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Abstract: This paper proposes a passivity-based approach using bearing and velocity information
for a triangular formation control with the interaction topology constrained by angles. The controller
framework is designed using virtual couplings on the relative measurements related to the edges. The
different measurements associated with the edges are mapped by the measurement Jacobian, which
is calculated by the time-evolution of the measurement. To avoid unavailable distance measurements
in the control law, an estimator is designed based on port-Hamiltonian theory using bearing and
velocity measurements. The stability analysis of the closed-loop system is provided and simulations
are performed to illustrate the effectiveness of the approach.
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1. INTRODUCTION

Recently, the passivity-based port-Hamiltonian (pH) approach
has used for the design of formation controllers, such as, Vos
et al. (2014), Stacey and Mahony (2015), Xu and Liang (2018).
The advantages of this approach can be summarized as follows:
on one hand, it allows for complex and heterogenous agent
dynamics. For most of the existing literature where the agent is
modeled as a single or double integrator and the measurement
is limited to one kind of position, distance, and bearing, the
pH approach can be applied to heterogenous systems where
the agents are modeled as nonlinear dynamics with different
kinds of measurements. In addition, it enables the flexibility
and scalability of the network. Passivity-based decentralized
controllers allow the agents to exert forces based on different
types of information about their neighbors, such as relative
position, distance and bearing.

In terms of the sensing capability, using partial information of
the positions of agents requires less onboard sensors, which
reduces the cost of hardware and introduces less measurement
errors. Much research has been reported on this topic in recent
years, such as Anderson et al. (2008), Cao et al. (2011) for
distance measurement, Zhao et al. (2019), Trinh et al. (2018)
for bearing measurement, and Chen et al. (2020), Jing et al.
(2019) for angle measurement. In this paper, we study the case
where the sensing capability of agents is based on bearing mea-
surement and the interaction topology of agents is constrained
by angles. Angle-based constraints are expressed by less infor-
mation of the agents compared with position-, distance- and
bearing-based approaches. Therefore, it is invariant to more
group motions, such as, translation, rotation, scaling and reflec-
tion, which means the group of agents can achieve these corre-
sponding maneuvers while satisfying angle-based constraints.

The control objectives are achieved by virtual couplings where
the virtual springs determine the formation by shaping the en-
ergy function of the network, while the virtual dampers shape
the transient response by injecting damping. However, the re-
sulting control law in passivity-based approaches usually con-
tains a negative gradient of the energy function, which implies
that the agents need the full information of relative position
even if the sensing capability and the interaction topology of
agents are both only bearing or distance. To solve this problem,
we extend the passive adaptive compensator proposed for bear-
ing formation control in Stacey and Mahony (2015) to estimate
the unavailable distance information by relative velocity.

The contributions of our approach can be summarized in two
points.

(i) We propose a control law for double integrator dynamics
based on the virtual mechanical couplings and pH theory.
Compared with the control law in Chen et al. (2020) which
uses an intuitive design for single integrator dynamics,
ours does better in control performance and is more suited
to analyze the complex dynamics of the system, since
gradient-like control law can avoid undesired equilibria.

(ii) Compared with the gradient-like control law in Jing et al.
(2019) which requires both bearing and distance mea-
surement, we design an estimator to avoid the distance
measurement by pH theory.

The rest of the paper is structured as follows. Some prelimi-
naries and the problem formulation are introduced in Section
2. The control architecture is developed in Section 3 and the
stability analysis is given in Section 4. Simulations are provided
in Section 5, and concluding remarks appear in Section 6.
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and scalability of the network. Passivity-based decentralized
controllers allow the agents to exert forces based on different
types of information about their neighbors, such as relative
position, distance and bearing.

In terms of the sensing capability, using partial information of
the positions of agents requires less onboard sensors, which
reduces the cost of hardware and introduces less measurement
errors. Much research has been reported on this topic in recent
years, such as Anderson et al. (2008), Cao et al. (2011) for
distance measurement, Zhao et al. (2019), Trinh et al. (2018)
for bearing measurement, and Chen et al. (2020), Jing et al.
(2019) for angle measurement. In this paper, we study the case
where the sensing capability of agents is based on bearing mea-
surement and the interaction topology of agents is constrained
by angles. Angle-based constraints are expressed by less infor-
mation of the agents compared with position-, distance- and
bearing-based approaches. Therefore, it is invariant to more
group motions, such as, translation, rotation, scaling and reflec-
tion, which means the group of agents can achieve these corre-
sponding maneuvers while satisfying angle-based constraints.

The control objectives are achieved by virtual couplings where
the virtual springs determine the formation by shaping the en-
ergy function of the network, while the virtual dampers shape
the transient response by injecting damping. However, the re-
sulting control law in passivity-based approaches usually con-
tains a negative gradient of the energy function, which implies
that the agents need the full information of relative position
even if the sensing capability and the interaction topology of
agents are both only bearing or distance. To solve this problem,
we extend the passive adaptive compensator proposed for bear-
ing formation control in Stacey and Mahony (2015) to estimate
the unavailable distance information by relative velocity.

The contributions of our approach can be summarized in two
points.

(i) We propose a control law for double integrator dynamics
based on the virtual mechanical couplings and pH theory.
Compared with the control law in Chen et al. (2020) which
uses an intuitive design for single integrator dynamics,
ours does better in control performance and is more suited
to analyze the complex dynamics of the system, since
gradient-like control law can avoid undesired equilibria.

