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The Dynamics Underlying the Rise of Star Performers 
Leslie R. Zwerwer,1 University of Groningen, University Medical Center, 
The Netherlands, and Ruud J. R. Den Hartigh, University of Groningen, 
The Netherlands  
Abstract: Across different domains, there are ‘star performers’ who are able to 
generate disproportionate levels of performance output. To date, little is known 
about the model principles underlying the rise of star performers. Here, we 
propose that star performers' abilities develop according to a multi-dimensional, 
multiplicative and dynamical process. Based on existing literature, we defined a 
dynamic network model, including different parameters functioning as enhancers 
or inhibitors of star performance. The enhancers were multiplicity of productivity, 
monopolistic productivity, job autonomy, and job complexity, whereas 
productivity ceiling was an inhibitor. These enhancers and inhibitors were 
expected to influence the tail-heaviness of the performance distribution. We 
therefore simulated several samples of performers, thereby including the assumed 
enhancers and inhibitors in the dynamic networks and compared their tail-
heaviness. Results showed that the dynamic network model resulted in heavier 
and lighter tail distributions, when including the enhancer- and inhibitor-
parameters, respectively. Together, these results provide novel insights into the 
dynamical principles that give rise to star performers in the population.  
Key Words: talent development, productivity, dynamical system, network 
models, simulation 

INTRODUCTION 
Between 1963 and 1978 Joe Girard sold 13,001 cars for Chevrolet. He 

was recognized as the world’s greatest salesman in the Guinness Book of World 
Records. In 1983, Mickey Drexler joined Gap (a worldwide clothing and 
accessories retailer) and turned the company into an enormous success. The sales 
from Gap went up from $480 million to $13.6 billion within 20 years. He earned 
nicknames like ‘Corporate Turnaround King’ and ‘Merchant Prince’. In the field 
of sports, Wayne Gretzky has scored an incredible number of 894 goals in the 
National Hockey League (NHL), thereby being the top scorer of all time, who had 
a high impact on the successes of his teams.  

The individuals mentioned above contributed a disproportionate amount 
to the output of their organization, they are examples of star performers (Aguinis 
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& O’Boyle, 2014). Through such contributions, star performers can make or 
break the performance of an organization as a whole (Aguinis & O'Boyle, 2014). 
They can be found in various types of professions, related to entertainment, 
politics, research, sports, and more (e.g., Den Hartigh, Van Dijk, Steenbeek & 
Van Geert, 2016; O'Boyle & Aguinis, 2012; Simonton, 1998). To date, there is a 
limited understanding of star performers, and the model principles underlying the 
process towards their disproportionate output. An important question is therefore 
to understand the underlying process through which an individual ultimately 
becomes a star performer (e.g., Den Hartigh et al., 2016), as well as which factors 
may act as enhancers and inhibitors of star performance (Aguinis & O’Boyle, 
2014). 

Explaining Star Performance 
A long tradition of research exists on the origins of star performance, or 

excellent performance in a broader sense. On a group level, researchers have 
found some correlates like intelligence (Simonton, 2008; Simonton & Song, 
2009), creativity (Simonton, 1977, 2008) and openness to experience (Feist, 1999; 
Hung, 2020; Simonton, 2008). At the same time, researchers have not been able 
to define a complete set of correlates that can explain why an individual becomes 
a star performer (e.g., Howe, Davidson, & Sloboda, 1998; Kaufman, 2013; 
Simonton, 1999). This is not surprising given some of the developmental 
characteristics of star performance (see Den Hartigh et al., 2016; Simonton, 2001). 
First, research has shown that performers develop their specific abilities at 
different ages. Second, the level of the domain-specific ability does not 
necessarily increase or decrease monotonically. Instead, a monotonic or linear 
road to star performance is the exception rather than the rule (for empirical 
demonstrations in sports and creative domains, see Gulbin, Weissensteiner, 
Oldenziel, & Gagné, 2013; Simonton, 2000). Third, early indicators of excellent 
performance are rare or even inexistent. Fourth, over the years the underlying 
constituents of the particular ability can change. These complexities and 
nonlinearities in the development of star performers are at odds with the linear 
models often applied in the field of psychology. 

