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ABSTRACT: Raman spectroscopy enables nondestructive, label-free imaging with
unprecedented molecular contrast, but is limited by slow data acquisition, largely
preventing high-throughput imaging applications. Here, we present a compre-
hensive framework for higher-throughput molecular imaging via deep-learning-
enabled Raman spectroscopy, termed DeepeR, trained on a large data set of
hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in
total. We first perform denoising and reconstruction of low signal-to-noise ratio
Raman molecular signatures via deep learning, with a 10× improvement in the
mean-squared error over common Raman filtering methods. Next, we develop a
neural network for robust 2−4× spatial super-resolution of hyperspectral Raman
images that preserve molecular cellular information. Combining these approaches,
we achieve Raman imaging speed-ups of up to 40−90×, enabling good-quality
cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up
of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally,
transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host
of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.

■ INTRODUCTION

Raman spectroscopy has recently excelled as a highly
complementary tool for biomedical research, providing non-
destructive, label-free, molecular imaging with subcellular
resolution. This has enabled a multitude of exciting biomedical
applications from fundamental in vitro cellular studies1,2 to ex
vivo spectral histopathology3,4 and in vivo fiber-optic endoscopy
for optical biopsy at the molecular level.5,6 Despite its many
advantages, Raman spectroscopy remains limited by the
weakness of generated Raman signals, which necessitates
spectral acquisition times on the order of 1 s per sampled
point.7 As such, high-resolution Raman spectroscopic imaging
of cells or tissues often requires multiple hours, which is
prohibitive for high-throughput Raman spectroscopic imaging
applications.8−10 To address these acquisition time and signal-
to-noise ratio (SNR) challenges, advanced nonlinear Raman
spectroscopy techniques, including coherent anti-Stokes Raman
spectroscopy (CARS) and stimulated Raman spectroscopy
(SRS) have been developed.11−13 However, while these
advanced techniques have recently enabled rapid broadband
Raman imaging in biomedicine, they do so through applications
of pulsed laser systems that are technically demanding to operate
and incur significant costs.14

A potential alternative, or complement, to hardware-based
solutions lies in deep learning.15 Deep learning is a subset of
machine learning capable of uncovering effective representa-

tions of data across multiple levels of abstraction and has
demonstrated incredible results across several domains,
including image classification and segmentation, natural
language processing, and predictive modeling.16−19 Recently,
the application of deep learning to point-based Raman
spectroscopy has achieved promising results in the intra-
operative diagnosis of brain tumors, the rapid identification of
pathogenic bacteria, and the production of subcellular organelle
segmentation maps.20−22 While such applications are likely to
improve the Raman spectroscopic diagnostic accuracy,23 even
greater benefits lie in the potential for deep learning to improve
Raman spectroscopic imaging by increasing signal acquisition
speeds and enabling high-quality reconstruction from noisy,
low-resolution input data. Hyperspectral Raman images, where
each pixel contains a complete Raman spectrum, represent
highly structured data with complex spatial and spectral
correlations amenable to deep learning. This highly structured
nature of the data is at present underutilized, with existing data
processing and analysis techniques (e.g., chemometrics and
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multivariate analysis) failing to adequately exploit these complex
correlations.15

Deep learning has made significant strides in signal
reconstruction tasks, most notably for single-image super-
resolution (SISR),24−26 image denoising,27,28 and signal
denoising.29,30 In each of these domains, a neural network is
trained on pairs of low-quality [e.g., low-resolution (LR)] and

high-quality [e.g. high-resolution (HR)] data, attempting to
learn effective representations of low-quality inputs that
reconstruct the corresponding high-quality outputs. Neural
networks can thus be considered to learn prior information (e.g.,
shapes, sizes, and colors typical of different features) from the
corpus of data in the training set in order to generate high-
quality output data, given low-quality input data in the test set.