(ii) Compared with the gradient-like control law in Jing et al.
(2019) which requires both bearing and distance mea-
surement, we design an estimator to avoid the distance
measurement by pH theory.

The rest of the paper is structured as follows. Some prelimi-
naries and the problem formulation are introduced in Section
2. The control architecture is developed in Section 3 and the
stability analysis is given in Section 4. Simulations are provided
in Section 5, and concluding remarks appear in Section 6.
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(2019) for angle measurement. In this paper, we study the case
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mation of the agents compared with position-, distance- and
bearing-based approaches. Therefore, it is invariant to more
group motions, such as, translation, rotation, scaling and reflec-
tion, which means the group of agents can achieve these corre-
sponding maneuvers while satisfying angle-based constraints.

The control objectives are achieved by virtual couplings where
the virtual springs determine the formation by shaping the en-
ergy function of the network, while the virtual dampers shape
the transient response by injecting damping. However, the re-
sulting control law in passivity-based approaches usually con-
tains a negative gradient of the energy function, which implies
that the agents need the full information of relative position
even if the sensing capability and the interaction topology of
agents are both only bearing or distance. To solve this problem,
we extend the passive adaptive compensator proposed for bear-
ing formation control in Stacey and Mahony (2015) to estimate
the unavailable distance information by relative velocity.

The contributions of our approach can be summarized in two
points.

(i) We propose a control law for double integrator dynamics
based on the virtual mechanical couplings and pH theory.
Compared with the control law in Chen et al. (2020) which
uses an intuitive design for single integrator dynamics,
ours does better in control performance and is more suited
to analyze the complex dynamics of the system, since
gradient-like control law can avoid undesired equilibria.

(ii) Compared with the gradient-like control law in Jing et al.
(2019) which requires both bearing and distance mea-
surement, we design an estimator to avoid the distance
measurement by pH theory.

The rest of the paper is structured as follows. Some prelimi-
naries and the problem formulation are introduced in Section
2. The control architecture is developed in Section 3 and the
stability analysis is given in Section 4. Simulations are provided
in Section 5, and concluding remarks appear in Section 6.
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2. PRELIMINARIES AND PROBLEM FORMULATION

2.1 Preliminaries

We consider the triangular formation as in Fig.1. For the link k
between the agent 1 and the agent 2, we have

zk = q1 − q2, (1)
where q1, q2 ∈ R2 are positions of the agents 1 and 2, zk ∈ R2

is the relative position associated with the link k.

Note that according to different kinds of sensors, we have only
access to partial information of position measurement, which
can be distance or bearing. We define the distance and bearing
between the agents 1 and 2 as

rk = ||zk||, sk =
zk

||zk||
. (2)

We define the general form of partial measurement as yk ∈ Yk.
Yk is the sensor space. The time-evolution of yk is given by

ẏk = Lyk
żk, (3)

where Lyk
(zk) = ∂yk

∂zk
(zk) is the measurement Jacobian. For

a bearing measurement sk and a distance measurement rk, we
have the bearing Jacobian and distance Jacobian , respectively,
as

Lsk =
1

rk
(I2 − sksk

T ) ∈ R2×2 (4)

Lrk = sTk ∈ R1×2 (5)

Define y∗k as the set of parameters that describe the desired
formation in terms of the available sensor measurements yk.
The objective is to design a controller that ensures that the
following error (6) is zero.

ỹk = yk − y∗k. (6)

The dynamics of edges are associated with virtual couplings.
The controller assigns virtual couplings between the robots,
where the virtual springs determine the formation shape, while
the virtual dampers shape the transient response. The input to
the control system ωk ∈ Tyk

Yk is the velocity, where Tyk
Yk is

the tangent space of Yk.

Define the corresponding Hamiltonian as Hk(ỹk) =
1
2 ỹ

T
k ckỹk,

which denotes the energy stored in virtual spring k. ck is the
virtual spring constant. The dynamics of the virtual coupling k
are given byvan der Schaft and Jeltsema (2014)

˙̃yk = ωk

γk =
∂Hk

∂ỹk
+ dkωk

(7)

where the output γk of the control system corresponds to the
force exerted by the virtual spring. The first term of γk is the
spring term and the second one is the damping term. dk is the
corresponding virtual dissipation matrix.

Note that the dynamics of the virtual coupling are expressed in
the sensor space. However, they can be mapped to R2 by the
measurement Jacobian

εk = LT
yk
γk, (8)

where εk is the virtual force in R2.

2.2 Problem Formulation

We consider the triangular formation determined only by angle
constraints. As shown in Fig.1, 1, 2, 3 are agents. i, j, k are the

2

1

3

θ

ϕ

i

j

k

Fig. 1. Triangular formation

the edges. Angle θ and φ are the angles to be controlled. Since
the summation of three angles is π, if angle θ and angle φ are
both controlled to be desired one, the third angle also satisfy the
angle constraint. For the more complicated cases, it is related
the angle rigidity theory. Here we only consider this simple case
angle rigid.

We assume the dynamics of the agents are given by a simple
double integrator model in R2, which are given in Hamiltonian
framework as

(
q̇i
ṗi

)
=

(
0 I2

−I2 0

)



∂Hi

∂qi
∂Hi

∂pi


+

(
0
I2

)
Ui,

Hi(pi) =
1

2mi
pTi pi, Yi =

∂Hi

∂pi
(pi).