In addition to the developmental dynamics, traditional statistical models 
in psychology are not equipped to address a characteristic property of star 
performance at population level. The prevailing models that psychology 
researchers apply proceed from Gaussian distributions (Walberg, Strykowski, 
Rovai, & Hung, 1984), which hold for various human characteristics such as 
height, blood pressure (Pater, 2005) and intelligence (Burt, 1957). Accordingly, 
in industrial and organizational psychology it was long believed that individual 
performance displays a Gaussian distribution as well (Muchinsky, 1994; O’Boyle 
& Aguinis, 2012; Schmidt & Hunter, 1983). However, individuals who ultimately 
reach star performance find themselves in the right tail of a highly right skewed 
distribution (e.g., Aguinis, O'Boyle, Gonzalez-Mulé, & Joo, 2016; Aguinis & 
O’Boyle, 2014; Den Hartigh et al., 2016, Den Hartigh, Hill, & Van Geert, 2018; 
Huber, 2000; Lotka, 1926; Muchinsky, 1994; O’Boyle & Aguinis, 2012; 
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Simonton, 2003, 2005a; Sutter & Kocher, 2001). In other words, given that star 
performers produce much more output than normal individuals, they are far more 
on the right of the performance distribution than one would expect if individual 
performance would follow a Gaussian distribution. For instance, O'Boyle and 
Aguinis (2012) conducted five studies using 198 samples. These samples involved 
entertainers, politicians, researchers, and amateur and professional athletes. The 
authors point out that the distribution of performance follows a power law 
(Paretian) distribution. Their results were steady among different industries, 
various types of jobs, several types of performance measures and different time 
frames. In agreement with the research of O'Boyle and Aguinis (2012), other 
studies found that individual performance follows a highly right skewed and 
heavy tailed distribution, such as a lognormal distribution, an exponential 
distribution, a stretched exponential distribution or a power law distribution 
(Aguinis & O'Boyle, 2014; Davies, 2002; Den Hartigh et al., 2016, 2018; Deng, 
Li, Cai, Wang, & Bulou., 2012; Huber, 2000; Huber & Wagner-Döbler, 2001; 
Joo, Aguinis, & Bradley, 2017; Lotka, 1926; Muchinsky, 1994; Ruocco, Daraio, 
Folli, & Leonetti, 2017; Sutter & Kocher, 2001; Walberg et al., 1984). In 
conclusion, this means that if we translate performance into measurable 
performance output, like the number of sales by salesmen, number of goals scored 
or victories by athletes, number of published articles by scientists, star performers 
have an extreme right position on the distribution of performance.  

The nonlinear developmental patterns of individual performers, and the 
highly right skewed, heavy tailed distributions of performance have consequences 
for the way in which we should approach and study star performance. More 
specifically, given that traditional additive models used in psychology result in 
Gaussian distributions, they do not seem suitable for modeling individual 
performance that typically follows a highly right skewed and heavy tailed 
distribution. Multiplicative dynamical network models, however, can produce 
these types of distributions (e.g., Den Hartigh et al., 2016, 2018; Simonton, 2001; 
Walberg et al., 1984; Zang, Cui, Zhu, & Wang, 2019).  

A Dynamic Network Model to Explain Star Performance 
Researchers have already suggested that star performers likely develop 

their abilities according to multi-dimensional, multiplicative and dynamical 
processes (e.g., Den Hartigh et al., 2016; Marques-Quinteiro, Ramos-Villagrasa, 
Navarro, Passos, & Curral, 2021; Phillips, Davids, Renshaw, & Portus, 2010; 
Simonton, 1999, 2001, 2005b). Applying dynamic network models could provide 
insights into the underlying latent processes of the route to star performance 
(Oravecz & Vandekerckhove, 2020). Indeed, in their extensive studies on star 
performers across achievement domains, Aguinis and O'Boyle already hinted that 
a dynamic network may provide the key to understanding individual performance 
in organizations, and in particular the occurrence of the highly right skewed, 
heavy tailed performance distributions (Aguinis & O'Boyle, 2014, O'Boyle & 
Aguinis, 2012).  

From a dynamic network perspective, the explanation for human per-
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formance does not lie in some specific (independently operating) causal factors, 
but rather in mutually interacting dynamic variables. In an organizational context, 
examples of variables that influence human performance are knowledge, skills, 
abilities and opportunity to produce (e.g., Merton, 1968; Schmidt & Hunter, 
1998). In this article, we propose that a logistic growth dynamic network would 
provide better insights in the developmental trajectories of star performers. Simi-
lar models have been found to explain cognitive growth, language growth (Van 
Geert, 1991), child directed speech (Van Dijk et al., 2013), intelligence (Van der 
Maas et al., 2006), as well as different phenomena in learning and teaching (Van 
Geert & Steenbeek, 2005). Furthermore, Den Hartigh et al. (2016) recently 
demonstrated that logistic growth dynamic network models predict all the proper-
ties of human performance development mentioned in the previous section, as 
well as the highly right skewed, heavy tailed distribution of performance output.  

A dynamic network consists of several nodes. One of the nodes reflects 
the ability of interest, the level of which makes it more or less likely to deliver an 
output (e.g., selling, scoring, publishing), and the others influence the ability via 
a direct or an indirect connection. Nodes can be internal variables (e.g., 
motivation) or external variables (e.g., organizational culture). For each pair of 
nodes there is a certain probability to be connected. These connections can be 
symmetric but also asymmetric. Moreover, they can be positively or negatively 
coupled. In addition, the weight of the connections differs. The nature and strength 
of the connections between the specific abilities and the variables is assumed to 
be a characteristic of that person's dynamic network (for an extensive review, see 
Den Hartigh et al., 2016). The values of the nodes change in time as the 
developmental process takes place. It is possible for nodes to disappear in time or 
for new nodes to appear. These changes might be a consequence of the 
connections between the nodes or of external changes.  

