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Abstract: Celiac disease (CeD) is triggered by gluten and results in inflammation and villous at-
rophy of the small intestine. We aimed to explore the role of miRNA-mediated deregulation of
the transcriptome in CeD. Duodenal biopsies of CeD patients (n = 33) and control subjects (n = 10)
were available for miRNA-sequencing, with RNA-sequencing also available for controls (n = 5) and
CeD (n = 6). Differential expression analysis was performed to select CeD-associated miRNAs and
genes. MiRNA-target transcript pairs selected from public databases that also displayed a strong
negative expression correlation in the current dataset (R < −0.7) were used to construct a CeD
miRNA-target transcript interaction network. The network includes 2030 miRNA-target transcript in-
teractions, including 423 experimentally validated pairs. Pathway analysis found that interactions are
involved in immune-related pathways (e.g., interferon signaling) and metabolic pathways (e.g., lipid
metabolism). The network includes 13 genes previously prioritized to be causally deregulated by
CeD-associated genomic variants, including STAT1. CeD-associated miRNAs might play a role in
promoting inflammation and decreasing lipid metabolism in the small intestine, thereby contributing
unbalanced cell turnover in the intestinal crypt. Some CeD-associated miRNAs deregulate genes
that are also affected by genomic CeD-risk variants, adding an additional layer of complexity to the
deregulated transcriptome in CeD.

Keywords: miRNA-target gene regulation; post-translational transcript regulation; autoimmunity

1. Introduction

In patients with celiac disease (CeD), immune-mediated destruction of the small
intestinal villous structure takes place as a response to the presence of dietary gluten. CeD
occurs in 1–2% of the Caucasian population in genetically predisposed individuals [1,2].
Nearly all CeD patients carry the genetic risk human leukocyte antigen (HLA) haplotypes
HLA-DQ2 or HLA-DQ8. Besides the HLA region, more than 40 non-HLA CeD risk loci
have been identified by genome-wide association studies (GWAS) [3,4].

Upon gluten intake, antigen-presenting cells present deamidated gliadin peptides
to CD4+ cells in the context of the predisposing HLA-types (HLA-DQ2/8). The acti-
vated CD4+ gluten-specific T-cells subsequently stimulate CD8+ T-cells, which eventually
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move to the intraepithelial compartment and destroy the villous structure of the small
intestine [1,5].

Previous studies have shown that the transcriptome of the small intestine is affected
in CeD [6–8]. Affected pathways include immune-related pathways for B- and T-cells
and metabolic pathways (e.g., fatty-acid metabolism). A recent study showed that CeD-
associated genomic variants (single nucleotide polymorphisms (SNPs)) influence gene
expression and compiled a list of 118 prioritized genes likely to play a role in CeD patho-
physiology [9]. This list includes genes involved in immune cell migration, activation, and
differentiation. In addition to SNPs, gene expression can be regulated by multiple other
factors, both on the transcriptional and post-transcriptional level, including microRNAs
(miRNAs) [10]. In the current study, we examined the role of small intestinal miRNAs in
CeD pathophysiology.

miRNAs are small non-coding RNAs consisting of 19–24 nucleotides. The physiologi-
cal role of cellular miRNAs is to fine-tune gene expression by directing the RNA-induced
silencing complex to target messenger RNAs (mRNAs) [11]. miRNA target recognition
takes place via pairing of the seed region of the miRNA (nucleotides 2–7) with the 3′ un-
translated region of the target mRNA, which eventually results in inhibition of translation
or promotion of decay of the target transcript [11].

Recently, extracellular miRNAs in the circulation have been proposed as biomarkers
for CeD [12]. The small intestine could be the source of these circulating miRNAs, as
it has been shown that the small intestinal miRNA profiles are different between CeD
and controls [13–17]. However, the functional roles of both circulating and intracellular
miRNAs in CeD pathophysiology are not yet fully understood. To uncover the functions
and pathways in which CeD-associated miRNAs play a role, the transcripts targeted by
the deregulated miRNAs need to be identified. One expects that when miRNAs are over-
expressed, target transcripts are downregulated [14,17]. It is also important to investigate
these interdependencies in a tissue-specific context, as miRNA expression is highly cell
type-specific [10,18,19]. In the context of CeD, only a few miRNA-transcript pairs have been
investigated thus far as no high-throughput studies have searched for such miRNA-target
transcript pairs in CeD [14,17].

