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ABSTRACT

Context. When a subhalo interacts with a cold stellar stream, the otherwise nearly smooth distribution of stars is disturbed, and
this creates a gap. The properties of these gaps depend on the interaction parameters. Their characterisation could thus lead to a
determination of the mass spectrum of the perturbers and might reveal the existence of dark subhalos orbiting the Milky Way.
Aims. Our goal is to construct a fully analytical model of the formation and evolution of gaps embedded in streams orbiting in a
realistic Milky Way potential.
Methods. To this end, we extended our previous model for spherical potentials and predict the properties of gaps in streams evolving
in axisymmetric Stäckel potentials. We used action-angles and their simple behaviour to calculate the divergence of initially nearby
orbits that are slightly perturbed by the interaction with a subhalo.
Results. Our model, corroborated by N-body experiments, predicts that the size of a gap grows linearly with time. We obtain analytical
expressions for the dependences of the growth rate on the orbit of the stream, the properties of the subhalo (mass and scale radius), and
the geometry of the encounter (relative velocity and impact parameter). We find that the density at the centre of the gap decreases with
time as a power law in the same way as the density of a stream. This causes the density contrast between a pristine and a perturbed
stream on the same orbit to asymptotically reach a constant value that only depends on the encounter parameters.
Conclusions. We find that at a fixed age, smallish gaps are sensitive mostly to the mass of the subhalo, while gaps formed by subhalo
flybys with a low relative velocity, or when the stream and subhalo move in parallel, are degenerate to the encounter parameters.

Key words. Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure – dark matter

1. Introduction

The widely accepted Λ cold dark matter (ΛCDM) model is very
successful in reproducing the large-scale structure of the Uni-
verse (e.g., Davis et al. 1985), but it faces some key problems on
small scales (e.g., Bullock & Boylan-Kolchin 2017). For exam-
ple, on the scales of individual galaxies, we observe much less
substructure than what is predicted by dark-matter-only (CDM-
only) cosmological simulations (Klypin et al. 1999; Moore et al.
1999). These simulations show that substructure exists down to
very small scales and can be found at all radii, although prefer-
entially in larger numbers in the outskirts of galaxy halos (e.g.,
Diemand et al. 2008; Springel et al. 2008).

Several possibilities exist to solve this missing substructure
conundrum. For example, adding baryonic physics to the sim-
ulations alleviates some of the problems, although mostly in
the inner part of galaxies (e.g., D’Onghia et al. 2010; Zhu et al.
2016; Sawala et al. 2017). Adjusting the properties of the dark
matter particle (e.g., self-interacting dark matter, warm dark
matter, or fuzzy dark matter) can help to suppress the forma-
tion of the smallest substructures (e.g., Spergel & Steinhardt
2000; Hu et al. 2000; Bode et al. 2001; Vogelsberger et al. 2016;
Bozek et al. 2016; Hui et al. 2017). Another solution is to
assume that the structures are present, but in a dark form. Dark
structures only reveal their presence through gravitational inter-
action, rendering them very difficult to detect. Results from grav-
itational lensing support the existence of dark structures at a

level that is compatible with ΛCDM (Dalal & Kochanek 2002;
Vegetti et al. 2010, 2012; Ritondale et al. 2019; Hsueh et al.
2020).

Establishing whether a population of subhalos with masses
<108 M� in and around the Galaxy exists is therefore of the
utmost importance as it can lead to a better understanding of
the nature of the dark matter particle. Clearly, the discrepancy
between the predicted and observed small-scale structure might
indicate a fundamental problem with our current cosmological
paradigm.

In this work, we focus on a method for indirectly detect-
ing dark subhalos in our own Galaxy through their possible
interactions with cold stellar streams. These streams are thin,
almost one-dimensional (1D) elongated structures consisting of
stars that originate from the tidal disruption of globular clus-
ters or small dwarf galaxies. Because of their fragile nature,
these streams are easily perturbed by gravitational interac-
tions, making them promising probes of dark substructures
(Ibata et al. 2002; Johnston et al. 2002). Occasional flybys of
dark subhalos can create a gap in an otherwise relatively smooth
distribution of stars (Yoon et al. 2011; Carlberg 2013). Unfor-
tunately, it is challenging to find streams because their surface
brightness is low, and finding gaps in streams is even more
difficult. However, recent deep photometric surveys have iden-
tified a few dozen narrow streams (e.g., Belokurov et al. 2006;
Bernard et al. 2016; Shipp et al. 2018). The analysis of Gaia
DR2 (Gaia Collaboration 2016, 2018) has also yielded another
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dozen streams (Malhan et al. 2018; Ibata et al. 2019). So far,
only two of these streams have been claimed to contain gaps:
GD-1 (Grillmair & Dionatos 2006) and Palomar 5 (or Pal 5,
Odenkirchen et al. 2001), although several other streams show
peculiarities (Bonaca et al. 2019a; Shipp et al. 2019; Li et al.
2021).

GD-1 is a promising stream to probe for gaps because
of its length and coldness. It is known to contain several
non-smooth features (Carlberg & Grillmair 2013; De Boer et al.
2018; Price-Whelan & Bonaca 2018). The origin of these fea-
tures, or gaps, is currently highly debated in the literature. For
example, they could have been formed by an interaction with a
massive (dark) object of 106−108 M� that might once have been
part of the Sagittarius system (Bonaca et al. 2019b, 2020, see
also Banik et al. 2021). On the other hand, it has been argued
that the presence and nature of a nearly periodic spatial distri-
bution of gaps is an indication that they might be explained by
internal dynamics without the need to recur to interactions with
dark structures (Ibata et al. 2020).

The stream of Pal 5 has been tentatively shown to host
two gaps and several other features that would be consistent
with being induced by subhalos in the range of 106−108 M�
(Erkal et al. 2017; Bovy et al. 2017). The inferred number of
interactions appears to agree with the expected number pre-
dicted by CDM-only simulations (e.g., Sanderson et al. 2016).
Unfortunately, the stream of Pal 5 is not ideally suited to search
for gaps caused by dark structures because of its proximity to
the Galactic centre. The high baryon density in this region can
lead to the formation of irregularities in the stream profile, for
example, through interactions with the bar (Pearson et al. 2017),
globular clusters, and other baryonic structures (Banik & Bovy
2018). Moreover, some of the gaps and features found in the
stream of Pal 5 may be explained by survey incompleteness
(Thomas et al. 2016).

Because the expectation is that in the near future, many gaps
in many different streams will be detected, it is imperative to
develop an in-depth understanding of the characteristics and evo-
lution of these gaps. With this understanding we may be able
to link the population of gaps to an underlying population of
dark substructures. For example, we need to establish the rela-
tion between subhalos and gap sizes, the growth rate of gaps, and
the dependence of their properties on the encounter parameters
as well as on the characteristics of the host potential. Clearly, the
ultimate goal would be to infer the properties of the perturbers
from the analysis of the observed gaps.

Erkal & Belokurov (2015a) developed a framework that pre-
dicts the evolution of gaps formed in streams that orbit on
circular orbits. Using this model, Erkal & Belokurov (2015b)
inferred the properties of a subhalo from the properties of a gap,
down to a degeneracy in subhalo mass and relative velocity. A
more recent model by Sanders et al. (2016) focuses on modelling
gaps in angle-frequency space, allowing for eccentric orbits (see
also Bovy et al. 2017). The authors validated several but not all
aspects of Erkal & Belokurov (2015a), and argued, for example,
that the velocity dispersions in the underlying stream affect the
evolution of the gap and thus should be taken into account. A
caveat of all these models is that they are not fully analytical
and thus always rely on numerical exploration of the parameter
space, or they are limited to circular orbits alone. For this reason,
we presented a fully analytical model for the evolution of gaps
in streams (Helmi & Koppelman 2016, HK16 hereafter) orbiting
in spherical potentials.

In this work, we extend the HK16 model to streams orbiting
in axisymmetric potentials. The model presented here not only

predicts the behaviour of the size of the gap as a function of time,
but also its central density and their dependence on the charac-
teristic parameters of the encounter. This paper is structured as
follows. In Sect. 2 we describe the model and its predictions for
the gap properties in detail. In Sect. 3 we validate our model
with N-body experiments. Subsequently, in Sect. 4 we analyse
the dependences of the gap properties on the collision parameters
and investigate possible degeneracies in the parameters. Finally,
we present a discussion and conclusions in Sect. 5.