Basic Model Principles 
Given the foundation described in the previous section, the development 

of a star performer can be expressed by a system of n sparsely coupled logistic 
growth difference equations, where n is the number of nodes. The mathematical 
model is based on existing models of skill development (e.g., Den Hartigh et al., 
2016, 2018; Van der Maas et al., 2006; Van Geert, 1991, 1994, 2014). The 
mathematical equations are given by Eq. 1, where L1 denotes the level of a node 
in the network, which might be the target ability (L1) or another performance 
related component (L2 – Ln). Other performance related nodes comprise all 
contributing factors to the level of the target node, for instance interest, motiva-
tion, but also the external factors of help and assistance the individual obtains 
from the environment. Hence, these nodes reflect components that are variable, 
shape the ability, but are not intrinsic expressions of the ability. Each of the 
equations shows the growth of a node over time and every individual has a 
different system of difference equations.  
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Fig. 1 visualizes one system of equations. In this figure, the level of a 
node is indicated by the size of the circle. The level of a node is the sum of the 
relatively stable resources and the weighted multiplicative effect of its own level 
with the level of other connected performance related nodes. A relatively stable 
resource is more or less constant during the time window within which the node 
develops. For instance, a relatively stable resource of the target ability could be 
the genotype of an individual. The growth rate of the relatively stable resources is 
denoted by rLi, which indicates the maximum amount the node can profit from the 
relatively stable resources. The degree to which these nodes can profit from the 
relatively stable resources is dependent on the carrying capacity of the stable 
resources, denoted by KLi. This can be viewed as the constraints the stable 
resources have on the growth of the nodes. For instance, the degree to which 
someone’s ability can profit from the genotype has its limits. Whenever the level 
of a specific node approaches the carrying capacity of the stable resources, KLi, 
the positive effect of the stable resources on the level of the nodes decreases. 
When a specific node overgrows its carrying capacity of the stable resources, the 
node can   no   longer   profit   from the relatively stable resources.  In this case, 
(1 – Li / KLi) will turn negative, changing the sign of the growth rate for the 
relatively stable resources.  

A multiplicative effect means that the level of a node is multiplied with 
the level of a connected node (see Simonton, 2001). The weight of the 
multiplicative effect (i.e. the weight of the connections) is denoted as sij. These 
weights can either be positive, negative or be zero. They can as well be interpreted 
as a growth rate, that is, the amount a node profits from other connected nodes. In 
Fig. 1 the weight of the connections is visualized by the thickness of the arrows 
in between different nodes. The sign of the weight proceeding from the connection 
is indicated by either a solid arrow (positive connection) or a dashed arrow 
(negative connection).  

Finally, Ci is the carrying capacity of the nodes, in the sense of the 
ultimate limit of growth of a specific node. The carrying capacity prevents nodes 
reaching unrealistic values. Visually, one could think of the carrying capacity as 
an imaginary circle around the existing nodes in Fig. 1, preventing the nodes from 
growing beyond that level.  

To illustrate the developmental trajectories generated by the model, Fig. 
2 shows two cases generated by the dynamic network model of Eq. 1 (for 
parameter settings, see Methods section). Note that these figures are just two  

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧ 𝐿1 𝑡 + 1 = 𝐿1 𝑡 + 𝑟𝐿1𝐿1 𝑡 1 − 𝐿1 𝑡𝐾𝐿1 + 𝑠1𝑗 𝐿1 𝑡 𝐿𝑗 𝑡𝑛

𝑗 =1 1 − 𝐿1 𝑡𝐶1
𝐿2 𝑡 + 1 = 𝐿2 𝑡 + 𝑟𝐿2𝐿2 𝑡 1 − 𝐿2 𝑡𝐾𝐿2 + 𝑠2𝑗 𝐿2 𝑡 𝐿𝑗 𝑡𝑛

𝑗 =1  1 − 𝐿2 𝑡𝐶2⋮⋮𝐿𝑛 𝑡 + 1 = 𝐿𝑛 𝑡 + 𝑟𝐿𝑛 𝐿𝑛 𝑡 1 − 𝐿𝑛 𝑡𝐾𝐿𝑛 + 𝑠𝑛𝑗 𝐿𝑛 𝑡 𝐿𝑗 𝑡𝑛
𝑗 =1 1 − 𝐿𝑛 𝑡𝐶𝑛
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Fig. 1. A dynamic network model. Snapshot graphic example of a dynamic network 
model, in which the ability (target node, L1) is embedded in a network of 
dynamically interacting other nodes (L2 - L10). The size of the nodes indicate the 
level of the nodes. The thickness of the arrow indicates the strength of the 
connection (Sij), while a solid arrow represents a positive connection and a dashed 
arrow indicates a negative connection. As rLi and KLi are implicit of the level of the 
nodes they are not visible in this figure. The carrying capacity (Ci) could be 
envisioned as an imaginary circle around the existing nodes in this figure, 
preventing the nodes from growing beyond that level. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 2. Developmental trajectories. Developmental trajectories for two star 
performers. The different lines represent the development of the different nodes in 
the network. Furthermore, the bolds line shows the development of the target 
ability. 
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examples of developmental trajectories and that in line with Den Hartigh et al. 
(2016, 2018), the model reveals unique developmental trajectories with repeated 
simulations. Examining Fig. 2, one can observe that both individuals reach (star) 
performance levels for the ability of interest (the target node). Moreover, both 
graphs show that the same ability may rise at different ages, that the level of each 
ability does not necessarily increase or decrease monotonically, and that the same 
ability can be a product of different levels of other abilities. This illustrates how a 
dynamic network model reveals various individual developmental trajectories, 
which is in line with current knowledge on talent and skill development (e.g., Den 
Hartigh et al., 2016; Phillips et al., 2010; Simonton, 2001). 

