communication generates a constant share

5Axelrod first used the smaller “Von Neumann” neighborhoods, but also tested the robustness of his
results with a “Moore” neighborhood identical to the one we employ.
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of about 12 percent of the runs that are characterized by isolation. This finding was
confirmed by simulations with populations of 900 agents (m = 30; see appendix B.2).

Figure 3.4 furthermore shows that the proportion of runs that end in monoculture
(see the grey lines) decreases with N under one-to-many communication, while the
share of runs generating monoculture increases in population size under the original
model. Axelrod already found that the original model implies more monoculture
in larger populations (1997), a result that generalizes to various extensions of the
model (e.g. Klemm et al., 2003b; Centola et al., 2007). Axelrod deemed this a
counter-intuitive finding, confronting it with contradictory empirical evidence from
a study of language diversity on islands in the South Pacific, which found that there
is more language diversity on larger islands. Our results here suggest that one-to-one
communication plays an important role in the generation of Axelod’s counter-intuitive
finding. In his original model, dynamics generate monoculture in big populations
because whenever a culturally homogeneous region begins to form, the emerging
local consensus can be disrupted by a single communication event of one member of
the region with an outside source of influence. In large populations, these disruptions
are more likely, simply because dynamics last longer than in small populations. Such
outside influences are also possible under one-to-many communication. However, the
main di↵erence is that one-to-many communication o↵ers many more possibilities
how a ‘deviant’ is reached by influences from members inside of the emergent
region to which the deviant belongs. In Axelrod’s original model, the algorithm
always randomly picks two communication partners i and j (see Steps 1 and 2 in
Table 3.1), which implies that the chance that a deviant j is influenced back by a
neighbor who belongs to the cultural region is only 1/8 in a population with Moore
neighborhoods. With our implementation of one-to-many communication, j will
always be targeted by i, as i exerts influence on all neighbors. This greatly increases
the robustness of cultural regions. Further support for this interpretation is given by
similar findings that Flache et al. (2017) obtained with a model assumingmany-to-one
communication.

To test whether one-to-many communication does not only foster isolation but
also the formation of clusters, Figure 3.5 shows how population size a↵ects the
relative frequency of clusters of di↵erent sizes. Even though clusters of size one
and size N are consistently the most likely to be generated by the model, there is a
remarkable di↵erence between the two communication regimes. Under one-to-one
communication, the occurrences of ‘medium sized’ clusters (those larger than one
and smaller than N ) diminishes as N increases, whereas one-to-many communication
does generate clusters of all di↵erent sizes at all levels of N . In the simulation runs
with N = 100 for example, we found that with one-to-one communication 1.2%
of the replication runs end with at least one isolate and 1.6% of the runs generate
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Figure 3.6 Homogeneity after convergence in a torus network with F = 3 and Q = 2 by population size N
and communication regime. Boxplots are shown in black and averages are indicated with dots connected
by a line. 1,000 replications per condition.

medium sized clusters. Under one-to-many interaction the proportion of runs with
at least one isolate rises to 7.7% and medium sized clusters appear in equilibrium
for 49.4% of the runs. Moreover, these medium sized clusters seem to emerge at a
similar rate. Any given cluster size between 2 and 99 has an average probability of
exactly 1.00% (SD = 0.46%) to appear in a given run (compared to 0.02% under one-
to-one interaction). This demonstrates how one-to-many communication stabilizes
cultural diversity and clustering. Both communication regimes typically generate
cluster-size distributions with peaks at both ends of the scale (at cluster size one orN ).
Independent of population size, however, one-to-one communication generates more
monoculture, less isolation, and less clustering than one-to-many communication.

Figure 3.6 informs about the e↵ect of the communication regime on the relative
size of the biggest subgroup in the population (Smax/N ), a standard outcome measure
in the literature. The figure shows that the few runs with bigger populations under
the one-to-one regime that did not end in monoculture were always characterized
by one very big cluster. Under one-to-many communication the size of the biggest
subgroups can be much smaller, in contrast.