2. Methods

The main reason to extend our HK16 model, which only works
for spherical potentials, is that the Milky Way is more realis-
tically described as an axisymmetric system. From a dynamical
point of view, breaking the spherical symmetry will add a degree
of freedom to the system.

The notation we use here is very similar to that employed
in HK16. It builds on the action-angle stream descrip-
tion of Helmi & White (1999, HW99 hereafter), see also
Helmi & Gomez (2007).

2.1. Choice of the potential

We are somewhat restricted in our choice for a potential for the
Milky Way because our approach is based on the use of action-
angle variables. These can only be calculated in potentials that
are separable in the coordinates. For this reason, we use Stäckel
potentials, which are separable in ellipsoidal coordinates and are
fully integrable (they are the only type of potentials with this
property).

Because the (inner part of the) Milky Way is best described
as an oblate system, we use a set of prolate spheroidal coordi-
nates (λ, φ, ν) that we adopt from de Zeeuw (1985). The coordi-
nate φ is the azimuthal angle and the other two coordinates, λ
and ν, are the roots for τ in

R2

τ + α
+

z2

τ + γ
= 1, (1)

where R = x2 + y2, and α and γ are constants related to the shape
of the spheroid. The most general form of a Stäckel potential in
these coordinates is

Φ(λ, ν) =
(ν + γ)G(ν) − (λ + γ)G(λ)

λ − ν
, (2)

where G(τ) determines the exact shape of the potential. For G(τ)
we choose a two-component Kuzmin-Kutuzov potential, which
takes the following form:

G(τ) =
GMh
√
τ + ch

+
GMd

√
τ − q + cd

, (3)

where q is a parameter set by the choice of the different axis
ratios for the components taking into account the constraint that
the sum remains a Stäckel potential: λh − νh = λd − νd, or λd =
λh − q and νd = νh − q, where

q = c2
h

ε2
h − ε

2
d

1 − ε2
d

, with q ≥ 0. (4)

Here the ratio of the semi-major a and semi-minor c axis ε2 =
α/γ (i.e. the flattening of the system) is a free parameter for
each component, where α = −a2 and γ = −c2. Finally, we
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Fig. 1. Circular velocity in the plane of the disc of our Milky Way
model. The Stäckel potential comprises a disc and a halo component
and realistically describes the circular velocity of the Milky Way in the
inner ∼20 kpc, as can be seen by comparing to the determinations by
Eilers et al. (2019).

define the fraction of the mass of the disc with respect to the
total mass as k = Md/Mtot, with Mtot = Md + Mh. We refer to
Dejonghe & de Zeeuw (1988) for more details on axisymmetric
Stäckel potentials.

The resulting potential is therefore described by five param-
eters, namely the total mass Mtot, the fraction of mass in the
disc k, the scale length of the halo component ah, and the
flattening parameters of the halo εh and disc εd. Here we set
these parameter values to Mtot = 4.0 · 1011 M�, k = 0.11,
ah = 7.0 kpc, and εh = 1.02, εd = 75.0 (which are based on
Batsleer & Dejonghe 1994; Famaey & Dejonghe 2003, see also
Reino et al. 2021, where two-component Stäckel potentials are
fit to several streams around the Milky Way using Gaia DR2).
The resulting potential matches the circular velocity curve of the
Milky Way reasonably well, as shown in Fig. 1 (solid black line).
This can be inferred by comparison to the recently estimated cir-
cular velocity curve from Eilers et al. (2019; in blue).

2.2. Impulse approximation

Before describing the model, we first describe the effect that
a subhalo has on a cold stream. The gravitational interaction
of a subhalo is well described by the impulse approximation1

(Yoon et al. 2011; Carlberg 2013). We define a reference system
where the stream is aligned along the y-axis, and moves in the
positive y-direction (similar to the system of Erkal & Belokurov
2015a, cf. their Fig. 2). In this co-moving frame the relative veloc-
ity vector of the subhalo isw = w(− cos θ sinα, sin θ, cos θ cosα),
or w = (−w⊥ sinα,w‖,w⊥ cosα), where w⊥ = w cos θ and w‖ =
w sin θ. Figure 2 illustrates the geometry of the stream-subhalo
encounter.

The change in velocity (i.e. the impulse) of a particle along
the stream due to the encounter is

∆vi =

∫ ∞

−∞

ai(x,w,M, rs)dt, (5)

where i = (x, y, z). The acceleration ai is a function of the rel-
ative velocity w, the distance to the point of impact y, and of

1 See Sect. 8.2 from Binney & Tremaine (2008).

Stream
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Subhalo

Stream
α

z

x

Subhalo

Top view Line-of-sight view

Fig. 2. Schematic overview of the stream-subhalo interaction. Left: view
seen from the top. Right: view seen along the line of sight (stream away
from the observer).

the subhalo mass M and scale radius rs. We model the subha-
los as Plummer spheres, but the expressions can be generalised
for other profiles (Sanders et al. 2016). The change in velocities
in all three coordinates at the time of the impulse according to
Eq. (5) is

∆vx

2GM
=

yw⊥w‖ sinα

w
(
r2

s w2 + y2w2
⊥

) =
y cos θ sin θ sinα

w
(
r2

s + y2 cos2 θ
) , (6a)

∆vy

2GM
= −

w2
⊥y

w
(
r2

s w2 + y2w2
⊥

) = −
y cos2 θ

w
(
r2

s + y2 cos2 θ
) , (6b)

∆vz

2GM
= −

yw⊥w‖ cosα

w
(
r2

s w2 + y2w2
⊥

) = −
y cos θ sin θ cosα

w
(
r2

s + y2 cos2 θ
) . (6c)

The above expressions are valid for direct encounters, that
is, when the impact parameter b = 0. Equations (1)–(3) in
Erkal & Belokurov (2015a) provide a more general form for the
velocity changes that take the parameter b into account. This
parameter enters into the equations above through r2

s → r2
s + b2.

We assume that the stream is linear over the scale where the
impulse is significant. Moreover, the equations above assume
that the stream is a 1D structure. This approximation is sufficient
when the width of the stream is smaller than the scale radius of
the subhalo. However, the expressions can be generalised to the
full 3D case, for which we find

∆vi(x) = −
2GM

w
w2xi − wi(x · w)

(r2
s + x · x)w2 − (x · w)2 , (7)

with i = (x, y, z). To gain insight into the model, we use the equa-
tions of the 1D approximation in this section. However, when
evaluating the model, we use the full 3D equations.

From Eq. (6) we can find the maximum kick in velocities
∆vmax

i and at what distance ymax to the centre of impact it occurs,

∆vmax
i = −

2GM
w

w2xi − wiwyymax

(r2
s + y2

max)w2 − (ymaxwy)2
, (8a)

where xi = [0, ymax, 0] and

ymax =
wrs√

w2 − w2
y

=
rs

cos θ
. (8b)

Typical profiles of ∆vy(y) are shown and discussed in Sect. 3, see
Fig. 11.
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2.3. Action-angle variables

This section aims to serve as a brief introduction to these
variables, and it is by no means exhaustive or comprehen-
sive. For more details on action-angle variables, we refer to
Goldstein et al. (2002) and Binney & Tremaine (2008).

Orbits in smooth and simple potentials (e.g., spherical,
axisymmetric, triaxial) have a number of integrals of motion:
properties that do not change in time and serve to characterise
them. For a spherical potential, the integrals of motion are the
total energy (or the Hamiltonian) and the angular momentum
vector. Orbits in axisymmetric systems (e.g., disc galaxies) typ-
ically have up to three integrals of motion: the total energy, the
momentum in the azimuthal direction, and a non-classical inte-
gral that in most cases does not take an analytic form.

For separable potentials (e.g., the Stäckel potentials dis-
cussed in Sect. 2.1) there exist three isolating integrals J, known
as the actions. Each action is paired with a conjugate coordinate
Θ, the angles. Together, these coordinates make up the action-
angle variables (Θ, J). The actions uniquely define the orbit, that
is, a point in action-space corresponds to a complete orbit in
phase-space. The conjugate angles define the phase, that is, they
specify where along the orbit a body is located at any given time.