To get insight into how miRNAs affect target genes and pathways in the small intestine
of CeD patients, we performed miRNA- and RNA-sequencing on small intestinal biopsies
from CeD patients and controls. Using these samples, we investigated which miRNAs were
inversely correlated with predicted and experimentally validated target transcripts and
used these data to construct a miRNA-transcript interaction network for CeD. Subsequent
pathway-analyses on the target genes revealed that CeD-associated miRNAs are associated
with increased inflammatory processes and unbalanced cell turnover in the intestinal crypt.
Several miRNA target genes revealed by our analysis have previously been shown to be
affected by CeD-risk SNPs, adding another level of complexity to the deregulated gene
expression in CeD.

2. Results
2.1. Differential Expression Analysis in CeD Identifies Immune-Related Genes and miRNAs

To start, we used principal component analysis (PCA) to investigate whether miRNA
profile correlates with CeD status. No outliers were observed in the PCA. The PCA showed
a clear significant association with disease status (Figure 1A), independent of sex, age, and
RNA isolation method.

Differential expression analysis identified 111 miRNAs to be differentially expressed
between CeD and controls (FDR < 0.05): 52 that were decreased and 59 that were in-
creased in CeD (Supplementary Table S2). These included miRNAs that had been pre-
viously identified to be decreased in CeD: miR-338-5p (Log2 Fold Change (LFC) = −2,
FDR = 1.4 × 10−11), miR-192-5p (LFC = −1.2, FDR = 1.1 × 10−8), miR-194-5p (LFC = –0.8,
FDR = 1.2× 10−4), miR-31-3p (LFC =−1.0, FDR = 7.0× 10−7) (Supplemental Table S2) [14,15,20],
and ‘immune miRNA’ miR-155-5p (LFC = 1.2, FDR = 1.3 × 10−5) [11,21–24].
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cording to the PCA (Figure 1B), independent of sex, age, and RNA isolation method. 

In total, 3869 genes were differentially expressed between CeD and controls (FDR < 
0.05), of which 2209 were downregulated and 1660 were upregulated (Supplementary Ta-
ble S3). We compared this differentially expressed gene list to the list of Loberman-Na-
chum et al., who previously compiled genes consistently reported to be involved in CeD 
by multiple studies (Supplementary Table S4) [8]. The majority of genes in the Loberman-
Nachum et al. consensus set (n = 403) [8] were also concordantly and significantly differ-
entially expressed in our dataset (n = 334) (334/403 = 83%). These genes included the five 
genes that showed the highest discriminatory value between CeD and controls in their 
dataset: LPL (encoding lipoprotein lipase, plays an important role in lipid clearance, uti-
lization, and storage), BIRC3 (C-IAP-2/baculoviral IAP repeat containing 3, an anti-apop-
totic protein binding to TRAF-1 and TRAF-2), UGT2B7 (UDP glucuronosyltransferase 
family 2 member B7, involved in conjugation and subsequent elimination of potentially 
toxic compounds), THSD4 (thrombospondin type 1 domain containing 4, a peptidase in-
volved in matrix homeostasis), and HMGCS2 (3-hydroxy-3-methylglutaryl-coA synthase 

Figure 1. miRNA and gene expression profiles were generated for small-intestinal biopsies using a next generation
sequencing approach. Principal component analysis using (A) the miRNA-seq profile and (B) the mRNA-seq analysis
shows clear separation of controls (black) and active celiac disease (CeD) patients (grey). Differential expression analysis
was performed between CeD and controls (FDR = p-value adjusted for multiple testing). For all the differentially expressed
miRNAs and genes, we extracted previously described miRNA-target transcript interactions. In total, 2030 miRNA–
transcript target pairs remained with a negative Pearson’s correlation R < −0.7.