E�ects of network transitivity on cultural diversity

Figure 3.1 illustrates a key element in our reasoning why one-to-many communication
fosters both isolation and clustering. According to our intuitive argument, one-to-
many communication generates isolation and cluster formation when an agent is not
adopting a trait from a network contact but their joint network contacts do adopt the



�� Chapter �. One-to-many

trait and, therefore, grow similar to each other and dissimilar to the agent who was
not influenced. Such a series of events can only occur, however, when the sender and
the agent that becomes isolated have common friends. In other words, a high degree
of transitivity in the sense that many network triads are closed (actor a is connected
to b, b is connected to c, and c is connected to a) can be expected to contribute to both
cultural clustering and isolation and amplify the di↵erence between the regimes. To
test whether transitivity is indeed responsible for the di↵erences between the two
communication regimes, we compared populations characterized by di↵erent degrees
of network transitivity.

We replicated parts of the analyses presented in the previous section,
manipulating the degree of transitivity in the population’s social network.6

In this simulation experiment, we focused on populations of 100 agents (N = 100)
holding three features (F = 3) that could adopt two traits (Q = 2). To manipulate
the average transitivity in the network, we created symmetric ring networks where
agents were connected to the four closest neighbors to the right and to the left
(Watts & Strogatz, 1998). In the resulting network all agents had the same degree
(k = 8), just as in the simulations with the torus network. Furthermore, the network
was characterized by a very high degree of transitivity, as connected agents tend
to be connected to the same nodes (transitivity in this network is 0.64). Next, we
rewired network links following the algorithm proposed by Maslov and Sneppen
(2002), which decreases network transitivity while preserving the degree distribution.
The Maslov-Sneppen rewiring algorithm first picks two edges A$ B and C $ D,
making sure that A < {C,D} and B < {C,D}, and that A = D and B = C. If any of
these conditions is not met, a new pair of edges is picked. Otherwise, the algorithm
removes the links A$ B and C$D, and adds A$D and B$ C. This procedure is
repeated until the algorithm has successfully rewired a share R of the total number of
edges in the graph. We studied the two communication regimes for di↵erent shares R
of Maslov-Sneppen rewiring, namely R = {10�i/10}10i=�30. Figure 3.7 visualizes how the
share of rewired links translates into network transitivity. Transitivity is defined as
the share of closed triplets in the network, or formally,

Transitivity =
3⇥number of closed triangles

number of triplets

Figure 3.8 depicts the association between transitivity and the relative size of the
biggest subgroup in the population our experiment yields. The box plots show that
under the one-to-one communication regime, network transitivity is not meaningfully

6Besides manipulating transitivity, the implemented method also creates between-node heterogeneity
in their network centrality, and decreases the average path length in the graph. This might, in turn, a↵ect
the dynamics of our model. However, due to the inherit interrelatedness of network descriptives there is
no way to manipulate transitivity without changing other aspects of the network structure.
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Figure 3.7 Average transitivity by share of Maslov-Sneppen Rewiring. Observed in Watts-Strogatz graph
with k = 8 for N = 100, 100 replications per condition.

Figure 3.8 Homogeneity after convergence in a Watts-Strogatz network with N = 100, F = 3 and Q = 2 by
degree of transitivity and communication regime. Boxplots are shown in black with bin width set to 0.037
and a loess curve is shown with a dotted line. We ran 100 replications per experimental condition, but, as
Figure 3.7 shows, networks with transitivity values between .15 and 0.5 appear less frequent in our data.
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Figure 3.9 E↵ect of degree k on the share of runs with at least one isolate (in black), and share of runs
characterized by monoculture (grey) in a Watts-Strogatz graph withN = 49, F = 3,Q = 2, 1,000 replications
per condition

related to the outcome measure. In contrast, the bottom panel of the figure shows
a strong association under the one-to-many communication regime. This supports
our conjecture that one-to-many communication fosters cultural clustering only in
networks characterized by a su�cient amount of transitivity. Note that the scatter
plots on the very left and on the very right of the figure represent more simulation
runs, as the used rewiring algorithm generates more networks with very high and
very low transitivity (see Figure 3.7).

Varying neighborhood size

So far, we have studied networks where all agents had a degree (k) of eight, because
this resonates with Axelrod’s work. However, we also tested whether one-to-many
communication fosters cultural isolation also when agents have more than eight
network contacts. To this end, we studied populations of 49 agents interacting in ring
networks as described in Section 3.4.2. Agents were described by three features and
two traits per feature. To study e↵ects of agents’ degree, we varied the number k of
neighbors from 2 to 48 in steps of 2, conducting 1,000 independent replications per
condition. Thus, under k = 2 the network was a perfect ring where every agent had
one neighbor to the left and one two the right. Under k = 4, agents were connected to
the two closest neighbors to the right and to the left, and so on. A degree of k = 48
implemented a complete graph.