To obtain the action-angle variables we make use of the
Hamiltonian H, which being an integral of motion must depend
on the actions (i.e. H = H(J)). The rate of change of the angles
Θ̇ = ∂H/∂J is known as the frequency Ω(J). Therefore

Θ(t) = Θ0 +Ω t, (9)

and hence the angles are linearly dependent on time. Finally, the
actions J of a bound orbit in a separable potential are defined as

J =
1

2π

∮
p · dq, (10)

where (q,p) are any set of generalised phase-space coordinates
and momenta.

2.4. Size of the gap using an action-angle framework
The analytical framework of the method that we use to describe
the evolution of a gap in a stream with time, was first estab-
lished by HW99. Originally, this framework was used to describe
the divergence in the orbits of a distribution of nearby particles.
It makes use of a linearised Taylor expansion around a central
orbit. In our case, we model the size of the gap as the spatial
separation of two orbits: one on each side of the gap. These
orbits are taken to be those of the particles that receive the largest
impulse from the subhalo flyby. In practice, this is equivalent to
modelling the (size of the) gap as twice the separation of the cen-
tral orbit and one of the edges of the gap, as gaps are symmetric
with respect to their centre.

2.4.1. Generalities

We consider a central orbit and some other orbit separated by
∆X0 and ∆V0, where the subscript is used to denote the time of
the impact between the subhalo and the stream, t = t0. To calcu-
late the evolution of this separation vector, we first transform it
to action-angle variables,[
∆Θ0
∆J0

]
=M0

[
∆X0
∆V0

]
, (11)

whereM0 is a matrix calculated at t = t0 that locally transforms
from Cartesian coordinates to action-angle variables. In practice,

the transformation is a product of matrices,

M0 =MAA←st
0 M

st←cyl
0 M

cyl←xyz
0 , (12)

whereMβ←α
0 transforms the set of coordinates α to the set β, xyz

indicating Cartesian coordinates, cyl cylindrical coordinates, st
spheroidal coordinates used for the Stäckel potential, and AA
action-angle variables.

Next, the separation vector in action-angle variables can be
evolved in time by expanding linearly Eq. (9) and making use of
the matrix Ω′,

Ω′ =

[
I3 ∂Ω/∂J t
0 I3

]
. (13)

At any point in time, the separation in action-angle coordinates
can be transformed back to Cartesian coordinates locally, and
therefore[
∆Xt
∆Vt

]
=M−1

t Ω′M0

[
∆X0
∆V0

]
, (14)

whereM−1
t is the (local) transformation back to Cartesian coor-

dinates at time t and at the location of the central orbit of the
gap.

Finally, the size of the gap can be taken as twice the separa-
tion calculated in Eq. (14). The initial separation of the two orbits
describing the gap can be obtained assuming Eqs. (8a) and (8b).
Because the two orbits are typically separated a few kiloparsec
initially, we need to add the velocity gradient of the orbit to the
separation in velocities, so ∆V0 = ∆vmax + δvorbit. We note that
this is an ad hoc fix to the non-local nature (finite extent) of the
stream. It takes into account that the velocity of the stream par-
ticles changes as a function of location.

2.4.2. Long-term behaviour

The growth rate of the size of the gap can be derived from
Eq. (14) in a similar fashion as shown in HK16. In the limit
where t � t0 (or better t/torb � 1), this equation simplifies to[
∆Xt
∆Vt

]
∼ t

[
M−1

t,1∂Ω/∂J∆J0

M−1
t,3∂Ω/∂J∆J0

]
, (15)

whereM−1
t,1 is the upper left submatrix ofM−1

t , andM−1
t,3 is the

bottom left submatrix. The spatial separation of the two orbits is
equal to the length of vector ∆Xt,

|∆Xt | =

√
∆X†t ∆Xt ∼ t

√
∆J†0 fx,Ω∆J0. (16)

In this equation, fx,Ω = ∂Ω/∂JM−1
t,1
†
M−1

t,1 ∂Ω/∂J. Similarly, we
can calculate the velocity difference of the two orbits ∆Vt,

|∆Vt | =

√
∆V†t ∆Vt ∼ t

√
∆J†0 fu,Ω∆J0, (17)

where fu,Ω = ∂Ω/∂JM−1
t,3
†
M−1

t,3 ∂Ω/∂J.
We note that the terms fx,Ω and fu,Ω are dependent on the

orbit of the gap and its location, but they do not depend on the
impact parameters. Both |∆Xt | and |∆Vt | are linearly dependent
on time t, similar to gaps orbiting in spherical potentials. Inter-
estingly, the ratio of the two separations is constant with time,
which potentially can be used to infer the properties of the gap
at any time (as we also demonstrate in Sect. 4).
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2.5. Density of stream gaps

We now build further on the framework developed by HW99
and focus on modelling the evolution of the density of the gap.
The impulse imparted on the stream by the subhalo increases the
local velocity dispersion of the stars in the gap. This causes it to
grow faster and thus appear as underdense region in comparison
to the neighbouring parts of the stream. If we know the central
orbit of the gap and the initial phase-space distribution around it,
we can calculate the evolution of the density in the gap.

2.5.1. Generalities

We describe this initial phase-space distribution as a multi-
variate Gaussian distribution, in other words

f (x, u) = f0 exp
(
−

1
2

∆
†

$,0σ$,0∆$,0

)
, (18)

where f0 is the phase-space density at t = t0, ∆$,0 is a separation
vector: ∆$,0 = ξi − ξc,i and where ξi = [x, y, z, vx, vy, vz] and ξc,i
is the central point of the distribution (which we take to be the
location where the subhalo impacts the stream, or in the termi-
nology used previously, the central orbit) at t = t0. The matrix
σ$,0 is the inverse of the covariance matrix of the phase-space
coordinates.

To compute the initial dispersion matrix of the gap, we start
from the original unperturbed distribution and add the impulse
in the velocities according to Eq. (7). That is, we transform
σstream
$,0 + impulse → σ

gap
$,0. Below we show how to calculate the

new covariance matrix in the regime where the stream is approx-
imated by a 1D structure, but in Appendix A we provide the full
3D expressions.

The most general form of the initial unperturbed covariance
matrix Σ$,0 is

Σ$,0 = σ−1
$,0 =


σ2

x C(x, y) · · ·

C(y, x) σ2
y · · ·

...
...

. . .

 , (19)

where C(x, y) is the covariance of x and y and σx is the standard
deviation of x. The covariance matrix can be represented with
3 × 3 block matrices,

Σ$,0 =

(
Cx,x Cx,u
Cu,x Cu,u

)
, where Cx,u = C†u,x. (20)

We now proceed to compute the perturbed covariance matrix
by computing the changes of each individual element due to the
encounter with the subhalo. The impulse only affects the veloci-
ties. Therefore the position block matrix (Cx,x) does not change
during the encounter. The first element with a velocity term is in
the Cx,u block matrix,

C(vx, x) =
1
n

n∑
i=1

(vxi − µvx )(xi − µx), (21)

where n is the total number of particles, and µvx and µx are the
mean vx and x of the distribution in the region around the gap.
After applying the impulse, the new covariance element becomes

C(vx + ∆vx, x) =
1
n

n∑
i=1

(vxi + ∆vxi − µvx − ∆µvx )(xi − µx), (22)

where ∆vxi is the velocity change of particle i, and ∆µvx is the
shift of the mean velocity of all particles. Because the kicks are

symmetric around the central point, the mean shift of velocities
is zero ∆µvx = 0, and we can rewrite the covariance term as

C(vx + ∆vx, x) = C(vx, x) +
1
n

n∑
i=1

∆vxi (xi − µx). (23)

Considering that the covariance matrix describes the central den-
sity (i.e. positions close to the centre), we can express the kick
∆vx as a function that is only linearly dependent on y because the
quadratic term in the denominator of Eq. (6a) is negligible (i.e.
r2

s w2 � y2w2
⊥). Moreover, because the velocity kicks are calcu-

lated in a frame where there is symmetry with respect to y (i.e.
µy = 0), we can rewrite the last term in the equation above as

1
n

n∑
i=1

∆vxi (xi−µx) = 2GM
w⊥w‖ sinα

r2
s w3

1
n

n∑
i=1

(yi−µy)(xi−µx), (24)

which is equal to

C(vx + ∆vx, x) = C(vx, x) + 2GM
w⊥w‖ sinα

r2
s w3 C(y, x). (25)

The new covariance term C(vx + ∆vx, x) can be expressed as the
old covariance term plus a new term that depends on the impact
parameters. The procedure shown above can be extended to all
covariance terms of the form C(α, vβ + ∆vβ) and C(vβ + ∆vβ, α),
where (α, β) = (x, y, z).