(9)

Where qi = (qxi
, qyi

), i = 1, 2, 3 is the position of agent i,
pi = (pxi

, pyi
) = (miq̇xi

,miq̇yi
) is the momentum, mi is the

mass. Ui = (Uxi
, Uyi

) and Yi = (Yxi
, Yyi

) are the input and
output respectively. I2 is two-dimensional identity matrix. Hi

is the Hamiltonian.

We assume that each agent has only the bearing sensors and lin-
ear velocity sensors. In addition, we assume the communication
topology is connected, i.e. each agent has access to the bearing
measurement of the non-adjacent edge. For example, the agent
1 has access to the bearing measurement si. Since the inner
constraints of the agents in formation are give by angles, we
use the cosine of the angle to represent the angle measurement,
which can be easily calculated by bearing measurement. For
angle θ, it is given by

cos θ = sTk sj (10)
The objective of this paper is to design a controller using
only bearing and linear velocity measurements that ensures
the group of three agents modeled by (9) achieve a formation
constrained by angles.

3. CONTROL DESIGN

3.1 Controller of the agent 1 for the angle θ

Now we consider the controller of agent a. since the moving of
the agent 1 affects both the angle θ and φ, the controller of the
agent 1 consist of two parts. One is to satisfy the constraint of
the angle θ, the other part is to satisfy the constraint of the angle
φ.

We assume the agent can measure the bearing and the inner
constraints of the agents in formation are angles. We use cosine
of the angle θ to represent the angle measurement. The time-
evolution of the angle measurement can be derived as:

d(cos θ)

dt
= (Lsk żk)

T sj + sTk (Lsj żj)

= −(sTj Lsk + sTk Lsj )q̇1 + sTj Lsk q̇2 + sTk Lsj q̇3

= Lθ1q̇1 + Lθ2q̇2 + Lθ3q̇3
(11)

Define Lθ1, Lθ2, Lθ3 as the angle Jacobian mapping from po-
sition of the agents 1,2, and 3, respectively, to the angle θ. The
expressions are given as follows

Lθ1 = −(sTj Lsk + sTk Lsj )

Lθ2 = sTj Lsk

Lθ3 = sTk Lsj

(12)

Similarly, the angle Jacobian mapping from position of the
agents 1,2, and 3, respectively, to the angle φ are given as

Lφ3 = −sTi Lsj

Lφ3 = −sTj Lsi

Lφ3 = sTj Lsi + sTi Lsj

(13)

The control aim is to design a controller to ensure the cosine
of the angle θ, given by sTk sj , to converge to the desired value
(sTk sj)

∗. Hence, we define the error by

(̃sTk sj) = (sTk sj)− (sTk sj)
∗. (14)

In order to ensure that the system converges to the desired
point, i.e., the error converges to zero, it is necessary to assign a
potential energy of the angle to the closed-loop system. To this
end, we propose the following Hamiltonian function as

Hθ1 =
1

2
cθ1(̃sTk sj)

2

, (15)

where cθ1 > 0 is a constant.

The corresponding controller with spring term and damping
term can be derived as

˙̃
(sTk sj) = ωθ1,

γθ1 =
∂Hθ1

∂(̃sTk sj)
+ dθ1ωθ1.

(16)

where ωθ1 denotes the input of the controller. dθ1 > 0 is a
positive constant.

The γθ1 actually is the resulting virtual force in the space of
angle measurement. According to the port-Hamiltonian theory
van der Schaft and Jeltsema (2014), we define the force and
velocity as effort and flow. Hence, the power of the port can be
derived as

< γθ1|
d(sTk sj)

dt
>= γT

θ1

d(sTk sj)

dt
. (17)

Here, we only consider the relation between the agent 1 and the
angle θ. To transform the power from angle measurement space
to R2 space, we have

< γθ1|
d(sTk sj)

dt
> =< γθ1|Lθ1q̇1 >

=< LT
θ1γθ1|q̇1 >

=< −LT
sk
sjγθ1|q̇1 > + < −LT

sjskγθ1|q̇1 > .

(18)

The effort of the port in (18) relies on the distance information
which is not measurable. In order to avoid distance measure-

ment, we use the relative velocity measurement to estimate the
unknown distance Duindam et al. (2009).

Note that the estimated distance is used, the angle Jacobian also
needs to be modified. Therefore, the estimated angle Jacobian
is given by

L̂θ1 = sTj L̂θsk + sTk L̂θsj

= sTj
1

r̂θk
(I2 − sksk

T ) + sTk
1

r̂θj
(I2 − sjsj

T ),
(19)

where r̂θk is the estimate of the edge k using the measurement
of the angle θ, r̂θj is the estimate of the edge j using the
measurement of the angle θ. Correspondingly, L̂θsk , L̂θsj are
the estimated bearing Jacobian using the measurement of the
angle θ.

However if L̂θ1 is used to replace Lθ1 in the right side of (18),
the equation is not satisfied because the effort γθ1 corresponds
to the real flow ˙(sTk sj) in the angle space. It causes the discrep-
ancy of the power through the virtual coupling due to the error
between the estimated distance and the real unknown distance.
Define the distance error as: r̄θk = r̂θk − rk, r̄θj = r̂θj − rj .
To calculate the estimated effort in R2, we have

−(L̂T
θsk

sj + L̂T
θsjsk)γθ1 = −LT

sk
sjαθk − LT

sjskαθj , (20)

where αθk = rk
r̂θk

γθ1 is the estimated effort related to r̂θk and
αθj =

rj
r̂θj

γθ1 is the estimated effort related to r̂θj .