Figure 3.9 informs about how agents’ degree a↵ected how often we observed
cultural isolation or monoculture under the two communication regimes. In
line with Axelrod’s work, the solid lines show that under the classical one-to-
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Figure 3.10 E↵ect of degree on relative size of the biggest cultural cluster in a Watts-Strogatz graph with
N = 49, F = 3 and Q = 2 by degree and communication regime. Boxplots are shown in black. Averages are
shown with dots connected by a line. 1,000 replications per condition.

one communication dynamics tend to generate monoculture when agents have
bigger neighborhoods. The figure shows only a small di↵erence between the
two communication regimes in very sparse networks (k = 2), which supports our
conjecture from Section 3.4.2 that network transitivity is a necessary requirement
for generating more cultural clustering under one-to-many communication. A ring
network with k = 2 is a periodic line network with zero triplets. As a consequence,
rejecting a trait communicated by a neighbor does not make agents more dissimilar
from their other neighbor, which implies that the mechanism responsible for isolation
under one-to-many communication (see Figure 3.1) is not activated.

In contrast, Figure 3.9 shows stark di↵erences between the two communication
regimes when agents have bigger network neighborhoods. Unlike Axelrod’s original
model, the model with one-to-many communication predicts that monoculture is less
likely when degree is increased. As k increases, also the number of closed triads in
the network rises, which sets into motion the isolation mechanism. As a consequence,
the proportion of runs ending in monoculture drops to about 0.65 under one-to-many
communication. In about half of the simulation runs with a high degree that did not
end in monoculture there was at least one isolate.

Figure 3.10 illustrates how degree a↵ected the relative size of the biggest cultural
cluster in the network. Under one-to-many communication, the average size of the
largest cluster decreases as degree rises from 2 to 8. However, the average cluster
size rises again when degree is increased further. Nevertheless, even under very high
degree, there remains a noticeable di↵erence between one-to-one and one-to-many
communication. We believe that the non-monotone e↵ect of degree under the one-
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to-many regime results from the interplay of two processes. On the one hand, a
higher degree increases the proportion of closed triads in the network, fostering the
extent to which one-to-many communication can produce cultural clustering and
isolates. On the other hand, a higher degree also increases the share of the population
to which an agent is directly exposed to. The larger this share, the less likely it is
that an agent disagrees with all network neighbors. The resulting cultural influence
pushes the population towards more consensus, as already demonstrated by Axelrod.
The combination of both processes generates a dynamic in which cultural clustering
peaks at a degree of about 6, with lower levels of cultural clustering observed at both
lower and higher degrees.

Spatial Random Graphs

Considering that both torus networks and the rewired ring-networks are somewhat
artificial network topologies, we also studied spatial random graphs, as these
networks have been argued to mimic the structure of human social networks (Grow,
Flache, & Wittek, 2017). In particular, spatial random graphs exhibit many features
of real social networks such as low tie density, short average geodesic distance,
a high level of transitivity, a positively skewed actor-degree distribution, and a
community structure (L. H. Wong, Pattison, & Robins, 2006). We conducted a third
simulation experiment to test whether the di↵erences between one-to-many and one-
to-one communication found with the torus networks also appear under these less
controlled but more realistic conditions. Like in the previous simulation experiment,
we assumed that agents are described by three features (F = 3) that could adopt two
traits (Q = 2). We manipulated population size in the same way as in Section 3.4.2
and conducted 1,000 independent runs per experimental condition.

We initialized the network in two steps. First, all agents were randomly assigned
two real numbers from the set [0,5] that defined their position on a 5 ⇥ 5 plane.
Subsequently, we looped over all agents creating k ties probabilistically with agents
with whom they did not share a tie yet. Whether a tie between i and j was created
depended on the Euclidean distance between the two agents on the plane (dij ) and
the parameter y that controls the strength of the relationship between distance and
the probability to form a tie. We set k = 8 such that each agent had a neighborhood
of at least eight neighbors7. The probability that a tie was formed depended on the
value of f (y,dij ), proportional to the sum of this function over all possible j’s, where

f (y,dij ) = exp(�y[dij ])

7Every i formed eight ties, but a j that already possessed eight ties was not excluded from the set of i’s
potential neighbors.
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Figure 3.11 E↵ect of population size N on the share of runs with at least one isolate (in black), and share
of runs characterized by monoculture (grey) in a spatial random graph with F = 3, Q = 2, 1,000 replications
per condition