Enhancers and Inhibitors of Star Performance 
The presented dynamic network model is a basic model explaining 

general properties of (star) performance, and its development (Den Hartigh et al., 
2016, 2018). However, literature suggests that different parameters may facilitate 
or hinder the development of star performers in the population. In recent work, 
Aguinis et al. (2016) proposed specific factors that may lead to a distribution of 
performance with a heavier or lighter tail, thereby containing more or less star 
performers, respectively. To illustrate, Fig. 3 shows the difference between a 
heavy and a light tailed distribution. Enhancers of the development of star 
performers would be multiplicity of productivity, monopolistic productivity, job 
autonomy and job complexity.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 3. Heavy tailed distribution vs. light tailed distribution. In this illustration, more 
star performers can be found in the tail of the heavy tailed distribution compared 
to the light tailed distribution. 
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Multiplicity of productivity, similar to the Matthew effect (Merton, 
1968), is the decrease of the costs of a new output as the number of previous 
outputs increases. That is, in many occupations future success depends on past 
success, which means that it is easier for the performer to produce output as 
previous output increases. For example, if a researcher already published some 
articles in high-impact journals, it may be easier to publish again, because he or 
she obtained resources and has a better reputation, which are both favorable for 
publishing more articles (e.g., Merton, 1968; Petersen, Wang, & Stanley, 2010). 
According to Aguinis and colleagues (2016) the multiplicity of productivity will 
result in a greater proportion of star performers and therefore a heavier tail of the 
distribution of performance. 

Monopolistic productivity is equivalent to the concept of market 
inequality, where a few companies have a monopoly over many others. 
Accordingly, star performers can also have the monopoly over other employees. 
Indeed, star performers are capable of dominating production by discouraging 
others from competing with them (Connelly, Gangloff, Tihanyi, & Crook, 2013; 
Sheremeta, 2016). In this scenario star performers have a higher probability of 
producing than their co-workers. This contributes to a heavier tail of the highly 
right skewed distribution of performance output (Aguinis et al., 2016).  

Job autonomy is defined by how much substantial freedom, 
independence and discretion an individual has in his or her work schedule and in 
the decision making concerning the procedures to be used in carrying out the task 
or job (Hackman and Oldham, 1975). It is known as a factor contributing to higher 
job performance (Khoshnaw & Alavi, 2020; Saragih, 2017). More specifically, 
high autonomy offers performers the flexibility and control over processes and 
resources that lead to higher performance output (Kohn & Schooler, 1983). 
Moreover, it has a positive effect on job performance by mitigating job stress 
(Iseke & Muecke, 2019), increasing self-efficacy (Saragih, 2017), and increasing 
job commitment (Sisodia & Das, 2013). Higher autonomy in the workplace would 
lead to an increase in the proportion of star performers as viewed by a heavier tail 
in the distribution of performance (Aguinis et al., 2016).  

Job complexity can be defined as a measure of the multifacetedness of 
the job and the degree of difficulty (Humphrey, Nahrgang, & Morgeson, 2007). 
Jobs that are high in complexity, involve usage of higher levels of information 
processing and are mentally demanding. Jobs with high complexity are known to 
have more variance in the number of productions (Simonton, 2001) and are 
therefore expected to have a heavier tailed distribution of performance (Aguinis 
et al., 2016; Simonton, 2001) 

Finally, an inhibitor would be the productivity ceiling. This is a 
maximum of performance output that can be reached. For example, in a call center 
there is a maximum number of telephone calls, and thereby sales, one can make 
during an hour. As a productivity ceiling is an upper bound on the number of 
productions, there will be no (or less extreme) outliers, hence the distribution of 
performance will have a relatively lighter tail. Taken together, the enhancers and 
inhibitors may be thought of as relatively stable job characteristics that influence 
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the performance of star performers. In the dynamic network model, they can be 
considered as parameters that are not expressed as specific nodes, but influence 
the settings of the network (see Methods section). 

The Current Study 
Altogether, a comprehensive model of star performance in organizations 

should explain (a) the dynamic development of individual star performers, (b) the 
highly right skewed and heavy tailed distributed performance, and (c) the role of 
enhancers and inhibitors in the shape of the distribution of performance. In this 
study we will propose such a model by implementing the dynamic network model 
of human performance development presented in Eq. 1 (Den Hartigh et al., 2016, 
2018), and include the enhancers and inhibitors of star performance in that model 
(Aguinis et al., 2016). In line with Den Hartigh and colleagues we expect that, 
first, the basic model would replicate a highly right skewed and heavy tailed 
distribution of performance output when simulating a sample of performers. 
Furthermore, by tuning model parameters to be reflective of enhancers and 
inhibitors of star performance, our model should result in a distribution of 
performance output with a heavier tail than the default model when increasing 
multiplicity of productivity, monopolistic productivity, job autonomy and job 
complexity. On the other hand, our model should lead to a distribution of 
performance with a lighter tail when including a productivity ceiling.  

METHODS 
Settings of the Dynamic Network Model 

The dynamic network model given by Eq. 1 was implemented in Matlab. 
The basic parameter settings were set in accordance with the work by Den Hartigh 
et al. (2016, 2018). A set of 10 nodes was specified, and we simulated the 
trajectories of performers in 500 time-steps. Each pair of nodes was connected 
with a probability of 25%. The strength of these connections was drawn from a 
Gaussian distribution and differed for each pair of nodes and for each individual. 
Nodes were not able to connect with themselves. Not all nodes emerged at the 
same time step or started at the same level. For the first four nodes the time of 
initial emergence was zero, while for the rest of the nodes the time of initial 
emergence was drawn from a uniform distribution for each individual. The initial 
level of each node was drawn from a Gaussian distribution for each node and each 
individual. Finally, the carrying capacity of the relatively stable resources, the 
growth rate for the relatively stable resources and the carrying capacity for the 
nodes had different values for each node and for each individual.  