Figure 1. Deep-Learning-Enabled Raman Hyperspectral Super-Resolution Imaging. The deep-learning framework DeepeR is designed to operate on
hyperspectral Raman images, where high information-content Raman spectra at each pixel provide detailed insight into the molecular composition of
cells/tissues. To improve the speed of Raman spectroscopic imaging and enable high-throughput applications, we first (i) train a 1D ResUNet neural
network for Raman spectral denoising to effectively reconstruct a high SNR Raman spectrum (long acquisition time) from a corresponding low SNR
input spectrum (short acquisition time). Next, we (ii) train a hyperspectral residual channel attention neural network to accurately reconstruct high
spatial resolution hyperspectral Raman images from corresponding low spatial resolution hyperspectral Raman images to significantly reduce imaging
times. Then, by combining (i) and (ii), we achieve extreme speed-ups of up to 160× in Raman imaging time while maintaining high reconstruction
fidelity. Finally, we (iii) demonstrate that transfer learning can be used to take our pretrained neural networks (trained on large datasets) to operate on
an entirely unrelated hyperspectral data domain, for which there is only a limited data set (insufficient to effectively train a neural network from
scratch).
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In the context of signal denoising, several groups have
developed neural networks designed to reduce noise in
electrocardiograms,29,30 while image denoising has been
employed to improve image quality by removing noise
generated by imaging hardware or compression artifacts.28,31

Similarly, much work has focused on SISR, with important
potential life sciences applications already demonstrated for
fluorescence microscopy, MRI, electron microscopy, and even
endomicroscopy.32−36 SISR approaches have enabled HR
fluorescence microscopy with ∼100× lower light dose and
16× higher frame rates for reduced photobleaching and
phototoxicity.34 Recently, SISR has been applied to line-scan
Raman imaging, achieving a 5× speed-up in line-scan imaging
time.37 This work applied a three-layer convolutional network to
a narrow portion of the Raman spectrum, limiting potential
wider applications.
Here, we present DeepeR, a comprehensive deep-learning

framework for high-throughput molecular imaging via deep
learning-enabled Raman spectroscopy. We first show, using a
data set consisting of 172,312 pairs of low and high SNR Raman
spectra of the entire fingerprint region, that deep learning
significantly outperforms Savitzky−Golay (SG), wavelet, and
principal component analysis (PCA) spectral smoothing
algorithms 10×, enabling effective reconstruction of Raman
signatures from low SNR Raman spectra. We next develop a
convolutional neural network for hyperspectral Raman image
super-resolution using an additional data set of 169 hyper-
spectral images representing 1.4 million Raman spectra (389 h
of acquisition) in total. We achieve robust 2−4× spatial super-
resolution image reconstruction, corresponding to 4−16×
reduction in imaging time. Then, using a hybrid approach, we
demonstrate Raman imaging with effective speed-ups of 40−
160× while preserving molecular cellular information. Finally,
we highlight the generalizability of our deep-learning framework,
employing transfer learning to extend our pretrained neural
networks from cells to tissues.

■ MATERIALS AND METHODS
Neural Network Architecture and Implementation:

Raman Spectral Denoising.Denoising of Raman spectra was
achieved via a one-dimensional (1D) ResUNet architecture
(Figure 1). The network was trained for 500 epochs using the
Adam optimizer,38 with an L1-norm loss function and a one-
cycle learning rate scheduler. Eleven independent models were
trained, with the Raman spectra from a single hyperspectral
Raman cell image used as the test set in each case, while the
training and validation sets were formed from the Raman spectra
of the remaining 10 hyperspectral Raman cell images. Evaluation
on the validation set was used to prevent overfitting, while all
results presented are the mean across the 11 test set folds. Full
training details are provided in Supplementary Table 2. See
Supporting Information for complete Python training scripts.
Neural Network Architecture and Implementation:

Hyperspectral Super-Resolution. Hyperspectral Raman
image spatial super-resolution was performed using a hyper-
spectral residual channel attention network (Supplementary
Figure 1). The network was trained for 600 epochs using an
Adam optimizer,38 with an L1-norm loss function and a constant
learning rate. Evaluation on the validation set was used to
prevent overfitting, while all results presented are for the test set.
Full training details are provided in Supplementary Table 3. See
the Supporting Information for complete Python training
scripts. Network performance was assessed using two common

image quality metrics, the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM).

Data Augmentation. Data augmentation, essential for
increasing the effective data set size, was performed using a
custom PyTorch DataGenerator. Data augmentation included
image subsampling, flipping, rotation, and mixup,39 as well as
spectral shifting, flipping, and background subtraction (Supple-
mentary Figure 3).

Implementation. Complete implementation details are
listed in the Supporting Information.