Figure 3.12 Homogeneity after convergence in a spatial random graph with F = 3 and Q = 2 by number
of agents and communication regime. Boxplots are shown in black and averages indicated with dots
connected by a line. 1,000 replications per condition.
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The resulting social networks are characterized by a transitivity value of 0.523,
on average, which is slightly more transitive than the torus graph with Moore
neighborhoods (transitivity is 0.429) that we studied in Section 3.4.2. Figure 3.11
visualizes how population size a↵ected the share of runs ending in monoculture (grey
lines) and the share of runs where the population comprised of at least one isolated
agent in equilibrium (black lines). Figure 3.12 shows how the relative size of the
biggest cultural subgroup was a↵ected by population size and the communication
regime. Both figures are markedly similar to the two corresponding figures for the
torus networks, showing that our earlier findings are corroborated also when a more
realistic network structure is assumed.

Typical simulation runs

Figure 3.13 shows one typical simulation run for each communication regime. Under
Axelrod’s original one-to-one regime (Figure 3.13a) one can see that the culture that
eventually dominates does not di↵use from one strong cluster. In all snapshots the
dominant culture is present in all regions of the network. For the lion’s share of the
total body of simulation events, about 1/3 of all attempted communication events
result in a change of culture by an agent. In the last stage (between Snapshots 3 and
4), this rate drops to approximately 1/7 as the dominant cluster assimilates the last
deviants.

The typical dynamics under one-to-many communication di↵er, as Figure 3.13b
demonstrates. Between the outset and the second snapshot, the dynamics generate
three-clusters, each located in a distinct region. This happens at a high rate of about
1 cultural adjustment per simulation event.8 As a population with three cultural
subgroups can never be stable under Q = 2, dynamics continue until two cultural
groups remain. The rate of s/t drops to 1/5 until converging to a situation with a
majority cluster (N = 78), one minority cluster (N = 21) and one isolate. The isolate
(located at the bottom right of the graph) has been locked inside the majority cluster
from a very early stage, and remains isolated from communication with other clusters
throughout the rest of the run.

Cultural complexity

The main innovation of Axelrod’s model was to show how cultural diversity can
emerge and persist despite relentless pressures on individuals to assimilate to cultural

8It is not possible to compare these rates between communication regimes without post-processing. As
a sender’s whole neighborhood (of 8 or more agents) can be influenced in a single simulation event in the
one-to-many model, a conservative approximation could be made by dividing the number of successful
communication events over the number of iterations times 8. However, only the neighbors for whom
0 < similarityij < 1 can be influenced, and this number varies locally as well as over time.



(a) One-to-one (b) One-to-many

Figure 3.13 Typical runs under the two communication regimes for spatial random graphs with N = 100,
F = 3, and Q = 2. Every distinct combination of traits is visualized with its own unique shade of grey.
The top graphs shows the initial setup and the bottom graphs show the two populations in equilibrium.
The remaining graphs visualize the distribution of cultural traits after 33% and 66% of the number of
simulation events needed to reach equilibrium. t is the number of simulation events, and s is the number
of events where an agent adjusted its set of cultural traits.
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influence. Axelrod and many follow up-studies also demonstrated how in the
framework of this model, stable cultural clustering is a feasible outcome only in
a particular sweet spot in the parameter space in which the cultural space is not
too complex, meaning that neither F nor Q are too large. If the cultural space
consists of too many di↵erent features (F), this increases the chances that neighboring
agents happen to agree on at least one of them by random chance, exacerbating the
emergence of cultural boundaries and thus promoting monoculture. If there are
too many di↵erent traits per feature (Q), it is unlikely that two neighboring agents
happen to have the same trait at the outset, which precludes interaction between
them and entails cultural anomie (Axelrod, 1997; Klemm et al., 2003b).

We wanted to know whether our model can replicate these fundamental results
of Axelrod’s model under both communication regimes, to establish that besides
the di↵erences we have shown, the two communication regimes generate consistent
behavior. For the region where cultural clustering is feasible according to Axelrod’s
model, we wanted to know whether the larger degree of cultural isolation and cultural
clustering for the one-to-many regime generalizes to a broader range of parameter
values for F and Q than those we have used hitherto. For this purpose, we compared
the two communication regimes under di↵erent assumptions about the complexity of
the cultural space.