We simulated 100,000 individuals, and for all these individuals a new 
set of parameters was drawn from a Gaussian or uniform distribution of values 
(Table 1). As most datasets in performance research contain only individuals that 
produce one or more outputs (e.g., Aguinis et al., 2016), we decided to only 
consider these individuals. Hence, even though we simulated 100,000 individuals 
not all these individuals were included in the analysis. We chose the first node as 
the target (ability) variable.  
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Table 1. Parameter settings. Default parameter values used for the dynamic model 
simulations. 

Parameter (drawn from a Gaussian distribution) Mean SD 

r (growth rate for the relatively stable resources) 0.05 0.01 

K (carrying capacity of the stable resources) 1.00 0.15 

s (connection strengths with nodes) 0.00 0.02 

Probability of connections 0.25 0.00 

Parameter (drawn from a uniform distribution) Min Max 

L (initial level of the nodes) 0.00 0.05 

C (carrying capacity of the nodes) 10.00 25.00 

T (time of initial emergence) 1.00 350.00 
Source: Den Hartigh et al. 2016, 2018. 

Modeling Performance Output 
In order to examine the simulated distribution of performance, we 

transformed the level of the target variable (the ability; L1) to a probability of 
production at different time steps for different individuals. In line with Den 
Hartigh et al. (2016) we used a probabilistic model in which the probability that a 
particular output was produced at a certain time step was a function of the level 
of the target variable (the ability; L1) and a domain-specific parameter (ϕ), which 
we called the production parameter (cf. Den Hartigh, 2016; Simonton, 2003). At 
every time step there was a relatively small probability that an output (selling, 
scoring, publishing) was produced. This probability was relatively higher for 
individuals with higher ability levels. In this study we set ϕ = 1 / T, where T is the 
number of timesteps (i.e., 500). The probability that an output p was produced at 
timestep t is given by Eq. 2. 

P(pt) = ϕ L1(t). (2) 

In the case that P(pt) ≥ 1, we took P(pt) = 1. We implemented this model 
in Matlab. An individual produced at time step t, if a random number between 
zero and one was smaller than the probability to produce. The total number of 
produced outputs was saved for each individual. 
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Testing the Distribution of Performance Output 
To examine if the simulations of the dynamic model without the 

influence of the enhancers or inhibitors (i.e., the default distribution) lead to a 
highly right skewed distribution of performance, we simulated 100,000 
individuals. We visualized this distribution and created a Cullen and Frey graph 
with 1,000 bootstrap samples to assess the shape of the distribution. Subsequently, 
we fitted a Gaussian, exponential, Pareto, lognormal, gamma, Poisson and 
Weibull distribution to the simulated distribution of performance using maximum 
likelihood estimation. For all of the fitted distributions, we calculated and 
compared the Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC). We selected the distribution with the minimal AIC and BIC as 
the distribution of performance. For this distribution we created a quantile-
quantile plot (q-q plot) and visually explored the fit of the distribution. Finally, to 
confirm that our simulated data fulfills a power relationship we also plotted the 
simulated distribution of performance in a log-log plot.  

Modeling the Enhancers and Inhibitors 
To include the influence of the enhancers and inhibitors on the simulated 

distribution of performance, we translated them into parameter adjustments of the 
basic model. Multiplicity of productivity was modeled using a Matthew model 
(Den Hartigh et al., 2016; DiPrete & Eirich, 2006; Merton, 1968; Petersen, Jung, 
Yang, & Stanley, 2011). The Matthew model calculates the probability that an 
individual produces at time step t by taking, next to the level of the ability (L1) 
and the production parameter (ϕ), the previous production of that individual into 
account. The Matthew model is given by Eq. 3, where γ  is a scaling factor and 
S(t) is the number of outputs that are already produced at time step t by this 
individual. If we assume that γ > 0, the probability of a next production increases 
with the number of outputs. Hence, the Mathew model is suitable to model a 
sample with multiplicity of productivity.  

P(pt) = ϕ L1(t) (1+ γ S(t)). (3) 

In our simulations we used γ = 25 / T. This means that in our study every time an 
individual produced one product, their production parameter grew with 5%.  

In a sample with monopolistic productivity star performers have a higher 
probability to produce than their co-workers. In our model this corresponds to 
doubling the production parameter ϕ for each individual after they produced more 
than two products. This specific number of two products was chosen, because 
only 7.5% of the performers produced more than two products. This gives star 
performers the monopoly of production over others.  

Increasing job autonomy has a positive influence on nodes (e.g., positive 
effects on self-efficacy and job commitment). Furthermore, it mitigates the 
negative effects of other nodes like job stress. Higher job autonomy is therefore 
equivalent to increasing the weight (sij) of the connected nodes that have a positive 
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effect and decreasing the weight of them that have a negative effect. Therefore, to 
simulate the effects of job autonomy the weight of the positive connections was 
doubled and halved for negative connections.  