■ RESULTS AND DISCUSSION
Hyperspectral Raman Deep-Learning Framework.

DeepeR is designed to improve Raman spectroscopic
acquisition times toward high-throughput Raman imaging
applications.Working across hyperspectral Raman data, DeepeR
performs (i) Raman spectral denoising, (ii) hyperspectral super-
resolution, and (iii) transfer learning (Figure 1). Raman spectral
denoising is performed using a 1D residual UNet (ResUNet),40

which takes low SNR input spectra and reconstructs them to
produce corresponding high SNR output spectra (Figure 1i).
UNets have demonstrated excellent performance across a
variety of applications in 1D and 2D, such as spectral artifact
removal41 and image segmentation,40 where the inputs and
outputs have the same rank (shape). This is in part due to the
UNet architecture, which enables it to learn from the data at
multiple different feature scales. Thus, this makes UNets a
suitable architectural choice for spectral denoising. Hyper-
spectral super-resolution is achieved using an adapted residual
channel attention network (RCAN),42 a recent state-of-the-art
neural network for spatial super-resolution of red-green-blue
(RGB) images, to output an HR hyperspectral Raman image
from an LR input (Figure 1ii, Supplementary Figure 1). The
combination of (i) Raman spectral denoising and (ii) hyper-
spectral spatial super-resolution then enables significant Raman
imaging speed-ups for high-throughput applications. Finally,
DeepeR can be generalized to a wide range of Raman imaging
applications through transfer learning, where neural networks
pretrained on large hyperspectral datasets can be fine-tuned to
operate effectively on small hyperspectral datasets (Figure 1iii).

Deep-Learning-Enabled Raman Denoising. We first
developed a neural network training pipeline for Raman
denoisingthe reconstruction of a Raman spectrum with a
high SNR from a corresponding low SNR Raman spectrum. We
cultured MDA-MB-231 breast cancer cells, a widely studied cell
line, and sequentially acquired low SNR (0.1 s integration time
per spectrum) and high SNR (1 s integration time per spectrum)
hyperspectral confocal Raman cell image pairs of varying size (n
= 11 cells) using 532 nm laser excitation. This resulted in a large
data set consisting of pairs of low and high SNR Raman spectra
(n = 172,312 spectral pairs). Importantly, these Raman spectra
contain an abundance of molecular information, including
information about the relative concentrations and distributions
of various nucleic acids, proteins, and lipids.1 For instance,
intense peaks can be seen near 795 cm−1 (DNA), 1004 cm−1

(phenylalanine), 1300 and 1440 cm−1 (lipids), and 1660 cm−1

(predominantly amide I of proteins). Successful denoising and
reconstruction of low SNR Raman spectra require that this
biochemical information be effectively preserved.
We applied a 1D ResUNet to this data set, performing 11-fold

cross-validation by training 11 independent models on training/
validation sets composed of the spectra from 10 hyperspectral
Raman cell images, where the test sets in each case consisted of
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the spectra from the remaining hyperspectral Raman cell image
(see Materials and Methods and Supplementary Table 1 for full
implementation details). To increase the effective size of our
data set and improve the robustness of the 1D ResUNet, we
employed data augmentation including spectral flipping,
spectral shifting, and background subtraction. Importantly,
such augmentations are designed to maintain denoising

performance in the face of spectral changes (e.g., wavelength
shifts) that occur across different Raman spectroscopy systems.
The 1D ResUNet learned to produce high-quality output
Raman spectra from low SNR input spectra that strongly aligned
with the target (ground truth) high SNR spectra (Figure 2). To
achieve this, the 1D ResUNet operates across multiple feature
scales and spectral resolutions, learning spectral features (and