Furthermore, considering the ports in different spaces, we have
that

< L̂T
θ1γθ1|q̇1 > =< −LT

sk
sjαθk − LT

sjskαθj |q̇1 >

=< αθk|
d(sTk sj)

dt
> + < αθj |

d(sTk sj)

dt
> .

(21)

Comparing (18) with (21), the discrepancy between the real
effort and the estimated effort can be derived as

βθk = αθk − γθ1 = − r̄k
r̂θk

γθ1,

βθj = αθj − γθ1 = − r̄j
r̂θj

γθ1.
(22)

The power of ports with βθk, βθj as the efforts are given by

< βθk| − sTj Lsk q̇1 >, < βθj | − sTk Lsj q̇1 > . (23)

To account for the power associated with the ports in distance
space, we define the corresponding Hamiltonian as

Hθk =
1

2
cθkr̄

2
θk, Hθj =

1

2
cθj r̄

2
θj , (24)

where cθk, cθj > 0 are constants.

The power of the ports in distance space are given by

<
∂Hθk

∂r̄θk
| ˙̄rθk >=< cθkr̄θk| ˙̄rθk >,

<
∂Hθj

∂r̄θj
| ˙̄rθj >=< cθj r̄θj | ˙̄rθj > .

(25)

Since the energy is coordinate free, the power in angle space
and distance space are the same. Therefore, comparing (23) and
(25), we have
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d(cos θ)

dt
= (Lsk żk)

T sj + sTk (Lsj żj)
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= Lθ1q̇1 + Lθ2q̇2 + Lθ3q̇3
(11)

Define Lθ1, Lθ2, Lθ3 as the angle Jacobian mapping from po-
sition of the agents 1,2, and 3, respectively, to the angle θ. The
expressions are given as follows

Lθ1 = −(sTj Lsk + sTk Lsj )

Lθ2 = sTj Lsk

Lθ3 = sTk Lsj

(12)

Similarly, the angle Jacobian mapping from position of the
agents 1,2, and 3, respectively, to the angle φ are given as

Lφ3 = −sTi Lsj

Lφ3 = −sTj Lsi

Lφ3 = sTj Lsi + sTi Lsj

(13)

The control aim is to design a controller to ensure the cosine
of the angle θ, given by sTk sj , to converge to the desired value
(sTk sj)

∗. Hence, we define the error by

(̃sTk sj) = (sTk sj)− (sTk sj)
∗. (14)

In order to ensure that the system converges to the desired
point, i.e., the error converges to zero, it is necessary to assign a
potential energy of the angle to the closed-loop system. To this
end, we propose the following Hamiltonian function as

Hθ1 =
1

2
cθ1(̃sTk sj)

2

, (15)

where cθ1 > 0 is a constant.

The corresponding controller with spring term and damping
term can be derived as

˙̃
(sTk sj) = ωθ1,

γθ1 =
∂Hθ1

∂(̃sTk sj)
+ dθ1ωθ1.

(16)

where ωθ1 denotes the input of the controller. dθ1 > 0 is a
positive constant.

The γθ1 actually is the resulting virtual force in the space of
angle measurement. According to the port-Hamiltonian theory
van der Schaft and Jeltsema (2014), we define the force and
velocity as effort and flow. Hence, the power of the port can be
derived as

< γθ1|
d(sTk sj)

dt
>= γT
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angle θ. To transform the power from angle measurement space
to R2 space, we have
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=< −LT
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sjskγθ1|q̇1 > .

(18)

The effort of the port in (18) relies on the distance information
which is not measurable. In order to avoid distance measure-

ment, we use the relative velocity measurement to estimate the
unknown distance Duindam et al. (2009).

Note that the estimated distance is used, the angle Jacobian also
needs to be modified. Therefore, the estimated angle Jacobian
is given by

L̂θ1 = sTj L̂θsk + sTk L̂θsj

= sTj
1

r̂θk
(I2 − sksk

T ) + sTk
1

r̂θj
(I2 − sjsj

T ),
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where r̂θk is the estimate of the edge k using the measurement
of the angle θ, r̂θj is the estimate of the edge j using the
measurement of the angle θ. Correspondingly, L̂θsk , L̂θsj are
the estimated bearing Jacobian using the measurement of the
angle θ.

However if L̂θ1 is used to replace Lθ1 in the right side of (18),
the equation is not satisfied because the effort γθ1 corresponds
to the real flow ˙(sTk sj) in the angle space. It causes the discrep-
ancy of the power through the virtual coupling due to the error
between the estimated distance and the real unknown distance.
Define the distance error as: r̄θk = r̂θk − rk, r̄θj = r̂θj − rj .
To calculate the estimated effort in R2, we have

−(L̂T
θsk

sj + L̂T
θsjsk)γθ1 = −LT

sk
sjαθk − LT

sjskαθj , (20)

where αθk = rk
r̂θk

γθ1 is the estimated effort related to r̂θk and
αθj =

rj
r̂θj

γθ1 is the estimated effort related to r̂θj .