Using similar arguments, it is easy to show that covariance
terms in the velocity submatrix (Cu,u) take the following general
form:

C(vα + ∆vα, vβ + ∆vβ) = C(vα, vβ) + C(∆vα, vβ)
+ C(vα,∆vβ) + C(∆vα,∆vβ). (26)

For example, for α = x and β = y, and following similar proce-
dures as above,

C(∆vx, vy) = 2GM
w⊥w‖ sinα

r2
s w3 C(y, vy), (27)

C(vx,∆vy) = −2GM
w2
⊥

r2
s w3 C(vx, y), (28)

C(∆vx,∆vy) = −

(
2

GM
r2

s w3

)2
w3
⊥w‖ sinαC(y, y). (29)

We now have full expressions for the matrix σ$,0 in Eq. (18)
representing the phase-space configuration around the gap at the
time of the encounter t = t0. By transforming σ$,0 to action-
angle coordinates as σω,0 = M−1

0
†
σ$0M

−1
0 , where M is the

transformation matrix defined in Eqs. (11) and (12), we can cal-
culate the evolution in time of the covariance matrix in phase-
space using Eq. (13). This allows us to describe the local density
of the portion of the stream around the location of the impact by
the subhalo (i.e. of the gap) as

ρ(xc, t) =

∫
f (xc, u, t) d3u, (30)

where ρ(xc, t) is the density of orbits in a location around the
central orbit. In the principal axes, where the velocity covariance
matrix is diagonal, this density takes a simple form:

ρ(xc, t) = ρ0/
√

det |σv| ∝ ρ0σv1 (t)σv2 (t)σv3 (t), (31)

where ρ0 is the central density at t = t0 and σv1 , σv2 , σv3 are the
velocity dispersions along the three principal axes.

A55, page 5 of 15



A&A 649, A55 (2021)

20 0 20
Xgal [kpc]

20

10

0

10

20

Y g
al

 [k
pc

]

20 0 20
Zgal [kpc]

20 10 0 10 20
Aligned X [kpc]

20

10

0

10

20

Al
ig

ne
d 

Y 
[k

pc
]

20 10 0 10 20
Aligned Z [kpc]

Fig. 3. Orbit of the stream shown in galactocentric Cartesian coordi-
nates, evolved for 10 Gyr forward in time in the Stäckel axisymmetric
Milky Way-like potential. Top: orbit in coordinates aligned with the host
galaxy (e.g., plane of the disc is z = 0). Bottom: coordinates aligned
with the initial angular momentum vector of the orbit. The bottom right
panel highlights the precession of the orbital plane, which is indicative
of the non-spherical nature of the potential considered.

2.5.2. Long-term behaviour of the density

Using the above formalism, it is possible to show that the density
of a stream (and thus also that of a gap) decreases as a power law
of time that depends on the number of degrees of freedom of the
orbit of the stream (Vogelsberger et al. 2008),

ρ ∝ t−n, with n = d.o.f. (32)

Ultimately, these degrees of freedom are determined by the num-
ber of independent frequencies, and this number is generally
dependent on the functional form of the potential. For axisym-
metric galaxies the number of d.o.f. is 3 for most (non-resonant)
orbits. On the other hand, for example, circular orbits only have
one degree of freedom, implying that the density decreases much
slower (i.e. 1/t).

HW99 derived a general expression for the central density at
late times for streams (and gaps) in a general Stäckel potential
(see their Appendix C) and found

ρ(xc, t) =
ρ0 forb√
det |σΘ0 |

t−3, (33)

where ρ0 is the initial density of the distribution, forb is a constant
determined by the central orbit, and σΘ0 is the angle submatrix
at t = t0. This implies that the ratio of the density of a perturbed
to unperturbed stream is a constant,

δρ
gap
str =

√
det |σΘ0 |str

det |σΘ0 |gap
, (34)

as all other variables are independent of the impact parameters.
We refer below to this density ratio as the density contrast.

Fig. 4. Left: snapshot of a stream at the time of interaction with a sub-
halo. The stream is plotted with black dots, and the centre of mass of the
subhalo is shown as a solid red circle. The velocity vector of the stream
is marked with a black arrow and that of the subhalo with a red arrow.
Right: both panels show the stream after 2 Gyr of evolution, in isolation
in the top panel, and after the encounter with the subhalo in the bottom
panel.

2.6. Setting up the stream-subhalo encounter

To verify our model predictions, we performed N-body simu-
lations of the encounter of a subhalo with a stream orbiting in
the Milky Way potential described in Sect. 2.1. To this end, we
used a modified version of Gadget-2 (Springel 2005), where
we modelled the host as the rigid potential and the subhalo as a
rigid Plummer sphere that is centred on a particle with a negligi-
ble mass that is placed on a trajectory in the host potential.

The progenitor of the stream was modelled with 106 test
particles2 following a Gaussian distribution in 6D phase space,
with σx = 0.2 kpc and σv = 0.5 km s−1. These very low disper-
sions were chosen such that the stream has a high density even a
few billion years after forming. In comparison, globular clusters
orbiting the Milky Way typically have a σv of a few km s−1 (e.g.,
Harris 1996, 2010 edition).

The progenitor was placed on an elongated orbit with maxi-
mum distance from the centre rmax ≈ 20 kpc and minimum dis-
tance rmin ≈ 10 kpc, reaching rz = ±20 kpc above the plane of the
disc, as shown in Fig. 3. After the progenitor of the stream was
evolved for 1 Gyr in the host potential, a subhalo was inserted on
a trajectory that directly crosses the stream. We removed the sub-
halo after the collision to isolate a single interaction and when
its gravitational effect was sufficiently small that it no longer
affected the stream.

Figure 4 shows an example of a stream-subhalo interaction.
The left panel shows both the stream and a subhalo at the time of
the collision. The right panels show a stream with and without
an encounter 2 Gyr after the interaction with the subhalo. The
perturbed stream clearly shows a gap of several kiloparsec in
size at the centre of the panel.

2 Because we used test particles, it is not strictly necessary to model
their evolution using an N-body code such as Gadget.
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Fig. 5. Top panel: gaps growing in a stream orbiting an axisymmetric
Stäckel Milky Way-like potential. The lines with different colours show
the size of the gaps induced by subhalos of different sizes. The solid
curves correspond to our analytic model, and the dashed curves to gaps
measured in the N-body experiments. The straight dashed grey lines
illustrate the linear growth rate of the gaps. Bottom panel: distance of
the central orbit to the centre of the host potential.

Table 1. Masses and scale radii of the subhalos.

Subhalo 1 Subhalo 2 Subhalo 3

M [M�] 106 107 108

rs [kpc] 0.35 0.59 1.35

Notes. The subhalos are modelled as rigid Plummer spheres.

3. Results

We compare the predictions of the model presented in Sects. 2.4
and 2.5 with the gaps produced in the N-body experiments. We
first investigate gaps produced by subhalos of varying mass and
size for a fixed encounter configuration (i.e. the same velocity
and impact angle). Next, we focus on the effects of a varying
configuration while keeping the subhalo properties fixed.

3.1. Size evolution

Figure 5 shows the evolution of gaps caused by interactions shar-
ing the same configuration, but with different subhalo masses
(see Table 1 for their properties). The model (solid lines) repro-
duces the size of the gap as measured in the N-body simulation
very well (coloured dashed lines). The latter is measured as the
average separation of two groups of 50 particles on each side of
the gap. These 50 particles are identified as those that experience
the largest velocity change at the time of the impact. We used 50
particles to lower the effects of discreteness of the N-body sim-
ulation, but there is only very little difference when the single
particle with the maximum velocity change on each side of the
gap is used. The bottom panel of Fig. 5 shows the total distance
of the gap to the centre of the host galaxy and gives an indication
of its orbit. The frequency of r(t) and the oscillations in the gap
size are in antiphase. This is naturally expected because the gap
is stretched at pericentre and is smallest at apocentre.