Figure 2.Deep-Learning-Enabled RamanDenoising. (a) Exemplar test set pair of low SNR input Raman spectrum (light gray) and corresponding high
SNR target Raman spectrum (dark gray) as well as SG (light blue), wavelet denoising (purple), PCA denoising (dark blue), and neural network (red)
outputs for the given input spectrum (normalized to maximum peak intensity). (b) MSE (performed across all spectral channels and all image pixels)
across all test set hyperspectral Raman cell images for raw input spectra, 1D ResUNet output spectra, PCA denoising output spectra, wavelet denoising
output spectra, and SG output spectra (order x, frame width y) output spectra with respect to corresponding target spectra (n = 11) (error bars: mean
± STD) (one-way ANOVAwith Dunnett’s multiple comparison test against raw input spectra, *** P < 0.005). (c) Exemplar 1450 cm−1 peak intensity
heatmaps for low SNR input hyperspectral Raman image, PCA denoising of input hyperspectral Raman image, 1D ResUNet output, and target high
SNR hyperspectral Raman image with corresponding imaging times shown in white (min:sec) (scale bar = 10 μm). (d) Exemplar vertex component
analysis (VCA) performed on target high SNR hyperspectral Raman image identifies five key components (proteins/lipids [red], nucleic acids [blue],
proteins [green], lipids [yellow], and background [black]), which are applied to low SNR input, PCA denoising output, and 1D ResUNet output
images via non-negatively constrained least-squares regression, demonstrating that low SNR input and PCA denoising output data do not effectively
identify different cell components. (e, f) Exemplar Raman spectra (white arrows in (c)) corresponding to (e) a lipid-rich cytoplasmic region and (f) the
nucleus.
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the molecular constituents they represent) typical of Raman
spectra in the training set in order to identify a mapping between
low SNR inputs and target high SNR outputs in the test set.
Importantly, the neural network significantly outperformed
PCA denoising, wavelet denoising, and SG filtering [assessed via
a one-way analysis of variance (ANOVA) with Dunnett’s
multiple comparison test against raw input spectra], three widely
applied techniques for Raman spectral smoothing.43,44 Applica-
tions of the neural network to the test sets achieved a spectral
mean-squared error (MSE) between the output and target
spectra that were 10× lower than the next best-performing
denoising technique (PCA denoising), with a meanMSE of 2.85
× 10−3 [95% confidence interval (CI): 2.55× 10−3, 3.15× 10−3]
for the 1D ResUNet and 2.96× 10−2 [95% CI: 2.55 × 10−2, 3.38
× 10−2] for PCA denoising (Figure 2b). This result
demonstrates that the 1D ResUNet effectively learned the
structure of Raman spectra, enabling it to discern true signals
from the high level of background noise. Indeed, similar UNet
architectures have previously been applied for artifact removal in

infrared spectroscopy and denoising of SRS microscopy images
with impressive results.41,45 In contrast, PCA denoising, wavelet
denoising, and SG filtering introduced spectral artifacts (likely
due to the low SNR of the input data), which resulted in poor
denoising performance even with the application of an
additional asymmetric least-squares background subtraction
and normalization steps post denoising.
We then examined whether the neural network-based Raman

spectral reconstruction would result in significant loss of
biochemical information or the introduction of “hallucinated”
spatial or spectral features. To do this, we compared the quality
of Raman hyperspectral images for each hyperspectral Raman
cell image based on low SNR input data, PCA denoised low SNR
data, neural network reconstructed data, and the ground truth
high SNR data (Figure 2c). PCA denoising produced an image
with enhanced contrast but amplified noise in different spatial
and spectral regions. The 1D ResUNet produced a much
sharper result with improved contrast of biomolecular features
that closely align with the target high SNR image, suggesting the

Figure 3. Deep-learning-enabled hyperspectral image super-resolution. (a) 2×, 3×, and 4× super-resolution of the example test set hyperspectral
Raman image enables a significant reduction in imaging times (shown in white, min:sec) while recovering important spatial and spectral information
(scale bars = 10 μm). Images shown are the result of a VCA performed on the target HR hyperspectral Raman image, which identified four key
components (nucleic acids [blue], proteins [green], lipids [yellow], and background [black]). VCA components were applied to the nearest neighbor
output, bicubic output, and HyRISR output images via non-negatively constrained least-squares regression. (b) Exemplar Raman spectrum with white
arrow in (a) demonstrating that the neural network output (red) is more closely aligned to the target (ground truth) spectrum (dark gray). (c, d)Mean
test set (c) PSNR, (d) SSIM, and (e)MSE values for nearest neighbor upsampling, bicubic upsampling, and HyRISR output for 2×, 3×, and 4× super-
resolution (n = 9) (error bars: mean± STD) (One-way paired ANOVA with Geisser−Greenhouse correction and Tukey’s multiple comparisons test,
* P < 0.05, ** P < 0.01, *** P < 0.001).
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preservation of biochemical information. Indeed, the 1D
ResUNet significantly outperformed PCA denoising in terms
of two commonly used image quality metrics, PSNR and SSIM.
While the 1D ResUNet achieved a mean PSNR of 46.21 [95%
CI: 45.76, 46.67] and a mean SSIM of 0.9532 [95% CI: 0.9154,
0.9910] across the 11 hyperspectral Raman cell images, PCA
denoising resulted in the statistically significantly lower values
(assessed via a two-tailed Wilcoxon paired signed rank test) of
39.36 [95% CI: 38.89, 39.83] and 0.8679 [95% CI: 0.8111,
0.9248], respectively.
To assess the preservation of biochemical information, we