No outliers were observed in the mRNA expression profile in a PCA. The mRNA ex-
pression profile of CeD biopsies differed significantly from that of control biopsy according
to the PCA (Figure 1B), independent of sex, age, and RNA isolation method.

In total, 3869 genes were differentially expressed between CeD and controls (FDR < 0.05),
of which 2209 were downregulated and 1660 were upregulated (Supplementary Table S3).
We compared this differentially expressed gene list to the list of Loberman-Nachum et al.,
who previously compiled genes consistently reported to be involved in CeD by multiple
studies (Supplementary Table S4) [8]. The majority of genes in the Loberman-Nachum et al.
consensus set (n = 403) [8] were also concordantly and significantly differentially expressed
in our dataset (n = 334) (334/403 = 83%). These genes included the five genes that showed
the highest discriminatory value between CeD and controls in their dataset: LPL (encoding
lipoprotein lipase, plays an important role in lipid clearance, utilization, and storage),
BIRC3 (C-IAP-2/baculoviral IAP repeat containing 3, an anti-apoptotic protein binding
to TRAF-1 and TRAF-2), UGT2B7 (UDP glucuronosyltransferase family 2 member B7,
involved in conjugation and subsequent elimination of potentially toxic compounds),
THSD4 (thrombospondin type 1 domain containing 4, a peptidase involved in matrix
homeostasis), and HMGCS2 (3-hydroxy-3-methylglutaryl-coA synthase 2, involved in lipid
metabolism) [8,25]. The consensus set included genes that are associated with genetic risk
loci for CeD, including STAT1 (LFC 1.6, FDR = 2.7 × 10−13), which encodes a transcription
factor important in the response to interferon signaling [8,9].

To identify pathways related to CeD, we performed pathway-enrichment analysis
on the differentially expressed genes in our study. GO terms associated to the down-
and up-regulated genes in our study are displayed in Supplementary Figure S1. The
transcripts upregulated in CeD are associated with several immune pathways, including B-
and T-cell activation (e.g., ‘regulation of lymphocyte activation’ (FDR = 4.6 × 10−13) and
‘interferon-gamma pathways’ (FDR = 4.5 × 10−8)), and with pathways related to the cell
cycle (e.g., ‘positive regulation of cell cycle process’ (FDR = 3.4 × 10−11)). Downregulated
genes were associated to several metabolic pathways, including lipid metabolism (‘Fatty
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acid metabolic process’ (FDR = 2.7 × 10−27) and ‘digestion’ (FDR = 1.94 × 10−5)). These
and similar pathways have previously been linked to CeD [8].

2.2. miRNA-Target Transcript Interaction Network

In order to identify miRNAs and their target transcripts, we focused on those miRNAs
that were differentially expressed between CeD and controls. We selected miRNA-target
pairs from two prediction tools (TargetScan and microTCDS) and from databases that
list experimentally validated miRNA-target pairs (TarBase and miRTarbase) (Figure 1).
Afterwards, we performed a Pearson correlation between the selected miRNAs and genes.
This identified 2030 negatively correlated miRNA-target transcript pairs (R < −0.7 and
p-value < 0.05). The resulting miRNA-target transcript interaction network consists of
31 miRNAs connected to 1344 genes (Figure 2, supporting data displayed in Supple-
mentary Table S5). As mentioned before, we identified 3869 genes to be differentially
expressed between CeD and controls, 2209 downregulated genes and 1660 upregulated
genes. In total, 39% of all downregulated genes (866/2209) and 29% of all upregulated
genes (478/1660) are targeted by at least one differentially expressed miRNA. Of the
2030 miRNA-transcript pairs, only 423 miRNA-transcript interactions have been exper-
imentally validated. Transcripts that were targeted by more than one miRNA showed
a slight, but significantly stronger, negative correlation with miRNA levels compared
to genes targeted by only one miRNA (respectively, mean correlation median −0.78 in-
terquartile range (IQR) [−0.75; −0.81] versus correlation −0.76 IQR [−0.73; −0.82], MWU
p-value = 0.002).
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MiRNA families consist of miRNAs that share homology in their seed sequence,
resulting in target transcript similarities [11]. In our miRNA-target transcript network,
multiple members of the same miRNA family could be identified amongst both upregulated
miRNAs (miR17 family: miR-18a-3p and miR-17-5p; miR15 family: miR-15a/b-5p and
miR-16-5p) and downregulated miRNAs (miR30 family: miR-30a/e-3p; miR28 family:
miR-151b and miR-28-5p).