Although Fig. 5 shows that the model reproduces the gap size
in the N-body experiment very well, there appears to be an upper

Fig. 6. Left: stream 1 Gyr after an interaction with a subhalo. The two
red dots indicate the orbits that were used to measure the size of the
gap, and the red arrow shows the distance on a straight line between the
two dots. Right: same stream 3.6 Gyr after the encounter. At this point
in time, the two orbits (red dots) are close to their maximum separation.

limit to its measured size. The largest difference is apparent for
the encounter with the most massive subhalo at late times. This
limit occurs because the size of the gap becomes comparable to
the typical scale of the orbit and hence our method of measuring
the size of the gap fails to work. The typical scale of the specific
orbit we used is .40 kpc, see Fig. 6. This value can also be deter-
mined analytically using the inverse of Eq. (11) and considering
that the two orbits on each side of the gap are at a maximum sep-
aration at ∆Θ = π. The maximum distance between two particles
on the same orbit but apart by 180◦ in the angles at any location
in the orbit is ∼35 kpc. This value agrees very well with the ceil-
ing reached by the dashed red line measured from the N-body
experiment in Fig. 5.

The size of the gap in this regime is pushing the limits of
our analytical model. The transformation from action-angle vari-
ables to Cartesian coordinates (i.e. Eq. (14)) is only valid locally
near the central orbit, and therefore the approximation breaks
down for such large gaps. Although it should be possible to
extend the formalism to include cases like this, this is not really
necessary as there are no known streams with gaps of this size,
nor is it likely that a gap like this is observed in the (near) future.

3.2. Evolution of the density

Now we compare the density as predicted by our model with
the density measured in N-body experiments. For the latter we
counted the number of particles in a small volume in 6D space
with r < 0.1 kpc and v < 7.5 km s−1. This velocity limit does
not remove any particles from the stream at t0 when the impact
occurs, but it removes particles that may have drifted away
(i.e. have a different orbital phase) at later times. The volume
is centred on the central orbit, which is determined in a simu-
lation of a stream with the same set-up, but without a subhalo
interaction.

Figure 7 compares the predicted (solid lines) and measured
density from the N-body simulation (dashed lines) for a stream
with and without a gap. For the latter, we simulated the exact
same stream with and without an encounter with a subhalo.
Although the peaks and troughs of the stream and the gap are
always larger in our model, the figure shows that the model pro-
vides an excellent description of the N-body experiments. The
small differences can be attributed to a resolution effect: In the
N-body experiments, we measure the density in a finite volume,
whereas the model computes a density at a single location in
space. If the density were measured in a smaller volume in our
experiments, the peaks would be sharper. However, the number
of particles would drastically decrease and drop to less than a
handful in less than 4 Gyr of evolution.
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Fig. 8. Density contrast measured for a stream experiencing an
encounter with subhalos of different mass and scale radius, see Table 1.
The relative velocity of the impact is the same for all three interac-
tions. The coloured solid lines show the density contrast according to
our model, and the dashed lines are measured in the N-body experi-
ments. The shaded areas indicate the Poisson error in the observed den-
sity. The subhalo of 108 M� is shown in a different panel because of its
slightly different set-up.

3.2.1. Varying subhalo masses

Next, we explore the evolution of the density contrast (i.e. the
ratio of the density around the gap to that of the unperturbed
stream) in Fig. 8. The figure shows the same experiments as
those plotted in Fig. 5, with the density contrast of the most
massive subhalo shown in a separate panel. For the most mas-
sive halo, we slightly modified our set-up. Instead of starting
from the same initial conditions as the other experiments using
the orbit shown in Fig. 3, we used the location of the gap to

determine its orbit. We used this as the central orbit both in our
analytical model and for the N-body experiment representing the
unperturbed stream because when the subhalo and the stream
interact, the stream receives an impulse that slightly displaces it
from its original orbit. The effect is negligible for subhalos of
M . 107 M� and is small but apparent for more massive objects,
particularly after ∼3−4 Gyr of evolution. This new set-up is more
realistic because when attempting to model an observed stream
or gap, its actual measured position and velocity in a suitable
gravitational potential would be integrated (because it is not pos-
sible to have a priori access to the original initial conditions of
the orbit of the stream before it received the impact).

In Fig. 8 we show with solid lines the predicted density con-
trast from our model and with dashed lines those measured in the
N-body experiments. The Poisson errors on the ratio of the den-
sities as measured in the N-body experiments are marked with
shaded areas. In general, the amplitude of the density contrast
is well reproduced by the model. The difference in the ampli-
tude of the narrow peaks at early times is explained by the same
resolution effects as described in Sect. 3.2.

3.2.2. Variation of the encounter configuration

Finally, we verified how our model performs for different con-
figurations of the stream-subhalo encounter, keeping the subhalo
at a fixed mass of 107 M�. We compared three different config-
urations that correspond to rotations of the same velocity vector
as listed in Table 2, with Configuration 1 being that used in the
previous section. We note that the velocity vector was rotated in
the rest frame, not in the co-moving frame of the stream. The
resulting configurations thus have different velocity amplitudes
in the co-moving frame.

Figures 9 and 10 show the time evolution of the size and
density contrast. The layout of the figures is the same as in
the previous section. Again, the model (solid lines) predicts the
behaviour of the gaps as measured in the N-body experiments
(dashed lines) extremely well.

Interestingly, Configuration 2 with a subhalo of 107 M� gives
rise to a density contrast of similar amplitude as the collision
with the subhalo of 106 M� (see Fig. 8) in Configuration 1, both
producing a gap with a density contrast of ∼0.9. However, when
we examine the size of the gaps, we note that the gap caused by
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Table 2. Parameters of the different configurations, see Sect. 2.2 for
their definition.

Config. 1 Config. 2 Config. 3

θ [deg.] −10.5 −34.1 97.6
α [deg.] 39.4 9.9 245.2
w [km s−1] 76.7 33.7 378.3
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Fig. 9. Similar to Fig. 5, but for three different configurations of the
stream-subhalo interactions. The gaps of all configurations are created
by the same subhalo of size 107 M�, but their relative velocity w and
impact angles θ and α are different.
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Fig. 10. Similar to Fig. 8, but for three different stream-subhalo interac-
tions with a subhalo of fixed mass, and whose size evolution is described
in Fig. 9.

the 106 M� subhalo (blue curve Fig. 5) is smaller than that for the
107 M�. This implies that by measuring both size and density,
we may be sensitive to different parameters characterising the
encounter, as we discuss in more detail in Sect. 4.

Figure 9 shows that the gaps resulting from the encounter
in Configurations 1 and 2 have initially approximately the same
size. Interestingly, the gap resulting in Configuration 3 is initially
the largest and also remains the largest throughout its evolution
in time (although the size is somewhat poorly modelled because
the change in velocities for this particular configuration is very
shallow, see Fig. 11, which gives rise to some complications in
identifying the correct particles to trace in the N-body).

On the other hand, Fig. 10 shows that the evolution of the
density for Configuration 3 is very similar to that of an unper-
turbed stream. To understand this, we consider the velocity kicks
∆vy and their profiles as shown in Fig. 11. Because the initial
size of the gap is derived from the location of the maximum
velocity change, the gap that is initially produced in Configu-
ration 3 is much larger than the other two. Comparing Figs. 10
and 11, we see that the steepest density contrast is associated
with the largest change in velocity, exactly as expected. These
results imply that the size of the gap is strongly correlated with
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Fig. 11. Profile of the change in velocity along the stream vy for the
three different configurations described in the two previous figures. In
Configuration 1 the stream experiences the largest kick on the smallest
scale. On the other hand, in Configuration 3 the kick is much smaller
but on a much larger scale. The arrows indicate the location of the max-
imum ∆vy.

the distance between the maximum velocity change, whereas
the density contrast is more correlated with the amplitude of the
change (see also the expressions in the next section).