Furthermore, considering the ports in different spaces, we have
that
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θ1γθ1|q̇1 > =< −LT

sk
sjαθk − LT

sjskαθj |q̇1 >

=< αθk|
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dt
> + < αθj |
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dt
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(21)

Comparing (18) with (21), the discrepancy between the real
effort and the estimated effort can be derived as

βθk = αθk − γθ1 = − r̄k
r̂θk

γθ1,

βθj = αθj − γθ1 = − r̄j
r̂θj

γθ1.
(22)

The power of ports with βθk, βθj as the efforts are given by

< βθk| − sTj Lsk q̇1 >, < βθj | − sTk Lsj q̇1 > . (23)

To account for the power associated with the ports in distance
space, we define the corresponding Hamiltonian as

Hθk =
1

2
cθkr̄

2
θk, Hθj =

1

2
cθj r̄

2
θj , (24)

where cθk, cθj > 0 are constants.

The power of the ports in distance space are given by

<
∂Hθk

∂r̄θk
| ˙̄rθk >=< cθkr̄θk| ˙̄rθk >,

<
∂Hθj

∂r̄θj
| ˙̄rθj >=< cθj r̄θj | ˙̄rθj > .
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and distance space are the same. Therefore, comparing (23) and
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< βθk| − sTj Lsk q̇1 > = < cθkr̄θk| ˙̄rθk >

⇒ cθkr̄
T
θk

˙̄rθk = − r̄k
r̂θk

γT
θ1(−sTj Lsk q̇1)

⇒ ˙̄rθk = − γT
θ1

cθkr̂θk
(−sTj Lsk q̇1).

(26)

Similarly,

˙̄rθj = − γT
θ1

cθj r̂θj
(−sTk Lsj q̇1). (27)

Furthermore, the dynamics of the estimators are given by
˙̂rθk = ṙk + ˙̄rθk

= sTk żk − γT
θ1

cθkr̂θk
(−sTj Lsk q̇1).

(28)

Similarly,
˙̂rθj = ṙj + ˙̄rθj

= sTj żj −
γT
θ1

cθj r̂θj
(−sTk Lsj q̇1).

(29)

Note that we only use the information of relative velocity and
bearing measurement in above estimators, while the informa-
tion of distance measurement is not used.

The control law of the agent 1 for the angle θ is given by

Uθ1 =[
1

r̂θk
(I2 − sksk

T )T sj +
1

r̂θj
(I2 − sjsj

T )T sk]

× [cθ1(̃sTk sj) + dθ1
˙̃

(sTk sj)].

(30)

3.2 Controller of the agent 1 for the angle φ

Now we design the controller of the agent 1 to control the angle
φ. Define the corresponding Hamiltonian as

Hφ1 =
1

2
cφ1(̃sTi sj)

2

, (31)

where cφ1 > 0 is a constant. The controller with spring and
damping term is given by

˙̃
(sTi sj) = ωφ1,

γφ1 =
∂Hφ1

∂(̃sTi sj)
+ dφ1ωφ1.

(32)

Where ωφ1 denotes the input of the controller. dφ1 > 0 is a
constant.

Considering the ports in different spaces, we have that

< αφ1|(−sTi Lsj q̇1) >=< L̂T
φ1γφ1|q̇1 >,

L̂φ1 = sTi L̂φsk = sTi
1

r̂φk1
(I2 − sksk

T ).
(33)

Where L̂φ1 is the estimated angle Jacobian mapping from
position of the agent 1 to the angle φ and L̂φsk is the estimated
bearing Jacobian using the measurement of the angle φ. r̂φk1 is
the estimated distance of the edge k by the agent 1 using the
measurement of the angle φ.

Furthermore, taking the same steps as in Section 3.1, we have
the following estimator as

˙̂rφk1 = ṙk + ˙̄rφk1 = sTk żk −
γT
φ1

cφkr̂φk1
(−sTi Lsj q̇1). (34)

where cφk > 0 is a constant.

Correspondingly, the control law of the agent a for the angle 2
is given by

Uφ1 =
1

r̂φk1
(I2 − sksk

T )T si[cφ1(̃sTi sj) + dφ1
˙̃

(sTi sj)] (35)

The power from the port 1 is given by

< L̂T
θ1γθ1 + L̂T

φ1γφ1|q̇1 > (36)

The control law of the agent 1 is given by
U1 = Uθ1 + Uφ1. (37)

3.3 Controllers for the agents 2 and 3

Since the design process of the agents 2 and 3 is similar to the
agent 1, we only give the conclusions here.

For the agent 3, there are two parts in the control law. The first
part is to control the angle φ, whose corresponding Hamiltonian
and controller in angle space are given by

Hφ3 =
1

2
cφ3(̃sTi sj)

2

, (38)

˙̃
(sTi sj) = ωφ3,

γφ3 =
∂Hφ3

∂(̃sTi sj)
+ dφ3ωφ3.

(39)

Where ωφ3 denotes the input of the controller. cφ3 > 0, dφ3 > 0
are constants. The corresponding estimated angle Jacobian and
distance estimators are given

L̂φ3 = sTj
1

r̂φi
(I2 − sisi

T ) + sTi
1

r̂φj
(I2 − sjsj

T ), (40)

˙̂rφi = ṙi + ˙̄rφi = sTi żi −
γT
φ3

cφir̂φi
(sTj Lsi q̇3), (41)

˙̂rφj = ṙj + ˙̄rφj = sTj żj −
γT
φ3

cφj r̂φj
(sTi Lsj q̇3). (42)

Where cφi > 0, cφj > 0 are constants.