Figures 3.14 and 3.15 identify the region in which cultural clustering occurs both
for Axelrod’s original model and for the model with one-to-many communication.
Our results show that clear di↵erences between the communication regimes occur
throughout the region in which Axelrod’s original model navigates in between anomie
and monoculture. In this region, the one-to-many regime produces more cultural
isolation and more cultural clustering than one-to-one particularly when both the
number of features is small (F = 3 or F = 5) and the number of traits is small or
intermediate (depending on F). With high F or high Q, the behavior known from
Axelrod’s original model is replicated also by the one-to-many version. In this
region, the forces pushing towards monoculture or isolation largely overwhelm the
distinct e↵ects of the communication regime and strongly reduce the di↵erences
between them. Nevertheless, even in those conditions we find a consistent but
very small di↵erence in the expected direction: more cultural clustering and more
isolates under the one-to-many regime. This supports our observation that one-
to-many communication generates di↵erent influence dynamics than one-to-one
communication in those areas of the parameter space where cultural diversity can be
sustained at all under Axelrod’s model.
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Figure 3.14 E↵ect of the number of features (F) and traits per features (Q) on the share of runs with at
least one isolated agent in equilibrium (in black) and the share of runs ending with perfect monoculture
(grey). All simulations with a torus network with N = 49 agents and 100 replications per condition.

Figure 3.15 E↵ect of the number of features (F) and traits per features (Q) on the relative size of the
biggest cultural cluster in the population. All simulations with a torus network withN = 49 agents. Results
are averaged over 100 replications per condition.
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�.� Discussion
Public debate about the role that online social networks, personalization algorithms,
and fake news played in recent political events such as Brexit and the election
of Donald Trump demonstrate that there is a need for a valid model of influence
dynamics in online contexts. While the literature already provides a rich arsenal
of formal models, our analyses demonstrated that it can be misleading to readily
adopt models developed for communication dynamics in o✏ine worlds to the
analysis of online contexts. In particular, we compared one-to-one communication, a
communication regime implemented in many models of o✏ine communication, with
one-to-many communication which seems to be a more plausible representation of
communication in online contexts such as blogs and online social networks likeTwitter
and Facebook. We reasoned that one-to-many communication fosters isolation and
the emergence of cultural clusters, because an agent who happens to not be influenced
by a message received from a network contact does not only fail to grow more similar
to the source of the message. In addition, the agent also growsmore dissimilar to those
contacts of the sender who were influenced by the message and adopted the trait of the
source. Building on Axelrod’s cultural-dissemination model (1997), we implemented
one-to-many communication where a sender emits one message across his entire local
network rather than just a single network contact. We started with a Markov-chain
analysis of a simple but tractable part of the parameter space (N = 4, F = 3, Q = 2)
and found support for our conjecture that one-to-many communication fosters the
emergence of isolated individuals as well as polarization. Next, we conducted a
series of simulation experiments to demonstrate (1) that one-to-many communication
fosters the isolation also in bigger populations, (2) that network clustering fosters the
emergence of isolated individuals and cultural clusters, and (3) that these findings
hold for network topologies that mimic the structure of real social networks.

These findings add a new perspective to research on di↵erences between online
and o✏ine communication. Earlier research was inspired by a psychological
perspective and found that individuals are not a↵ected by the physical appearance of
their communication partners when communication is mediated by a computer
(Postmes & Spears, 2002; Schumann et al., 2017). As a consequence, when
communicating online, individuals neglect the social roles associated with
memberships in high or low status groups, which decreases inter-group conflict
and fosters consensus formation. In contrast to this within-individual perspective, we
focused on between-individuals e↵ects, showing that di↵erences between online
and o✏ine communication may not only arise from the fact that individuals
behave di↵erently when they communicate online or o✏ine. We demonstrated that
di↵erences between online and o✏ine communication can arise from di↵erences in
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communication structure, because in many online settings individuals communicate
to multiple receivers at the same time. This di↵erence in the way communication
is structured in many online settings turned out to foster cultural isolation and
clustering rather than consensus formation.

While our results support our conjecture that assuming one-to-one communi-
cation in models of online settings can lead to false conclusions, there is reason to
expect that also the model that we studied may still deviate in critical ways from
communication in real online settings. Future theoretical work should, therefore,
explore further to what extent existing models can capture important features of
online communication and which further model developments are needed for that
purpose. We propose three possible directions.