2.3. Pathway Enrichment Analyses

To assess which pathways might be affected by CeD-associated miRNAs, we per-
formed pathway enrichment analyses based on the transcripts present in the miRNA-target
transcript network. This identified 360 pathways that were significantly associated with
the miRNA-target transcript network (Supplementary Table S6). Figure 3 shows the top
30 pathways associated with the network, split into up- and downregulated transcripts
and sorted based on how many different miRNA target transcripts were present in the
pathway. Downregulated genes in the miRNA-target transcript network were associated
with pathways related to metabolism, such as lipid metabolism, whereas upregulated genes
were associated with immune pathways related to T-cells, response to interferon-gamma,
and cell-cycle (Figure 3 and Table S6).

DOWNREGULATED GENES UPREGULATED GENES

0 5 10 15 0 5 10 15

carbohydrate transport
coenzyme metabolic process

glycerolipid metabolic process
organic acid transport

organic anion transport
positive regulation of catabolic process

positive regulation of cellular catabolic process
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response to reactive oxygen species
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negative regulation of growth
negative regulation of phosphorylation

neutrophil activation
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response to metal ion

cellular response to steroid hormone stimulus
gland development

hormone−mediated signaling pathway
neutrophil mediated immunity
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steroid metabolic process
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cell cycle arrest

regulation of signal transduction by p53 class mediator
lymphocyte proliferation
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regulation of response to DNA damage stimulus
regulation of regulatory T cell differentiation

regulation of DNA metabolic process
peptidyl−serine modification

organelle fission
negative regulation of DNA metabolic process
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DNA replication
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DNA damage response, signal transduction by p53 class mediator
DNA conformation change
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0.04
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Figure 3. Top 30 enriched GO pathways associated with the down- or upregulated genes in CeD that are targeted by at least
one miRNA. Sorted by how many miRNAs targeted the transcripts in the pathway. The colorscale indicates significance of
pathway enrichment as indicated with p.adjust.

We prioritized miRNA target transcripts based on the criteria that they are targeted by
multiple miRNAs and that there is supporting experimental evidence for the miRNA-target
transcript interaction. This analysis identified 492 transcripts that were targeted by at least
two miRNAs, and there is experimental evidence for at least one of the interacting miRNAs
for 34% (168/492) of these target transcripts. The downregulated targets (118/168) are
significantly enriched with transcripts involved in metabolic pathways (phospholipid
metabolic process, FDR = 0.03) and epithelial cell maturation (FDR = 0.046), whereas the
upregulated transcripts targets are involved in cell-cycle pathways (e.g., mitotic nuclear
division, FDR = 0.003), positive regulation of type I interferon (FDR = 0.03), and the NOTCH
pathway (FDR = 0.023).

To investigate whether the individual miRNAs in the network regulate specific path-
ways, we also performed gene set enrichments per miRNA (Figure 4). This revealed
that, in our miRNA-target transcript network, multiple individual miRNAs target similar
pathways even though their target transcripts vary. For example, the 44 target transcripts
of miR-31-3p (see Figure 4) are significantly enriched in transcripts involved in lympho-
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cyte differentiation, and this was also the case for the target transcripts of miR-22-5p and
miR-30a-3p.