next applied a vertex component analysis (VCA) to an exemplar
target high SNR hyperspectral Raman image (Figure 2d). VCA
is a spectral unmixing technique designed for the unsupervised
extraction of endmembers from hyperspectral data, enabling the
identification of major constituent components in a hyper-
spectral Raman image (e.g. lipid-rich, nucleic-acid rich,
background regions).46 The VCA endmembers identified for
the target high SNR hyperspectral Raman image (Supplemen-
tary Figure 2) were then applied to the input data, the PCA
output data, and the 1DResUNet output data via non-negatively
constrained least-squares regression. Crucially, this analysis
demonstrated that the 1D ResUNet output effectively identified
and preserved keymolecular species present in the hyperspectral
image in line with the target high SNR hyperspectral image. In
contrast, the PCA output failed to robustly distinguish the
different Raman cellular signatures. Exemplar spectra from two
different regions (nucleus and cytoplasm) of the hyperspectral
images (Figure 2e,f) further demonstrated the superiority of the
1D ResUNet output for the accurate reconstruction of
biochemical information contained in the Raman spectra.
Importantly, applying the neural network on a per-hyperspectral
pixel in this manner effectively enabled Raman spectroscopic
imaging up to 10× faster than conventional Raman spectroscopy
in this case, while preserving biochemical information.
Deep-Learning-Enabled Hyperspectral Image Spatial

Super-Resolution. While the denoising results demonstrate a
significant improvement in imaging times for conventional
Raman spectroscopic imaging, the 1D ResUNet does not
consider the high degree of molecular compositional correlation
between adjacent pixels. We therefore sought to improve this
and take spatial context into consideration by developing a 2D
neural network for hyperspectral Raman image spatial super-
resolution (HyRISR). To achieve this, we trained HyRISR to
take a low spatial resolution (LR), high SNR hyperspectral
image as input and output a corresponding high spatial
resolution (HR), high SNR hyperspectral image. HyRISR learns
to identify spatial and spectral correlations present in the
training set in order to develop an accuratemapping between the
LR inputs and target HR outputs in the test set. HyRISR follows
a similar architecture to the RCAN, with the introduction of 2×
spectral downsampling early in the network, followed by 2×
spectral upsampling at the end of the network (Supplementary
Figure 1). This use of spectral downsampling exploits the high
spectral resolution (and hence high channel redundancy) of
Raman spectra to reduce the computational load of HyRISR
without sacrificing super-resolution performance.
We applied HyRISR to a data set of hyperspectral Raman

images of MDA-MB-231 breast cancer cells (n = 169 Raman
images) using a data split of 85:10:5 for training, validation, and
test sets (seeMaterials andMethods and Supplementary Table 2
for full implementation details). To increase the effective size of
our data set and improve the robustness of HyRISR, we