4. Exploration of the gap observables:
dependences and degeneracies

After validating our analytic model, we used it to explore the
dependence of the size and density of a gap on the collision
parameters using Eqs. (16) and (33). We considered hypothetical
gaps formed in the stream presented in Sect. 2.6 and analysed in
Sect. 3. To this end, we varied the characteristic parameters of
the collision with a subhalo, namely w, θ, and M, while keeping
the angle α fixed at some arbitrary value α = 163◦. We consid-
ered w in the range [0, 800] km s−1 and θ in the range [−90◦, 90◦].
Instead of separately varying M and rs, we used a relation for
Vmax ∝ rmax for subhalos found in the Aquarius simulations by
Springel et al. (2008), see Appendix B for details.

Figure 12 shows the gap properties, namely size and density
contrast, as a function of these characteristic parameters. Each
panel shows the dependence of these two observable quantities
with one of the three parameters: M, w, or sin θ. At the same
time, we discretely varied a second parameter that gives rise to
the different curves in each subpanel, but kept the third parame-
ter fixed. For example, in the leftmost panels we show the varia-
tion in gap size (top) and density contrast (bottom) 2.5 Gyr after
impact as a function of mass of the subhalo M for different values
of w as indicated by the colour bar, and for θ = π/4.

Because the size of a gap varies depending on its orbital phase,
we confirmed that the dependences shown in Fig. 12 are robust.
We found them to be identical, except for an overall scaling of
the amplitude that depends on the phase. Because it is possible
to establish the phase of a gap observationally (after assuming a
suitable Galactic potential and integrating the orbit of the stream
in which it is embedded), this implies that the trends observed
here can be used to infer several of the characteristic properties
of the encounter. The density contrast, meanwhile, does not vary
along the orbit (because the density variations along the orbit for
the gap are identical to those for the unperturbed stream). How-
ever, in the bottom panels of Fig. 12, we have taken the late times
limit of the density contrast given by Eq. (34).

We showed in Eq. (8b) that the size of the gap at any point in
time strongly depends on its initial magnitude (i.e. ∝ rs/ cos θ),
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Fig. 12. Top row: size of the gap after 2.5 Gyr of evolution as a function of the impact parameters (subhalo mass, angle θ, and amplitude of the
relative velocity w). Bottom row: density contrast as a function of the same parameters. The two panels on the left show the discrete variation of
the curves, varying the velocity amplitude w or collision angle θ. The two panels on the right show two sets of lines, solid for a subhalo of mass
107 M� and dashed for 108 M�.

implying a dependence on the subhalo mass through the rs param-
eter (with rs ∝ M2/5), as shown in Appendix B. This simple rela-
tion explains the curves in the top panels of Fig. 12 well, which
show that the gap size depends strongly on the mass of the sub-
halo (two leftmost panels), with relatively little dependence on
w and sin θ, except for extreme values of these parameters (two
rightmost panels). For example, when the subhalo moves along
the stream (i.e. when cos θ → 0), the size of the gap is clearly
not well defined. In this case, the impulse approximation breaks
down as the subhalo and stream interact for a long time, and per-
haps more importantly, the interaction affects a large part of the
stream. Moreover, for very low values of w, the impulse approx-
imation is no longer valid. Low relative velocities and extreme
alignment must be rare because they only occur when the stream
and subhalo move at a similar velocity and in the same direction.
In summary, the top panels of Fig. 12 suggest that given a gap
size, it is possible to infer the mass of the subhalo that perturbed
it with some confidence for most values of w and θ.

With the knowledge of the mass, the density contrast could
be used to infer some plausible encounter geometries. To under-
stand the factors driving the density contrast, we used Eq. (34),
which depends on the ratio of det |σΘ0 | for the stream and the
gap. Although general analytic expressions can be obtained,
they are somewhat cumbersome. Under the assumption that the
velocity kick is small (compared to the characteristic orbital
velocity of the subhalo) and that the covariance matrix of the
stream at the time of the encounter is diagonal in Cartesian coor-
dinates, we find (see Appendix C for full details)

δρ
gap
str ∝ 1 −

GM
r2

s w
f (θ, α,Cstr

x,x0
,Cstr
u,u0
, x0, u0), (35)

where f (θ, α,Cstr
x,x0

,Cstr
u,u0
, x0, u0) is a function that depends on the

angles characterising the encounter, the location of the encounter
(x0, u0), and the configuration and velocity covariance matri-
ces of the unperturbed stream at the time of the impact (see
also Eq. (C.16)). This relation implies that the density contrast
becomes shallower with increasing w, as is shown in Fig. 12. On
the other hand, more massive subhalos create gaps with lower

densities. Because of the different dependence of the gap size
(top panel) and of the density contrast with the characteristic
parameters of the encounter, (M,w, sin θ), this means that it is
possible to break some of the degeneracies present using these
two observable quantities, provided the time since the collision
can be established (which is necessary for making use of the
constraints provided by gap size).

Another time-invariant combination of observables is plot-
ted in Fig. 13. This figure shows the spatial size of the gap rela-
tive to the separation in velocity space, normalised by its initial
value at t0. Although the ratio of ∆X and ∆V does vary with the
orbital phase of the gap or stream, this phase can be established
through orbit integrations, as discussed earlier. The lines shown
in Fig. 13 (measured at 2.5 Gyr) are for a gap that is near its apoc-
entre. Evaluating the ratios ∆X/∆V near the pericentre results in
a similar figure, but where the y-axis is mirrored with respect to
the line y = 0.

There are clear similarities between this ratio and the
behaviour of the density contrast shown in the bottom row of
Fig. 12, except for the third panel, which reveals a sensitivity for
low w velocity on the angle of the encounter θ. Overall, this ratio
therefore is a good discriminator for low w of sin θ.

In summary, (smallish) gaps .25 kpc mostly depend on the
mass of the subhalo, while large gaps can either be due to
a specific configuration (low relative velocity or angle of the
encounter) or due to a large subhalo. Assuming the average
encounter has a relative speed of w > 200 km s−1, it appears that
per orbit or stream, we can break the degeneracy of the interac-
tion parameters using the density contrast as well. We verified
that these conclusions (and dependences) are robust and inde-
pendent of the orbital characteristics of the stream (e.g., different
inclinations with respect to the Galactic plane), but they are only
strictly valid if the age of the gap can be well constrained.

5. Discussion

Action-angle variables have previously been used to describe
streams and their gaps (e.g., Helmi et al. 1999; Helmi & Gomez
2007; Bovy 2014; Sanders et al. 2016; Helmi & Koppelman
2016; Bovy et al. 2017). There is a trade-off to be made when
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Fig. 13. Sensitivity of the (time-independent) ratio of the size of the gap to the separation in velocity to the same parameters as discussed in Fig. 12.

using these variables: we may either make use of a numerical
approach and obtain a (local) approximation for a generic poten-
tial (Binney 2012; Sanders & Binney 2015), or use a fully ana-
lytic approach and be restricted in the choice of the potential. In
this work, we took the latter approach such that we can express
the properties of the gaps in physical space directly as a function
of the encounter parameters.

In contrast to the work of Erkal & Belokurov (2015a), who
argued that gaps grow at late times as

√
t (for circular orbits),

we find that both in our numerical experiments as in the ana-
lytic model, gaps grow linearly with time independently of the
type of orbit or shape of the gravitational potential. We there-
fore extended the findings of HK16, who considered a spherical
potential, and also confirmed the results of Sanders et al. (2016).

Sanders et al. (2016) have found that the density contrast of
a gap approaches a constant value at late times. Our fully ana-
lytical model allowed us to verify their conclusion, and we were
also able to show why this happens and on what the constant
value depends (e.g., Eqs. (34) and (35)). Sanders et al. (2016)
also reported that gaps grow differently in the leading and trail-
ing arm. Judging from the expressions derived in this work, there
may be two reasons for the different growth rate: (i) a difference
in the local (velocity) dispersions of the particles in either the
leading or trailing arm, as was already noted by Sanders et al.
(2016), or (ii) the orbits of the leading and trailing stream have
slightly different characteristic parameters (they are slightly off-
set in energy), and these affect the growth rate of gaps as well as
the decline in their density.