Professions that are higher in complexity require usage of higher levels 
of information processing and are mentally more demanding (Humphrey, 
Nahrgang, & Morgeson, 2007). These higher levels of information processing 
give individuals the opportunity to profit more from their stable resources (e.g. 
intelligence). In our model this is equivalent to increasing the carrying capacity 
of the relatively stable resources. This leads to more variance in the number of 
productions, which is typical for professions that are high in complexity 
(Simonton, 2001). Therefore, we doubled the mean of the carrying capacity from 
the relatively stable resources (i.e. mean of KL = 2.0).  

To simulate a productivity ceiling, we implemented that after the 
productivity ceiling is reached, the probabilities to produce equals zero. Hence, 
after an individual reached the productivity ceiling of the target variable, nothing 
more would be produced. We used a productivity ceiling of six products.  

Having defined the model with enhancers and inhibitors, the next step 
would be to have a closer look at the distributions of performance simulated by 
the model. 

Methods for Comparisons of Distributions with Enhancers and Inhibitors 
To confirm that our model was in agreement with the literature we 

compared the tail of the simulated default distribution to the tail of the simulated 
distributions of performance with the enhancers and inhibitors visually as well as 
numerically. One method to check the differences in the tailedness of two 
distributions numerically would be to look at their kurtosis. However, since 
kurtosis is not normally distributed it is not suitable for comparisons using a 
statistical test. Therefore, we implemented a method to make inferences about the 
changes in the heaviness of the tail of the distribution of performance. We 
specifically used L-moments for this, which is explained in the next section. 

L-moments to Make Inferences About the Distribution of Performance 
L-moments are analogous to conventional moments of probability 

distributions. They are defined as a linear combination of order statistics and were 
introduced by Hosking in 1990 (Hosking, 1990). Since their introduction they are 
widely used in different fields of research, more specifically in hydrology, 
climatology, meteorology, economics and socio-economics (Bastianin, 2020; 
Eslamian & Feizi, 2007; Hosking & Wallis, 1993; Karvanen, 2006; Lee & Maeng, 
2005; Ṥimková, 2017; Bílková, 2014).  

Similar to conventional moments, L-moments can be used as a measure 
of distributional shape. More specifically, λ1 is the mean of the distribution, λ2 is 
a measure of dispersion of the distribution, λ3 can be interpreted as a measure of 
skewness of the distribution and λ4 can be interpreted as a measure of kurtosis of 
the distribution (Hosking, 1990). For the exact definition of L-moments we refer 
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to the original paper by Hosking (1990). The values for λ3 and λ4 depend on the 
scale of the distribution. Therefore, we introduce L-moments ratios: τr = λr / λ2, for 
r = 3, 4, ... The third and fourth L-moment ratios are dimensionless measures of 
respectively skewness and kurtosis. We will refer to them as L-skewness and L-
kurtosis.  

There are several advantages of L-moments over conventional moments. 
First, they are more easily interpretable as measures of distributional shape 
(Hosking & Wallis, 1993). Moreover, unlike the conventional skewness and 
kurtosis measure, the L-moment ratios, L-skewness and L-kurtosis, are 
asymptotically normally distributed (Hosking, 1990). This makes it possible to 
perform statistical comparisons on the L-skewness and L-kurtosis of different 
distributions. Finally, L-moments are unique for a distribution; are more robust 
for extreme values; and all their orders exist under the assumption that the mean 
is finite (Hosking, 1990; Ṥimková, 2017). Altogether, this makes them very suited 
for modeling rare events like star performance.  

Testing the Influence of the Enhancers and Inhibitors  
To examine if our model behaved in accordance with our expectations 

we tested if the enhancers and inhibitors indeed lead to a simulated distribution of 
performance with heavier and lighter tails, respectively. We simulated samples 
containing 100,000 individuals for each enhancer or inhibitor. We first visually 
compared the differences in the tail-heaviness of the default distribution with the 
distributions of the enhancers and inhibitors. Then, to test the differences in tail-
heaviness, we drew 1,000 bootstrap samples and computed the L-kurtosis for each 
of these bootstrapped samples and performed a t-test.  

To examine the robustness of the dynamical network model and the 
tuning of the enhancers and inhibitors we performed aforementioned analyses 
with different numbers of nodes and different numbers of individuals. More 
specifically, we performed the analyses for 25 and 50 nodes, while keeping the 
number of simulated individuals constant. Furthermore, using a network of 10 
nodes we simulated 10,000, 50,000 and 1,000,000 individuals for each 
enhancer/inhibitor and performed aforementioned analyses.  