The second part is to control the angle θ, whose corresponding
Hamiltonian and controller in angle space are given by

Hθ3 =
1

2
cθ3(̃sTk sj)

2

, (43)

˙̃
(sTk sj) = ωθ3,

γθ3 =
∂Hθ3

∂(̃sTk sj)
+ dθ3ωθ3.

(44)

Where ωθ3 denotes the input of the controller. cθ3 > 0, dθ3 > 0
are constants. The corresponding estimated angle Jacobian and
distance estimators are given by

L̂θ3 = sTk
1

r̂θi
(I2 − sisi

T ), (45)

˙̂rθi3 = ṙi + ˙̄rθi3 = sTi żi −
γT
θ3

cθir̂θi3
(sTk Lsj q̇3). (46)

Where cθi > 0 is a constant.

In general, the power from the port 3 is given by

< L̂T
φ3γφ3 + L̂T

θ3γθ3|q̇3 > (47)

Correspondingly, the controller of the agent 3 is given by
U3 = Uθ3 + Uφ3

= [
1

r̂φi
(I2 − sisi

T )T sj +
1

r̂φj
(I2 − sjsj

T )T si]

[cφ3(̃sTi sj) + dφ3
˙̃

(sTi sj)]+

1

r̂θi3
(I2 − sisi

T )T sk[cθ3(̃sTk sj) + dθ3
˙̃

(sTk sj)]

(48)

For the agent 2, there are also two parts in the control law.
The first part is to control the angle θ, whose corresponding
Hamiltonian and controller in the angle space are given by

Hθ2 =
1

2
cθ2(̃sTk sj)

2

, (49)

˙̃
(sTk sj) = ωθ2,

γθ2 =
∂Hθ2

∂(̃sTk sj)
+ dθ2ωθ2.

(50)

Where ωθ2 denotes the input of the controller. cθ2 > 0, dθ2 > 0
are constants. The corresponding estimated angle Jacobian and
distance estimators are given by

L̂θ2 = sTj
1

r̂θi
(I2 − sisi

T ), (51)

˙̂rθi2 = ṙi + ˙̄rθi2 = sTi żi −
γT
θ2

cθir̂θi2
(sTj Lsk q̇2). (52)

Note that the expressions (52) and (46) are both distance
estimators of the edge i, but (52) is estimated by the agent
2, while (46) is estimated by the agent 3. The second part is
to control the angle φ, whose corresponding Hamiltonian and
controller are given by

Hφ2 =
1

2
cφ2(̃sTi sj)

2

, (53)

˙̃
(sTi sj) = ωφ2,

γφ2 =
∂Hφ2

∂(̃sTi sj)
+ dφ2ωφ2.

(54)

Where ωφ2 denotes the input of the controller. cφ2 > 0, dφ2 > 0
are constants. The corresponding estimated angle Jacobian and
distance estimators are given

L̂φ2 = sTj
1

r̂φk
(I2 − sksk

T ), (55)

˙̂rφk2 = ṙk + ˙̄rφk2 = sTk żk −
γT
φ2

cφkr̂φk2
(−sTj Lsi q̇2). (56)

Note that the expressions (34) and (56) are both distance
estimators of the edge k, but (34) is estimated by the agent 1,
while (56) is estimated by the agent 2.

The power from the port 2 is given by

< L̂T
θ2γθ2 + L̂T

φ2γφ2|q̇2 > (57)

Correspondingly, the control law of the agent 2 is given by
U2 = Uθ2 + Uφ2

=
1

r̂θi2
(I2 − sisi

T )T sj [cθ2(̃sTk sj) + dθ2
˙̃

(sTk sj)]

+
1

r̂φk2
(I2 − sksk

T )T sj [cφ2(̃sTi sj) + dφ2
˙̃

(sTi sj)]

(58)

4. STABILITY ANALYSIS

The main result of this paper is given by the following theorem.

Theorem 1. Consider the three agents modeled as in Section
2.2. Moreover, assume that the matrix

L :=



L̂θ1 L̂φ1

L̂θ2 L̂φ2

L̂θ3 L̂φ3


 . (59)

is full column rank. Hence, using the control law (37) for the
agent 1, the control law (58) for the agent 2, and the control law
(48) for the agent 3, the three agents converge to the formation
constrained by the desired angles.

Proof: Take the following Hamiltonian as a candidate Lya-
punov function

H =
1

2
(m1q̇

T
1 q̇1 +m2q̇

T
2 q̇2 +m3q̇

T
3 q̇3)

1

2
(cθ1 + cθ2 + cθ3)(̃sTk sj)

2

+

1

2
(cφ1 + cφ2 + cφ3)(̃sTi sj)

2

+

1

2
cθir̄

2
θi2 +

1

2
cθir̄

2
θi3 +

1

2
cθj r̄

2
θj +

1

2
cθkr̄

2
θk+

1

2
cφkr̄

2
φk1 +

1

2
c2kr̄

2
φk2 +

1

2
cφir̄

2
φi +

1

2
cφj r̄

2
φj .