Erkal & Belokurov (2015b) argued that a degeneracy exists
in the gap parameters with mass and velocity. The reported
degeneracy of (M,w)→ (λM, λw) only exists if the scale radius
rs of the subhalo is kept fixed, but its mass is not. For exam-
ple, the size of a gap depends on rs, while the density contrast
depends on M/r2

s . Since a non-linear relation between rs and
M is known to exist for subhalos in cosmological simulations
(rs ∼ M2/5, Neto et al. 2007; Springel et al. 2008), we must con-
clude that the above degeneracy does not exist for subhalos in
CDM. A different mass-size scaling relation, for example for
subhalos in other cosmologies or for other objects such as glob-
ular clusters and giant molecular clouds, will most likely also
break the degeneracy unless the size is independent of the mass.

The model we presented successfully describes gaps in
streams in axisymmetric potentials. However, it builds on sev-
eral key assumptions that we list below.

The time of the collision or age of the gap. Although this
information is in principle encoded in the size of the gap, we
have generally explored its properties at a fixed time. Keeping it
open will add one more parameter to optimise. A rough estimate

of the formation time could be obtained by integrating the two
sides of the gap backwards in time and determine when they
meet. We recall, on the other hand, that if we may assume that
the encounter occurred sufficiently long ago, the density contrast
is independent of time, and some of the encounter parameters
can be constrained.

The potential of the host galaxy. Changes in the host poten-
tial will change the central orbit of the gap and thus the size and
density evolution. However, we note that the explicit time depen-
dence of both the size and density of the gap will not change with
(small) variations in the potential.

Knowledge of the pristine stream conditions before the inter-
action. In principle, it should be possible to derive the full 6D
properties of the stream at the time of the collision from observ-
ing the full stream morphology and knowing the age of the gap.

The properties of the subhalo, here assumed to be well
described by a Plummer sphere. This choice was made because
of its simple mathematical expression, for which there is an ana-
lytic solution to the integral of the impulse approximation used to
compute the velocity kicks. However, it is possible to compute
this integral numerically for other profiles (e.g., Sanders et al.
2016).

We showed that some of the previously reported degenera-
cies in the space of parameters describing the encounter can
be broken by making plausible assumptions about the stream-
subhalo configuration. A natural next step would be to consider
probability distributions for the encounter parameters, much
like, for example, Erkal et al. (2016). Our model can then be
used to quickly explore the parameter space as it can constrain
the most likely encounter parameters given observation of a gap.

Finally, we discuss the possibility that gaps might be cre-
ated by interactions with globular clusters and giant molecu-
lar clouds (GMCs). As long as they are massive and compact
enough, GMCs can have a similar effect on cold streams as
dark matter subhalos (Amorisco & Gómez 2016). Streams that
orbit near the disc and thus have a high chance of encounter-
ing a GMC, are therefore not ideal as probes for dark matter
substructures (such as Pal-5, see Banik & Bovy 2018). Because
the orbits of GMCs and globular clusters are sufficiently well
known, we can constrain the possible range of interaction param-
eters for these objects much better and rule them out as possible
perturbers (e.g., Bonaca et al. 2019b and Banik et al. 2021).

To place this in the context of the equations derived in
Sect. 4: The size of the gap is sensitive to the size (∼rs) of
the object. On the other hand, the density contrast depends on
the ratio of the mass and scale radius (∼M/r2

s ) and thus effec-
tively is more sensitive to the density (or rather a surface density)
of the perturber. Objects that pack more mass inside the same
scale radius create larger gaps in terms of the density contrast.
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Globular clusters and GMCs, both of which are compact sys-
tems, will create different combinations of the gap size and den-
sity contrast than the typical dark matter subhalo. Gaps created
by these compact objects are relatively small in size but large in
density contrast.

6. Conclusions
We have successfully extended the model of the evolution of
gaps in spherical potentials, presented in HK16, to describe
gaps in streams orbiting in axisymmetric Stäckel potentials. The
model accurately predicts the evolution of both the size of the
gap and its central density. The model is unique in that it is fully
analytic, meaning that we can directly relate the stream-subhalo
interaction parameters to the properties of the resulting gaps. In
doing so, it provides some interesting insights into the evolution
of gaps in streams.

We find that the sizes of the gaps in axisymmetric potentials
grow linearly in time and that this dependence is independent
of the shape of the Galactic potential. On the other hand, the
density declines in time as t−n , where n denotes the number of
independent frequencies characterising its orbit. The growth of
the size and density of a gap depend on the subhalo properties
(mass and scale radius), the properties of the stream at the time of
the impact (velocity and positional differences of the particles),
and on the central orbit of the gap.

We have shown that the size of the gap is correlated with
the portion of the stream most affected by the subhalo flyby
(the value ymax in the impulse approximation). The density con-
trast of the gap, on the other hand, is more correlated with the
amplitude of the interaction (∆vmax). These different correlations
are in the end what drives the ability to break the degeneracy
of the encounter parameters. For example, for a given gap age,
small gaps (<25 kpc) are highly dependent on the size of the sub-
halo, while a large gap can be caused by a large subhalo or by an
alignment of the orbit of the stream and subhalo. These results
are encouraging and appear to be useful to constrain the proper-
ties of a population of dark subhalos if present in the halo of the
Milky Way.
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Appendix A: Full 3D impulse of the covariance matrix
In this section we derive the change in covariance matrix when the full 3D morphology of the stream is taken into account. Similar
to the 1D case, see Sect. 2.5, we assume that the change in velocity is a linear function of the spatial coordinates, meaning that the
denominator of the kicks (w((r2

s + r2)w2 − (x · w)2)) ≈ r2
s w3. This approximation is in general true for the small volumes in which

we measure the density, typically�1 kpc. This assumption allows us to rewrite Eqs. (7) to

∆vi(x) = −2GM
w2xi − wi(x · w)

r2
s w3 , (A.1)

where the subscript i = x, y, z.
In a similar procedure as for the 1D approximation, we can now compute the covariance terms. The velocity-position terms in

the most general form are

C(vi+∆vi, x j)=C(vi, x j)+
1
n

∑
∆vi(x j − x̄ j) (A.2)

with

1
n

∑
∆vi(x j− x̄ j) =−

2GM
r2

s w3

[
w2C(xi, x j)−

∑
k=x,y,z

wiwkC(xk, x j)
]
. (A.3)

The velocity-velocity terms are slightly more cumbersome,

C(vi + ∆vi, v j + ∆v j) = C(vi, v j) +
1
n

∑
∆vi(v j − v̄ j) +

1
n

∑
(vi − v̄i)∆v j +

1
n

∑
∆vi∆v j, (A.4)

where

1
n

∑
∆vi(v j − v̄ j) = −

2GM
r2

s w3

[
w2C(xi, v j) −

∑
k=x,y,z

wiwkC(xk, v j)
]
. (A.5)

The last term in Eq. (A.4) is

1
n

∑
∆vi∆v j =

(2GM
r2

s w3

)2[
w4C(xi, x j) −

∑
k=x,y,z

(
w2wk

[
w jC(xi, xk) + wiC(x j, xk)

]
− wiw jw2

kC(xk, xk)
)

+ wiw j

(
2wxwyC(x, y)+2wxwzC(x, z) + 2wywzC(y, z)

)]
. (A.6)

These expressions take a much simpler form when the initial covariance matrix Σ$,0 (e.g., Eq. (19)) is diagonal. In this case,
Eq. (A.4) simplifies to

1
n

∑
∆vi(x j − x̄ j) = −ε

w
rs

C(x j, x j)
[
δi j −

wiw j

w2

]
, (A.7)

where

ε =
2GM
rsw2 (A.8)

is a unit less parameter and δi j is the Kronecker delta. Equation (A.5) simply vanishes because it only features off-diagonal terms,
and Eq. (A.6) reduces to

1
n

∑
∆vi∆v j = ε2w2

[C(xi, x j)
r2

s
−

wiw j

w2r2
s

[
C(xi, xi) + C(x j, x j)

]
+

∑
k=x,y,z

(wiw jw2
k

w4

C(xk, xk)
r2

s

)]
. (A.9)

In Appendix C we return to these simplified expressions. It is convenient to express Eqs. (A.7) and (A.9) in terms of ε and
another parameter (∆i j and Di j, respectively) that carries all other terms, such that in this specific case we can write

1
n

∑
∆vi(x j − x̄ j) = −ε∆i j, (A.10)

and

1
n

∑
∆vi∆v j = ε2Di j. (A.11)
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Appendix B: Subhalo scaling relations
For the scaling of the subhalos scale radius rs with mass M, we have used several scaling relations that we list below. To obtain the
scaling, we first related the subhalo mass M with the maximum circular velocity Vmax = Vc(rmax). Springel et al. (2008; see their
Fig. 27) reported