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

DOWNREGULATED miRNAs UPREGULATED miRNAs

hs
a−

m
iR

−3
1−

3p

hs
a−

m
iR

−3
78

e

hs
a−

m
iR

−2
2−

5p

hs
a−

m
iR

−3
0a

−3
p

hs
a−

m
iR

−6
53

−5
p

hs
a−

m
iR

−1
51

b

hs
a−

m
iR

−3
45

−5
p

hs
a−

m
iR

−4
25

−5
p

hs
a−

m
iR

−1
5a

−5
p

hs
a−

m
iR

−1
83

−5
p

hs
a−

m
iR

−1
38

−5
p

hs
a−

m
iR

−1
32

−3
p

hs
a−

m
iR

−1
26

0b

protein autophosphorylation
response to oxidative stress
aldehyde catabolic process

cellular aldehyde metabolic process
ammonium ion metabolic process

cellular modified amino acid metabolic process
regulation of sodium ion transport

response to alcohol
response to fatty acid

intracellular transport of virus
phosphatidylinositol−3−phosphate biosynthetic process

protein localization to cytoskeleton
protein localization to microtubule cytoskeleton

response to gamma radiation
response to virus

signal transduction by p53 class mediator
membrane docking

protein localization to chromosome
nucleic acid phosphodiester bond hydrolysis

histone−serine phosphorylation
nucleobase metabolic process

nucleus organization
establishment of chromosome localization

protein localization to chromatin
protein−DNA complex subunit organization

regulation of circadian rhythm
signal transduction in response to DNA damage

mitotic cytokinesis
ncRNA catabolic process
ciliary basal body docking
alcohol metabolic process

cellular response to oxidative stress
cell cycle checkpoint

chromatin remodeling
chromosome segregation
lymphocyte differentiation

nuclear division
organelle fission

cellular response to interferon−gamma
G2/M transition of mitotic cell cycle

microtubule organizing center organization
rhythmic process

carboxylic acid transmembrane transport
DNA replication

meiotic cell cycle
mitotic nuclear envelope disassembly

fatty acid metabolic process
sister chromatid segregation

R
ep

re
se

nt
at

iv
e 

pa
th

w
ay

 n
am

e

0.075

0.050

0.025

FDR

GeneRatio

●

●

●
●

0.05

0.10

0.15

0.20

Figure 4. Enrichment of the target genes associated with the individual miRNAs in the miRNA–target transcript network.
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2.4. Cell Type-Enrichment Analysis

As small and bulk RNA sequencing results can be influenced by tissue composition,
we also assessed the association between the tissue composition of the biopsy, the disease
status of the patient, and the miRNA expression.

Using the xCell package, we calculated cell type-enrichment scores based on the
RNA-seq data for multiple cell types relevant in CeD pathophysiology: epithelial cells,
CD4- and CD8-positive T-cells, and B-cells (Figure 5A,B). Although the differences between
CeD (n = 6) and controls (n = 5) did not reach significance for any of these cell types,
immune cells did show a higher enrichment in CeD biopsies (B-cells: p = 0.03; CD8+ T-cells
p = 0.076; immune cell score p = 0.094), and epithelial cells were significantly depleted
in CeD compared to controls (p = 0.03) (Figure 5A). To investigate in which cell types
the miRNAs in the miRNA-target transcript network are expressed, we correlated the
expression levels of the miRNAs with the cell type–enrichment scores. Figure 5B shows
that miRNAs downregulated in CeD were correlated with enrichment for epithelial cells
and that miRNAs upregulated in CeD were correlated with enrichment for immune cells.