(60)

It follows that H is positive definite. Now we consider the time
derivative of (60)
Ḣ =m1q̇

T
1 q̈1 +m2q̇

T
2 q̈2 +m3q̇

T
3 q̈3

(cθ1 + cθ2 + cθ3)[(̃sTk sj)(L̂θ1ẋ1 + L̂θ2ẋ2 + L̂θ3ẋ3)]+

(cφ1 + cφ2 + cφ3)[(̃sTi sj)(L̂φ1ẋ1 + L̂φ2ẋ2 + L̂φ3ẋ3)]+

cθir̄θi2 ˙̄rθi + cθir̄θi3 ˙̄rθi + cθj r̄θj ˙̄rθj + cθkr̄θk ˙̄rθk+

cφkr̄φk1 ˙̄rφk1 + cφkr̄φk2 ˙̄rφk2 + cφir̄φi ˙̄rφi + cφj r̄φj ˙̄rφj .
(61)

Note that

q̈n =
Un

mn
, n = 1, 2, 3. (62)

Substituting (62) into the first line of (61), substituting (19),
(51), (45) into the second line of (61), substituting (33), (55),
(40) into the third line of (61), substituting (52), (46), (29) and
(28) into the fourth line of (61), and substituting (56), (34),
(41) and (42) into the fifth line of (61), we can simplify (61).
For simplicity, we omit the process and only give the results as
follows

Ḣ =− (dθ1 + dθ2 + dθ3)
˙̃

(sTk sj)
2

− (dφ1 + dφ2 + dφ3)
˙̃

(sTi sj)

2

≤ 0.

(63)

By invoking LaSalle’s invariance principle, we get that the
trajectories of the closed-loop system converge to the largest
invariant set where ˙̄H = 0. On this set q̇1 = q̇2 = q̇3 = 0,

˙̃
(sTk sj) = 0 and

˙̃
(sTi sj) = 0.

Furthermore, we can conclude that q̈1 = q̈2 = q̈3 = 0,
according to (62) it follows that U1 = U2 = U3 = 0 on this
invariant set.
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Correspondingly, the controller of the agent 3 is given by
U3 = Uθ3 + Uφ3

= [
1

r̂φi
(I2 − sisi

T )T sj +
1

r̂φj
(I2 − sjsj

T )T si]

[cφ3(̃sTi sj) + dφ3
˙̃

(sTi sj)]+

1

r̂θi3
(I2 − sisi

T )T sk[cθ3(̃sTk sj) + dθ3
˙̃

(sTk sj)]

(48)

For the agent 2, there are also two parts in the control law.
The first part is to control the angle θ, whose corresponding
Hamiltonian and controller in the angle space are given by

Hθ2 =
1

2
cθ2(̃sTk sj)

2

, (49)

˙̃
(sTk sj) = ωθ2,

γθ2 =
∂Hθ2

∂(̃sTk sj)
+ dθ2ωθ2.

(50)

Where ωθ2 denotes the input of the controller. cθ2 > 0, dθ2 > 0
are constants. The corresponding estimated angle Jacobian and
distance estimators are given by

L̂θ2 = sTj
1

r̂θi
(I2 − sisi

T ), (51)

˙̂rθi2 = ṙi + ˙̄rθi2 = sTi żi −
γT
θ2

cθir̂θi2
(sTj Lsk q̇2). (52)

Note that the expressions (52) and (46) are both distance
estimators of the edge i, but (52) is estimated by the agent
2, while (46) is estimated by the agent 3. The second part is
to control the angle φ, whose corresponding Hamiltonian and
controller are given by

Hφ2 =
1

2
cφ2(̃sTi sj)

2

, (53)

˙̃
(sTi sj) = ωφ2,

γφ2 =
∂Hφ2

∂(̃sTi sj)
+ dφ2ωφ2.

(54)

Where ωφ2 denotes the input of the controller. cφ2 > 0, dφ2 > 0
are constants. The corresponding estimated angle Jacobian and
distance estimators are given

L̂φ2 = sTj
1

r̂φk
(I2 − sksk

T ), (55)

˙̂rφk2 = ṙk + ˙̄rφk2 = sTk żk −
γT
φ2

cφkr̂φk2
(−sTj Lsi q̇2). (56)

Note that the expressions (34) and (56) are both distance
estimators of the edge k, but (34) is estimated by the agent 1,
while (56) is estimated by the agent 2.

The power from the port 2 is given by

< L̂T
θ2γθ2 + L̂T

φ2γφ2|q̇2 > (57)

Correspondingly, the control law of the agent 2 is given by
U2 = Uθ2 + Uφ2

=
1

r̂θi2
(I2 − sisi

T )T sj [cθ2(̃sTk sj) + dθ2
˙̃

(sTk sj)]

+
1

r̂φk2
(I2 − sksk

T )T sj [cφ2(̃sTi sj) + dφ2
˙̃

(sTi sj)]

(58)

4. STABILITY ANALYSIS

The main result of this paper is given by the following theorem.

Theorem 1. Consider the three agents modeled as in Section
2.2. Moreover, assume that the matrix

L :=



L̂θ1 L̂φ1

L̂θ2 L̂φ2

L̂θ3 L̂φ3


 . (59)

is full column rank. Hence, using the control law (37) for the
agent 1, the control law (58) for the agent 2, and the control law
(48) for the agent 3, the three agents converge to the formation
constrained by the desired angles.

Proof: Take the following Hamiltonian as a candidate Lya-
punov function

H =
1

2
(m1q̇

T
1 q̇1 +m2q̇

T
2 q̇2 +m3q̇

T
3 q̇3)

1

2
(cθ1 + cθ2 + cθ3)(̃sTk sj)

2

+

1

2
(cφ1 + cφ2 + cφ3)(̃sTi sj)

2

+

1

2
cθir̄

2
θi2 +

1

2
cθir̄

2
θi3 +

1

2
cθj r̄

2
θj +

1

2
cθkr̄

2
θk+

1

2
cφkr̄

2
φk1 +

1

2
c2kr̄

2
φk2 +

1

2
cφir̄

2
φi +

1

2
cφj r̄

2
φj .