RESULTS 
The Distribution of Performance Output 

One sample of performers was simulated with the default settings (see 
Table 1). Note that even though we simulated 100,000 individuals, we only 
analyzed the individuals that produced (i.e., 54,318 individuals). The distribution 
of performance, the Cullen and Frey diagram, and the log-log plot can be found 
in Fig. 4(a), (b) and (c). The Cullen and Frey diagram shows clearly that it is 
unlikely that the performance outputs of the model simulations follow a normal 
distribution. It shows that the distribution of performance is much more skewed 
and has much more kurtosis. According to the Cullen and Frey graph a possible 
candidate for this distribution is a lognormal distribution. The log-log plot of the 
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distribution of performance shows that our simulated data fulfills a power 
relationship. This power relationship seems to be even stronger in the tail of the 
distribution, which is in accordance with the extensive research into the fit of 
several performance databases of Aguinis et al. (2016). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Distribution of performance for the default distribution. Figure (a) shows the 
distribution of performance for the default sample for 54,204 individuals. Figure (b) 
represents the Cullen and Frey diagram for a simulated default sample, with 1,000 
bootstrap samples. Figure (c) shows the log-log plot for the default sample. It 
follows a straight line, indicating that the distribution of performance fulfils a power 
relationship. This relationship seems to be even stronger in the tail of the 
distribution. Figure (d) depicts the q-q plot for a fitted normal distribution, Pareto 
distribution and a lognormal distribution. 
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Next, we calculated the AIC and BIC of several distributions (see Table 
2). Both criteria indicate that the lognormal distribution has the best fit. 
Subsequently we visually checked the fit of the lognormal distribution with the 
simulated distribution of performance using a q-q plot (see Fig. 4(d)). The q-q plot 
shows that the distribution of performance is well fitted by a lognormal 
distribution in the beginning. However, the tail of the distribution of performance 
seems to be more heavy tailed and better fitted by for example the tail of a Pareto 
distribution. Hence, the distribution of performance is highly right skewed and 
heavy tailed. Therefore, in accordance with Den Hartigh et al. (2016), we can 
confirm that a dynamic network model generally results in a highly right skewed 
and heavy tailed distribution of performance.  

 
Table 2. Fitted Distributions. AIC and BIC for the Fitted Distributions. 

Fitted distribution AIC BIC
Lognormal distribution 113,563.7 113581.5
Gamma distribution 120,236.7 120254.5
Weibull distribution 132,060.7 132078.5
Poisson distribution 150,772.9 150781.8
Gaussian distribution 152,063.7 152081.5
Exponential distribution 160,712.0 160720.9
Pareto distribution 160,718.0 160735.8

The Effects of Enhancers and Inhibitors 
We generated a sample of 100,000 individuals for each of the modeled 

enhancers or inhibitors and visually compared the distribution of performance 
with the default distribution. Fig. 5(a) reveals a heavier tail for the sample with 
multiplicity of productivity. More individuals seem to produce a disproportionate 
amount of output. In addition, the output appears to be more extreme. Therefore, 
this plot shows that including multiplicity of productivity in the model simulations 
leads to more star performers.  

Furthermore Fig. 5(b) reveals more star performers as well as more 
extreme results for the sample with monopolistic productivity compared to the 
default sample. Hence, this result confirms that including monopolistic 
productivity in the model leads to a heavier tailed distribution of performance 
output.  

Fig. 5(c) shows that the total amount of outputs is much higher for the 
sample with high autonomy compared to the default sample. We can conclude 
that the total amount of star performers is much higher when job autonomy is 
increased in the model. This implies that including job autonomy in the model 
enhances the heaviness of the tail of the highly right skewed distribution of 
performance output. 

Fig. 5(d) shows that the sample with higher job complexity has 
considerably more star performers. This is in accordance with the idea that job 
complexity enhances the heaviness of the tail of the distribution of performance 
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output.   
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 5. Distribution of performance for the enhancers and inhibitors.  Distribution 
of performance for a default sample indicated by + and distribution of performance 
for the enhancers (a)-(d) and inhibitors (e) indicated by o. Note that the 
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distributions of performance of the enhancers and inhibitors have a heavier tail and 
a lighter tail, respectively. 

Finally, Fig. 5(e) reveals a lighter tail for the sample with a productivity 
ceiling compared to the default sample. Therefore, our results confirm that 
including a productivity ceiling in the model leads to a distribution of performance 
with a lighter tail. 

Then, to test the differences in tail-heaviness we drew 1,000 bootstrap 
samples. The L-kurtosis was calculated for each of these bootstrapped samples. 
Descriptive statistics of the L-kurtosis values can be found in Table 3. To confirm 
that including the proposed enhancers and inhibitors in our model results in a 
distribution of performance with a heavier or lighter tail than the default sample, 
respectively, we performed t-tests between the L-kurtosis values of the samples 
including the enhancers or inhibitors and the samples generated with the default 
settings. All t-tests resulted in a significant difference (p < .001) in the expected 
direction (see Table 3).   
Table 3. Descriptive Statistics of the L-kurtosis, and Results of the t-Tests Between 
the L-kurtosis of the Default Distribution and the Distribution with Enhancers and 
Inhibitors. 

Sample N Mean L-
kurtosis

SD DF t-statistic  

Default 54,204 0.143 0.003 NA NA

Multiplicity of 
productivity 

54,402 0.164 0.004 1817.3 125.4*** 

Monopolistic 
productivity 

54,294 0.235 0.004 1808.5 543.7*** 

Job autonomy 65,264 0.265 0.002 1747.9 1030.5*** 

Job complexity 71,465 0.212 0.002 1670.2 597.5*** 

Productivity 
ceiling 

54,325 0.124 0.002 1824.2 -153.2*** 

  *** p < .001 

Robustness 
As a robustness check we confirmed the effects of the enhancers and 

inhibitors on the simulated distribution of performance for different sample- and 
network sizes. Both networks of 25 and 50 nodes gave similar results, that is, the 
tail of the distribution was visually clearly heavier for all the enhancers and lighter 
for the inhibitors. Moreover, including enhancers in the models led to a 
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distribution with a significantly heavier tail (all p < 0.001) and including the 
inhibitor led to a distribution with a significantly lighter tail (p < 0.001).  