Vmax =

( M
3.37 · 107 M�

)1/3.49
· 10 km s−1, (B.1)

which is an empirical scaling relation based on the subhalos down to the mass range of .105 M�, identified in the Aquarius simula-
tions. Next, rmax is related to Vmax using Eqs. (6)–(9) from Springel et al.,

rmax = Vmax

[ δcH2
0

14.426

]− 1
2

· 0.62, (B.2)

where the factor 0.62 was added based on the comment in the caption of Fig. 26 of Springel et al. (2008, see also below), and we
assumed H0 = 73 km s−1 Mpc−1. The final missing piece is δc, which is related to the concentration parameter c by

δc =
200

3
c3

(
log(1 + c) −

c
1 + c

)−1
. (B.3)

Typically, c is related to the subhalo mass M, motivated by Springel et al. (2008). We relate the two using an empirical scaling
relation found by Neto et al. (2007) for relaxed halos

c = 5.26
( M
h · 1014

)−0.10
, (B.4)

where h = H0/(100 km s−1). We note that Springel et al. (2008) reported that the resulting scaling relation of Vmax ∼ rmax is lower
than the relation found from extrapolating the results of Neto et al. (which is not calibrated for subhalos in the low-mass range that
we consider here). The offset is 0.62, therefore we added this factor in Eq. (B.2).

With the equations above we can relate the subhalo mass M to Vmax and a corresponding rmax. The scale radius rs,NFW is related
to rmax simply as

rmax = 2.163 · rs,NFW, (B.5)

which is found numerically from calculating where Vc(rmax) = Vmax (but see Eq. (11) of Diemand et al. 2007, where we originally
found the relation).

Finally, in this main text we used a Plummer profile to describe the subhalos, rather than a Navarro et al. (1997, NFW) profile.
Therefore we relate the scale radii of the two profiles by equation the acceleration at rmax

aNFW(rmax) = aPlummer(rmax) = −
GM

(r2
max + r2

s )3/2
· rmax. (B.6)

The scale radius of the Plummer, rs, can be found by solving the equation above, which then is a function of M only. Finally, by
fitting the scaling relation numerically, we find that the scale radius depends on mass as rs ∝ M0.397 ∼ M2/5.

Appendix C: Computing the density contrast at late times

As described in the main paper, the density contrast at late times takes the form (see Eq. (34))

δρ
gap
str =

√
det |σΘ0 |str

det |σΘ0 |gap
. (C.1)

To be able to establish its dependence on the characteristic parameters of the encounter, we need to determine the form of the
determinant of the matrix σΘ0 . This is the upper left 3× 3 submatrix of σω,0 that is described in Sect. 2.5. This matrix, following the
notation of Sect. 2.4, takes the form

σω,0 =M−1
0
†
σ$,0M

−1
0 , (C.2)

whereM0 is given by Eq. (12), namelyM0 = MAA←st
0 M

st←cyl
0 M

cyl←xyz
0 , and thus represents the coordinate transformations from

Cartesian to action-angle variables. For example, the matrix that accounts for the transformation from Stäckel coordinates to action
angles, MAA←st

0 , contains the derivatives of the characteristic function and its general form is given in Eq. (A2) of HW99. In
Eq. (C.2), σ−1

$ = Σ$ is the inverse of the 6× 6 covariance matrix in Cartesian coordinates. Therefore σΘ0 for the stream depends on
location as well as on the initial properties of the stream, and similarly for the gap.

The matrix σ$,0 is of the form

σ$,0 =

(
σx,0 σxu,0
σ†xv,0 σu,0

)
, (C.3)
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and because we may express as

M−1
0 =

(
A B
C D

)
, (C.4)

this means that

σΘ0 = A†σx,0A + C†σ†xu,0A + A†σxu,0C + C†σ†u,0C. (C.5)

Using matrix inversions, if

M0 =

(
t1 t2
t3 t4

)
, (C.6)

and t4 is invertible, then

A = (t1 − t2t−1
4 t3)−1, and C = −t−1

4 t3A = T43A, (C.7)

where we recall that A and T43 represent coordinate transformations and therefore only depend on location. These matrices were
set to be identical for the gap and the stream in Eq. (C.1), which significantly simplifies subsequent computations. When we now
replace in Eq. (C.5), this results in

det |σΘ0 | = (det A)2 det(σx,0 + T †43σ
†

xu,0 + σxu,0T43 + T †43σ
†

u,0T43). (C.8)

The expression for det |σΘ0 |str using the above equation has been worked out in detail by HW99 for a stream generated from an
initially isotropic Gaussian distribution in configuration and velocity space and for a preferred location along the orbit, namely the
apocentre. The explicit expressions in the case of an axisymmetric system (the last equation in their Appendix B), and for a system
described with Stäckel coordinates (Eq. C13 in their Appendix C) are presented in HW99.

We now proceed to determine the form of the submatrices of σ$,0 given in Eq. (C.3) and needed in Eq. (C.8). For the stream we
assumed no initial correlations between positions and velocities in the stream (i.e. a diagonal covariance matrix Σ$,0), which means
that the submatrix σstr

xu,0 = 0 and that σstr
x,0 = [Cstr

x,x0
]−1 and σstr

u,0 = [Cstr
u,u0

]−1 according to Eq. (19). For the gap, we may express

C
gap
u,u0 = Cstr

u,u0
+ ε2 D, (C.9)

where the elements of D are given by Di j, see Eq. (A.11). Furthermore,

C
gap
x,u0 = −ε ∆, (C.10)

where the elements of ∆ are given by ∆i j, see Eq. (A.10).
To compute the submatrices σgap

x,0 , σgap
xu,0 , and σgap

u,0 , in Eq. (C.8), we use that σgap
$,0 = Σ

gap
$,0
−1, which is given by Eq. (20). The

inverse of this block matrix can be computed explicitly, provided the matrix W = C
gap
u,u0 − C

gap
x,u0
†[Cgap

x,x0
]−1C

gap
x,u0 is invertible. Using

Eqs. (C.9) and (C.10), and to the lowest order in ε, we find that

σ
gap
u,0 =W−1 ≈ [Cstr

u,u0
]−1

[
I−ε2 (D−∆†[Cstr

x,x0
]−1∆)[Cstr

u,u0
]−1

]
, (C.11)

σ
gap
xu,0 = ε [Cstr

x,x0
]−1∆ [Cstr

u,u0
]−1 (C.12)

σ
gap
x,0 = [Cstr

x,x0
]−1 + ε2 [Cstr

x,x0
]−1∆ [Cstr

u,u0
]−1∆†[Cstr

x,x0
]−1. (C.13)

We are now almost ready to compute the density contrast because

det |σΘ0 |gap ∼ (det A)2 det[σstr
x,0 + T †43σ

str
u,0T43 + ε (T †43σ

str
u,0∆

†σstr
x,0 + σstr

x,0∆σ
str
u,0T43)] ∼ det |σΘ0 |str det[I + ε K], (C.14)

where the matrix K is

K= [T †43σ
str
u,0 ∆

†σstr
x,0+σstr

x,0∆σ
str
u,0T43][σstr

x,0+T †43σ
str
u,0T43]−1, (C.15)

and it is therefore dependent on the initial properties of the stream (at the time of the encounter and through the σ matrices), the
location of the encounter in phase-space (through the matrix T43 introduced in Eq. (C.7)), and the characteristic parameters of the
encounter (through the matrix ∆, whose elements can be described as w

rs
times some function g(Cstr

x,x0
, α, θ), see Eqs. (A.7) and

(A.10)). Because we may express det[I + ε K] ∼ 1 + ε trK, the density contrast at late times becomes

δρ
gap
str ∼

√
det |σΘ0 |str

det |σΘ0 |gap
∼ (1 + ε tr K)−1/2 ∼ 1 −

ε

2
tr K ∼ 1 −

GM
r2

s w
f (θ, α,Cstr

x,x0
,Cstr
u,u0
, x0, u0), (C.16)

where f (θ, α,Cstr
x,x0

,Cstr
u,u0
, x0, u0) is a function that depends on the impact configuration and initial state of the stream.
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