(60)

It follows that H is positive definite. Now we consider the time
derivative of (60)
Ḣ =m1q̇

T
1 q̈1 +m2q̇

T
2 q̈2 +m3q̇

T
3 q̈3

(cθ1 + cθ2 + cθ3)[(̃sTk sj)(L̂θ1ẋ1 + L̂θ2ẋ2 + L̂θ3ẋ3)]+

(cφ1 + cφ2 + cφ3)[(̃sTi sj)(L̂φ1ẋ1 + L̂φ2ẋ2 + L̂φ3ẋ3)]+

cθir̄θi2 ˙̄rθi + cθir̄θi3 ˙̄rθi + cθj r̄θj ˙̄rθj + cθkr̄θk ˙̄rθk+

cφkr̄φk1 ˙̄rφk1 + cφkr̄φk2 ˙̄rφk2 + cφir̄φi ˙̄rφi + cφj r̄φj ˙̄rφj .
(61)

Note that

q̈n =
Un

mn
, n = 1, 2, 3. (62)

Substituting (62) into the first line of (61), substituting (19),
(51), (45) into the second line of (61), substituting (33), (55),
(40) into the third line of (61), substituting (52), (46), (29) and
(28) into the fourth line of (61), and substituting (56), (34),
(41) and (42) into the fifth line of (61), we can simplify (61).
For simplicity, we omit the process and only give the results as
follows

Ḣ =− (dθ1 + dθ2 + dθ3)
˙̃

(sTk sj)
2

− (dφ1 + dφ2 + dφ3)
˙̃

(sTi sj)

2

≤ 0.

(63)

By invoking LaSalle’s invariance principle, we get that the
trajectories of the closed-loop system converge to the largest
invariant set where ˙̄H = 0. On this set q̇1 = q̇2 = q̇3 = 0,

˙̃
(sTk sj) = 0 and

˙̃
(sTi sj) = 0.

Furthermore, we can conclude that q̈1 = q̈2 = q̈3 = 0,
according to (62) it follows that U1 = U2 = U3 = 0 on this
invariant set.
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Table 1. Model parameters

Parameter Value
mn, n = 1, 2, 3 1
cθn, n = 1, 2, 3 10
cφn, n = 1, 2, 3 10
dθn, n = 1, 2, 3 1
dφn, n = 1, 2, 3 1
cθl, l = i, j, k 1
cφl, l = i, j, k 1

Next we prove (̃sTk sj) = 0 and (̃sTi sj) = 0.

Un = L̂T
θnγθn + L̂T

φnγφn

= L̂T
θn(cθn(̃s

T
k sj) + dθn

˙̃
(sTk sj))+

L̂T
φn(cφn(̃s

T
i sj) + dφn

˙̃
(sTi sj)) = 0, n = 1, 2, 3.

(64)

Substituting
˙̃

(sTk sj) = 0 and
˙̃

(sTi sj) = 0 into (64) of 1, 2, 3
respectively, we have

0 = cθ1L̂
T
θ1(̃s

T
k sj) + cφ1L̂

T
φ1(̃s

T
i sj)

0 = cθ2L̂
T
θ2(̃s

T
k sj) + cφ2L̂c

T
φ2(̃s

T
i sj)

0 = cθ3L̂
T
θ3(̃s

T
k sj) + cφ3L̂

T
φ3(̃s

T
i sj)

(65)

Note that cθ1, cθ2, cθ3, cφ1, cφ2, cφ3 > 0. Since L is full column

rank, we conclude that (̃sTk sj) = (̃sTi sj) = 0, which means that
the three agents achieve the desired formation, thus completing
the proof. �

Remark 1. The assumption that L has full rank is not restric-
tive. If the three agents are neither coincident nor collinear,
according to the expression of L, all the elements in the same
column cannot be zero simultaneously, so it is column full rank.
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Fig. 2. Angle errors

5. SIMULATIONS

Consider three agents modeled by double integrator as shown
in Fig. 1. The related parameters are given in Table 1, and the
initial positions and desired angles are given in Table 2. The
simulation are performed using MATLAB.

The error curves of the angle 1 and the angle 2 are given in Fig.
2. It can be seen that the errors converge to zero and the desired
formation constrained by angles is achieved.

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have developed a passivity-based approach for
three agents modeled as double integrators to achieve a forma-
tion constrained by the desired angles. The resulting control law

Table 2. Initial positions and desired angles

Parameter Value
q1 (1,1)
q2 (1,3)
q3 (3,1)

(sTk sj)
∗ π/3

(sTi sj)
∗ π/3

based on dynamic virtual couplings contains the unavailable
distance, which is obtained by an estimator designed based on
the pH theory. The effectiveness of the approach is validated by
stability analysis and simulations.

However, since we only consider the angle, as the error of
angle goes to zero, the distance between the agents and the
velocities become very large. Hence although the formation
constrained by angles is achieved, the velocity and the scale
are still unspecified. Therefore, for the practical application,
we need to design a new controller to track the velocity and
to control the scale of the shape of the formation. This is left
for future research.
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