Finally, we simulated 10,000, 50,000 and 1,000,000 individuals for each 
enhancer/inhibitor. We found that, for different numbers of individuals, the result 
were again similar. Including enhancers in the models led to a distribution with a 
significantly heavier tail (p < 0.001) and including the inhibitor led to a 
distribution with a significantly lighter tail (p < 0.001). Hence, we can conclude 
that the effects of the enhancers and inhibitors seem to be robust for different 
network- and sample sizes.  

DISCUSSION 
For over a century, researchers have been looking for an explanation of 

the emergence of star performers. Although the dominant search for an 
explanation or theoretical model lies in the use of additive models, in this research 
we used a dynamic network model, thereby proceeding from the theory of 
nonlinear dynamical systems. An important new step of our research was to 
extend the dynamic network model by including enhancers and inhibitors of star 
performance in organizations. We found that all modeled enhancers and inhibitors 
changed the tail-heaviness of the distribution of performance significantly. 
Although this could be expected based on previous work (Aguinis et al., 2016), 
this paper is the first to implement such enhancers and inhibitors in a dynamic 
network model underlying the rise of star performers.  

It could be noted that the model principles we presented are 
simplifications of the real world. However, from a model building perspective, it 
is important to first study the simplest model possible that can generate typical 
properties of the phenomenon of interest. In our case, we therefore implemented 
the enhancers and inhibitors by tuning parameters of the default model, in a way 
that makes sense in light of previous work (Aguinis et al., 2016). Furthermore, the 
model is fairly theoretical, that is, while it is possible to get better insight into the 
developmental paths of star performance it is not (yet) possible to use this model 
to predict the performance output of employees. For example, it would be 
interesting to explore if a model can be created that predicts if a particular 
individual will become a star performer or not. Modeling predictions of these 
forms can help managers to predict personnel’s capabilities and to recruit 
appropriate new personnel with relevant skills. This can significantly enhance an 
enterprise’s competitiveness in the market (Li, Kong, Ma, Gong, & Huai, 2016). 
For instance, in case one could acquire longitudinal data from a certain 
performance area it would be interesting to fit a dynamical network model to this 
data to explore the latent processes in the rise of star performers (Oravecz & 
Vandekerckhove, 2020).  

In light of the above, machine learning or neural networks may also be 
employed in future work. Li and colleagues (2016) already showed that prediction 
of human performance can be done using a k nearest neighbor algorithm. A next 
step could be to use more advanced algorithms like random forest, or even a 
recurrent neural network in the case of longitudinal data (e.g., Long Short-Term 
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Memory). These kinds of algorithms have recently been explored in psychological 
research and health sciences, and first results are promising (Lipton, Kale, Elkan, 
& Wetzel, 2015; Rahman, & Adjeroh, 2019; Stewart, Sprivulis, & Dwivedi, 2018; 
Strobl, Malley, & Tutz, 2009; Tang, Xiao, Wang, & Zhou, 2018; Wijnands, 
Thompson, Aschwanden, & Stevenson, 2018). Another interesting approach 
would be to find new features of an individual’s personal network that have an 
influence on the distribution of performance (Aguinis et al., 2016). For example, 
Morrison (2002) showed that new employees with larger informational personal 
networks throughout multiple organizational units have greater knowledge of the 
organization, while employees with denser and stronger personal network 
experienced greater mastery of their jobs and more role clarity. This difference 
may also be visible in the distribution of performance. Furthermore, varying other 
parameters like the probability of a connection, the number of negative or positive 
connections, or the strength of all connections may affect the distribution of 
performance. These kinds of experimentations with our model may further 
increase our understanding of the theoretical mechanisms behind the development 
of star performance.  

CONCLUSION 
The dynamic network model that we proposed generates simulations of 

the route to star performance that are close to the existing literature (e.g., Den 
Hartigh et al., 2016). The model gave rise to a heavy tailed distribution of 
performance. In addition, and in accordance with the literature (Aguinis et al., 
2016), varying the enhancers and inhibitors influenced the heaviness of the tail of 
this distribution significantly. Hence, we described the rise of star performers in 
organizations mathematically, by embedding the enhancers and inhibitors in our 
model. Referring back to the initial cases of star performance, although star 
performance may develop in various ways, Joe Girard, Mickey Drexler and 
Wayne Gretzky might have benefited from productivity enhancers or the lack of 
productivity inhibitors in their organizations. To give an example based on data 
from a website about Joe Girard (www.JoeGirard.com), he had the autonomy to 
hire individuals to help out with several business processes and business growth. 
During the last years of Joe Girard's working life, he arranged his job in such a 
way that by the time he met a potential customer he already knew everything he 
needed to know about the customer. Hence, because he outsourced several 
activities, he had the opportunity to focus fully on selling cars and therefore his 
productivity ceiling (e.g., the maximum number of cars that one can sell in a 
timespan) was much higher than for other retailers. 

Finally, given our results, and new developments in the domains of 
dynamical systems modeling and machine learning (see previous section), the 
field of nonlinear dynamical systems has much to offer to improve our 
understanding of star performance. Further research into (dynamically) modeling 
the developmental path of a star performer may eventually help potential star 
performers to flourish, which is the key to organizational success. 
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