employed extensive data augmentation, including randomly
applied image cropping, flipping, rotation, and mixup,39 as well
as randomly applied spectral flipping and shifting (Supple-
mentary Figure 3). To generate LR input images, we applied 2×,
3×, or 4× spatial skip downsampling to corresponding HR
images (64 × 64 × 500 or 63 × 63 × 500, height × width ×
spectral channels) to reflect the raster scan nature of Raman
imaging. Applications of HyRISR to the test set for 2×, 3×, and
4× super-resolution yielded superior performance, statistically
significantly exceeding standard nearest neighbor and bicubic
upsampling methods in terms of two image quality metrics,
PSNR and SSIM, as well as in terms of MSE (Figure 3,
Supplementary Figures 4−6, Supplementary Table 1). Im-
portantly, these results, particularly the 2× and 3× super-
resolution images, demonstrated good fidelity to the corre-
sponding high-resolution target image, accurately reconstruct-
ing spectral features to correctly identify cellular components via
VCA. This, combined with the reduced MSE values,
demonstrates that the neural network can effectively preserve
molecular information through accurate spectral reconstruction.
Although at 2×, HyRISR produced minimal blurring, blur
increased significantly at 3× and 4×, a well-known result of
training our SISR neural network with an L1 loss function (see
Results and Discussion for further details). Despite this blurring,
the HyRISR output qualitatively better delineated cell
boundaries, correctly identified subcellular features, and
introduced fewer artifacts compared to bicubic upsampling.
Importantly, these results were achieved with a training data set
of just 144 Raman images (a considerably smaller data set than is
typically employed for deep learning super-resolution of RGB
images). The extension of this data set would likely yield
significant improvements in super-resolution performance.
Notably, as with the denoising 1D ResUNet presented above,

HyRISR enabled a significant reduction in imaging time, down
from 68:15 (min:sec) to 17:03 in the case of 2× super-resolution
and to 07:20 for 3× super-resolution. Importantly, this was
achieved with only a limited loss of high-frequency details, with
biochemical spectral information well maintained as evidenced
by VCA (Figure 3a,b). In contrast, bicubic upsampling
introduced numerous artifacts into the hyperspectral image.
Although 4× super-resolution reduces imaging time further to
04:15, it does so with a much greater loss of fine details for both
bicubic upsampling and HyRISR. While this might not be
suitable for high-resolution cellular imaging, such 4× super-
resolution Raman imaging could prove useful for other
applications.

Hybrid Denoising and Super-Resolution Raman Spec-
troscopy for High-Throughput Molecular Imaging.While
both our 1D ResUNet Raman spectral denoising and HyRISR
neural networks enable significant speed-ups in Raman imaging
time, single cell Raman imaging using either network remains on
the order of minutes. Although this is considerably faster than
conventional Raman imaging, it remains too slow for high-
throughput applications such as cell imaging or automated
spectral histopathology. To further improve the speed of Raman
image acquisition, we next sequentially applied our two
pretrained neural networks to perform Raman spectral
denoising, followed by hyperspectral image super-resolution
on a single hyperspectral Raman image. Sequential applications
of the neural networks in this manner enabled the use of all data
present in each data set (as opposed to the small subset of data
present in both the denoising and HyRISR datasets that would
enable training of a single network for end-to-end denoising and
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super-resolution). Here, using the Raman spectra from a single
cell (present in the test sets for both datasets), we achieved
effective speed-ups of 40× (2× super-resolution), 90× (3×
super-resolution), and 160× (4× super-resolution) while
accurately reconstructing a high SNR, HR hyperspectral
Raman image from a low SNR, and LR input hyperspectral
Raman image (Figure 4, Supplementary Figure 7).
We again used VCA to identify key Raman spectral

components in our ground truth image and employed non-
negatively constrained least-squares regression to apply the
identified VCA endmembers to the input images (nearest
neighbor rescaled), Savitzky−Golay filtering plus bicubic
upsampling output images, PCA denoising plus bicubic
upsampling images, and neural network output images. Our

neural networks outperformed the combination of SG filtering
and bicubic upsampling, accurately reconstructing both spatial
and spectral information and maintaining robust VCA
endmember identification (Figure 4a). In each case, this
resulted in an improved pixel classification accuracy (as
compared to pixel classification for the ground truth hyper-
spectral Raman image, determined as the VCA endmember with
the maximum intensity value for each pixel as per non-negatively
constrained least-squares regression) relative to the inputs and
SG and PCA outputs (Figure 4b). Crucially, accurate spectral
and spatial reconstruction was maintained even for 40× and 90×
Raman imaging time speed-ups, enabling HR hyperspectral
Raman cell imaging in under 2 min or under 1 min, respectively.
While imaging time can be further reduced by employing 4×