First, a potentially important di↵erence between Axelrod’s model and our
extension on the one hand, and Internet communication on the other hand is that
online network ties are flexible. On the one hand, intuition and earlier modeling
work suggests that making networks dynamic will foster cultural diversity, as isolated
agents and subgroups will cut o↵ ties to their dissimilar network neighbors (Centola
et al., 2007). This should further decrease chances that isolates are influenced by
former contacts. On the other hand, the Internet makes it easy to identify and connect
to like-minded individuals even when they are geographically very distant (Sunstein,
2002b). This might allow isolated individuals and subgroups to join clusters that still
communicate with individuals that are similar to their former connections and, thus,
act as a bridge over the cultural divide. Given these competing intuitions, future
research is needed to explore the conditions under which dynamic networks foster
isolation under the one-to-many communication regime.

Second, future theoretical research should explore populations that are more
heterogeneous. For instance, empirical research showed that the degree distribution
of the Facebook graph is skewed (Ugander, Karrer, Backstrom, & Marlow, 2011,
4), which suggests that some users may be more e↵ective than others in spreading
cultural attributes across the graph (Bakshy, Hofman, Mason, & Watts, 2011). Future
research should, therefore, study how variation in neighborhood sizes a↵ect cultural
dynamics. Furthermore, Internet users di↵er in their online activity. Research showed,
for instance, that on Facebook politically active users emit more online content than
users who are not politically engaged (Hampton, Goulet, Marlow, & Rainie, 2012).
It is an open question, how these forms of heterogeneity a↵ect isolation dynamics
under the one-to-many communication regime.

A third important direction for future research is the study of one-to-many
communication with alternative models of social influence. Unlike Axelrod’s model,
many alternative approaches represent cultural attributes on a continuous scale
and not as distinct categories (Flache et al., 2017). Many political opinions, for
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instance, tend to vary between extremes and are, thus, better described by metric
scales. Models of continuous opinion dynamics can also capture more complex social-
influence processes, such as gradual opinion-adjustments (Friedkin & Johnsen, 2011),
negative influence exerted by too dissimilar sources (Macy et al., 2003), and the
reinforcement of opinions when two actors communicate persuasive arguments
that support each others’ views (Mäs & Flache, 2013). Future research should
explore whether and under what conditions assuming one-to-many communication
alters the predictions of these models. We expect that the mechanism responsible
for isolation and clustering under the one-to-many regime is activated in models
assuming continuous cultural attributes as well. If an actor refuses to be influenced by
a communication partner, he does not only refuse to grow more similar to this actor.
In addition, the actors grows more dissimilar to those joint network contacts that
were influenced and, therefore, were pulled closer to the sources of communication.

Another important avenue of future research is to empirically test our theoretical
prediction that one-to-many communication fosters isolation and cluster formation.
We propose a three-step design that resembles the structure of the theoretical
analysis in this chapter. First, we propose to study the minimal case that we
explored with analytical tools in a computerized laboratory environment, with
four human subjects discussing their stance on three binary issues. In this setting,
one can manipulate whether subjects communicate in pairs (one-to-one) or emit
messages to all participants at once (one-to-many). With this experimental design
one can also test our theoretical prediction against the finding from the psychological
literature that computer-mediated communication fosters consensus formation in
demographically diverse groups. In particular, it would be interesting to test whether
the integrating e↵ect of computer-mediated communication is stronger or weaker
when communication is implemented according to the one-to-one or to the one-to-
many regime. Second, laboratory experiments are also a fruitful approach to compare
the two communication regimes in bigger populations. Our theoretical analyses
suggest that these experiments should focus on social networks characterized by high
clustering and settings with relatively small cultural complexity, as the di↵erences
between the two regimes were strongest under these conditions. Third, one might
try to test macro-predictions in the field, comparing influence dynamics in online
communities with di↵erent local network structures. Contrary to intuition, our
results suggest that the chances that individuals turn culturally isolated are higher
when their local network is characterized by high transitivity.

There is strong public and scholarly interest on the e↵ects of communication in
online worlds. On the one hand, our results illustrate that the formal analysis of
abstract models can contribute to exploring the complexity of online communication
systems. On the other hand, our findings also show the that pundits, experts,
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scholars, political decision makers, and also developers of online communication
systems need to be very careful when reasoning about the consequences of online
communication. Being based on modeling work and empirical studies focused on
o✏ine settings, the current scientific state-of-the-art does not yet allow drawing
reliable conclusions about the e↵ects of online communication on societal processes
of consensus formation and opinion polarization.