Figure 4. Combined Raman spectral denoising and hyperspectral image super-resolution enable extreme speed-ups in Raman imaging time. (a)
Sequential application of Raman spectral denoising followed by hyperspectral image super-resolution enables extreme speed-ups in imaging time
(shown in white) from 68:15 (min:sec) to 01:42 for 2× super-resolution, 00:44 for 3× super-resolution, and 00:26 for 4× super-resolution while
largely preserving molecular information (scale bars = 10 μm). Images shown are the result of a VCA performed on the target HR, high SNR
hyperspectral Raman image, which identified four key components (nucleic acids [blue], proteins [green], lipids [yellow], and background [black]).
VCA components were applied to input, Savitky-Golay pluc bicubic upsampling, PCA plus bicubic upsampling, and neural network output images via
non-negatively constrained least-squares regression. (b) Pixel classification accuracy for input, Savitzky−Golay filtering plus bicubic upsampling
output, PCA denoising plus bicubic upsampling output, and neural network output images as compared to VCA pixel classification of target HR, high
SNR hyperspectral Raman image.
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super-resolution for a 160× Raman imaging time speed-up,
reconstructed image quality continues to degrade and may
produce undesirable artifacts at higher super-resolution scales.
Despite this, image quality following such 160× speed-up is
likely to be useful across many Raman imaging applications such
as for the rapid screening of large areas containing multiple cells
or for spectral pathology applications.
Generalized Hyperspectral Imaging from Cells to

Tissues Using Transfer Learning. Finally, to highlight the
generalizability and wide applicability of our DeepeR frame-
work, we used transfer learning to apply HyRISR to a small data
set of hyperspectral Raman images of unrelated origin. We thus
extendedDeepeR to the field of regenerative medicine for super-
resolution hyperspectral Raman imaging of in vitro-formed
cartilage constructs. Both the spatial and spectral information
contained in the hyperspectral Raman images of tissue-
engineered cartilage samples differ significantly from those of
MDA-MB-231 breast cancer cells used to train HyRISR,
representing an effective test of the transferability of DeepeR.
Deep learning is a data-heavy approach that requires large,
labeled datasets in order to be effective. For applications where
such a large data set does not exist, data acquisition for deep
learning can be prohibitively time-consuming and expensive.
Here, we aimed at demonstrating that transfer learning, the

application of an existing neural network model trained on a
large data set to a second, smaller data set, can achieve high-
quality results (Figure 1 iii).
To do this, we used a small training data set consisting of 16

patches (64 × 64 × 500 each) from large HR Raman
hyperspectral images of tissue-engineered cartilage. A separate
test set of 12 overlapping patches (64 × 64 × 500 each) was
extracted from a separate, single large Raman hyperspectral
image (100 × 350 × 500) of a tissue-engineered cartilage
sample. Here, transfer learning was performed by further
training all neural network weights of a pretrained HyRISR
model for 200 epochs on the small tissue-engineered cartilage
training data set with a reduced learning rate. We then compared
the super-resolution performance of this fine-tuned model,
against both the nearest neighbor and bicubic upsampling as
well as against HyRISR trained from scratch on the small
training data set of hyperspectral Raman tissue-engineered
cartilage image patches alone (Figure 5, Supplementary Figure
8). As expected, transfer learning of HyRISR achieved superior
results to the nearest neighbor upsampling, bicubic upsampling,
and HyRISR trained from scratch on the tissue-engineered
cartilage data set alone in terms of PSNR and SSIM (Figure
5c,d). As with the super-resolution of hyperspectral Raman
images of MDA-MB-231 breast cancer cells, the fine-tuned

Figure 5. Transfer learning enables effective super-resolution for a small data set of tissue-engineered cartilage hyperspectral Raman images. (a)
Transfer learning of our HISR neural network, trained only on MDA-MB-231 breast cancer cell images, enabled effective cross-domain 4× super-
resolution of hyperspectral Raman images despite having only a very small data set of tissue-engineered cartilage for training. For each condition,
images shown on the left are the result of VCA performed on the target HR and high SNR hyperspectral Raman image, which identified five key
components (substrate [blue], dense ECM/cells [green], sparse ECM [yellow], cells [red], and background [black]). VCA components were applied
to the nearest neighbor upsampling, bicubic upsampling, tissue model (from scratch), and cell model (transfer learning) images via non-negatively
constrained least-squares regression. Images shown on the right for each condition are 1450 cm−1 peak intensity heatmaps. All images formed as the
composition of overlapping 64 × 64 pixel image patches (scale bars = 10 μm). (b) Exemplar Raman spectrum (white arrow in (a)) demonstrating that
transfer learning achieves high accuracy reconstruction of the target spectra for each pixel. (c, d) Mean test set (c) PSNR and (d) SSIM values for the
nearest neighbor upsampling, bicubic upsampling, and neural network outputs for 4× super-resolution, calculated on a per-image patch basis (n = 12
patches) (Error bars: mean ± STD) (One-way paired analysis of variance ANOVA with Geisser−Greenhouse correction and Tukey’s multiple
comparisons test, * P < 0.05, ** P < 0.01, *** P < 0.001).
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neural network here produced a highly accurate reconstruction
with a few introduced artifacts and a degree of over-smoothing.
Meanwhile, bicubic upsampling resulted in an image that
appears grossly similar to the target ground truth image, but
suffered from the introduction of numerous artifacts, resulting in
both spatial and spectral distortion (Figure 5b−d). However, as
in the case of our super-resolution results, performance here is
limited by the size of both the data set used for initial network
training, as well as the size of the data set used for transfer
learning.
DeepeR is a comprehensive deep-learning framework that

offers a completely new approach to high-throughput Raman
spectroscopic imaging. DeepeR can be applied online or offline
to existing Raman spectroscopic systems without requiring any
hardware modifications or imposing system limitations using
transfer learning. Offline applications to existing hyperspectral
Raman datasets could be used to develop custom models for
specific applications, either from scratch or by transfer learning
from our pretrained networks. Online application, with
inference occurring in a matter of seconds for a GPU-equipped
scientific computer, will deliver high-throughput imaging
capabilities, transforming the potential range of applications
for hyperspectral Raman imaging. DeepeR will thus help drive
forward high-throughput hyperspectral Raman imaging, repre-
senting a major departure from existing chemometric and other
multivariate statistical techniques.
Despite its significant advances, DeepeR does face a number

of limitations that must be considered before application to
additional hyperspectral Raman datasets. Most notably, our
framework is unlikely to accurately reconstruct very fine (e.g.,
single pixel) details and somay not be suitable for HR imaging of
small, complex specimens. Second, while transfer learning using
our pretrained models will enable a much wider range of
applications, hyperspectral Raman images with substantially
different spatial and spectral features (e.g., different cells, tissues,
etc.) will still require a sufficiently large data set for effective
performance. Future work will seek to expand the depth and
breadth of our hyperspectral Raman data set, encompassing
spectra from a variety of instruments and samples. Lastly, before
widespread applications to Raman spectroscopic imaging is
possible, large-scale prospective validation will need to be
performed, specific to each application, to ensure that diagnostic
or scientific decisions match those made for corresponding HR,
high SNR hyperspectral Raman data.
There remains scope for improvements in the performance of

our deep-learning framework, most notably through the
collection of larger training datasets from different biomedical
applications and the development of more advanced neural
network architectures.23 The collection of a large data set of
paired low SNR, LR and high SNR, HR hyperspectral Raman
images would enable the training of a joint denoising and super-
resolution neural network, which we anticipate would produce
improved performance in line with existing studies on multitask
neural networks.47 Performance could potentially be further
improved by implementing a generative adversarial network
(GAN) architecture.48 GANs have demonstrated an array of
impressive results for the super-resolution of RGB images and
medical images such as endomicroscopy images.26,49,50 How-
ever, GAN architectures pose particularly significant demands
on computational resources in the context of hyperspectral
image super-resolution.
Although here we demonstrated the application of DeepeR to

Raman spectroscopy, equivalent neural network architectures

could be generalized to alternative techniques such as FT-IR
imaging,51 hyperspectral imaging,52 or mass spectrometry
imaging techniques.53

In conclusion, DeepeR represents a comprehensive deep
learning framework for high-throughput hyperspectral Raman
imaging. This has the potential to transform the application of
Raman spectroscopic imaging in the biomedical sciences,
enabling a host of higher-throughput applications not previously
possible. Crucially, the information and data we provide open
source to the community, including our complete data set,
pretrainedmodels, and Python code, will enable rapid expansion
and integration of our framework into existing Raman
spectroscopy systems, driving forward high-throughput Raman
imaging.
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