We then explored whether the CeD miRNAs are expressed in a cell type-specific
manner. A previous overview by De Rie et al. of the enrichment of specific miRNAs in
purified human cell types had shown that miRNA expression is highly cell type-specific [26].
We used the De Rie et al. data to explore whether the 111 up- and downregulated miRNAs
in CeD are likely expressed by immune cells or intestinal epithelial cells. Here, we observed
a significant correlation between the fold change of miRNAs between CeD and controls
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in our study and the enrichment scores for CD3+ T-cells (Pearson’s R = 0.27 p = 0.02) and
intestinal epithelial cells (Pearson’s R =−0.29, p = 0.01) reported by De Rie et al. Enrichment
scores of the other cell subtypes that were analyzed did not reach significance: CD4+ T-cells
(p = 0.97), CD8+ T-cells (p = 0.59), and B-cells (p = 0.894). Because not all the CeD miRNAs
we identified were included in De Rie et al., we calculated a miRNA-based enrichment
score for each miRNA profile by calculating enrichment for the top 10 CD3+ miRNAs and
the top 10 intestinal epithelial cell miRNAs from De Rie et al. Our CeD miRNA profiles
showed an enrichment for De Rie et al.’s CD3+ miRNAs and a depletion of De Rie et al.’s
intestinal epithelial cell miRNAs (Figure 5C). Moreover, correlation of the miRNA-based
enrichment scores with the expression of the miRNAs that were included in our miRNA-
target transcript network led to similar results (Figure 5D). miRNAs downregulated in
CeD were enriched for miRNAs expressed in intestinal epithelial cells, whereas miRNAs
upregulated in CeD were enriched for the immune cell-specific miRNAs.
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These results suggest that cell type–composition can partially explain the differences
in miRNA expression between CeD and controls. Therefore, we again tested the differences
between CeD and controls (Supplementary Table S2), including the miRNA-based cell
type–enrichment scores in the statistical model to correct for cell type-composition. Of the
31 miRNAs in the miRNA-target transcript network, nine showed differences between
CeD and controls (FDR < 0.1) that were independent of enrichment of CD3+ or intestinal
epithelial cell types.

2.5. Linking the miRNA-Target Transcript Network to Genes in CeD-Associated Genetic
Risk Regions

A previous study integrated multiple in-silico approaches to prioritize genes in CeD-
associated genomic risk regions and identified 118 genes as likely causal in CeD [9]. Our
data show a clear enrichment of the transcripts of these prioritized genes in CeD biopsies
(Figure 6A). Of the 118 genes, 102 were expressed in our biopsy transcriptome dataset,
and 13 of the 102 are also found in our miRNA-target transcript network (Figure 6B). This
suggests that, in addition to being affected by genetic factors that predispose to CeD, these
genes might also be regulated post-transcriptionally by CeD-associated miRNAs. This
network includes the previously mentioned STAT1 [9]. In the miRNA-target transcript
network, STAT1 is associated with miR-22-5p (R = −0.86; p = 6.6 × 10−4) and miR-30a-3p
(R = −0.88; p = 3.9 × 10−4), and there is other previous experimental evidence (TarBase:
HITS-CLIP) to support the interaction with miR-30a-3p (Supplementary Table S5).
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(FDR: * 0.05–0.1, ** <0.05).

3. Discussion

To our knowledge, this is the first study to use next-generation sequencing to generate
a CeD-specific miRNA-target transcript interaction network, thereby providing the first
unbiased analysis of miRNAs and their targets in the context of CeD. For our analyses,
we used public databases of predicted miRNA-target transcript pairs or experimentally
validated miRNA-target transcript pairs that showed a strong negative correlation in our
expression dataset. This resulted in a network of 2030 miRNA-target transcript pairs that
provides a starting point for understanding the complex relations between miRNAs and
target transcript regulation in CeD pathophysiology.

Our analyses show that miRNA target transcripts are involved in many pathways
important in CeD pathogenesis. Downregulated transcripts appear to be involved in, for
instance, (lipid) metabolism pathways [12], and upregulated (de-repressed) transcripts
appear to play a role in cell cycle pathways and immune-pathways (e.g., T- and B-cell-
pathways, interferon pathways) [27–29]. The network also includes several sets of miRNAs
belonging to the same miRNA families (families miR17, miR15, miR30, and miR28). MiRNA
families are defined by homology in their seed sequence, resulting in the targeting of the
same transcript [11]. Additionally, we identified different miRNAs that target different
transcripts in the same pathways, which suggests that miRNAs from different families
can cooperate to enhance repression of particular pathway, as previously suggested by
others [19,30].
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Our results suggest that CeD-associated miRNAs are involved in regulating barrier
homeostasis, a process that is affected in CeD [12]. Some miRNAs appear to do this by
affecting lipid metabolism in the small intestine. It has been shown, for instance, that mice
with a small intestinal DICER-knock out display abnormal absorption and processing of
lipids [31,32]. Lipid metabolism is also important in the maintenance of the regenerative
capacity of the small intestinal crypt [33,34]. One of the lipid metabolism transcripts
targeted in our small-intestinal miRNA-target transcript network is the transcription factor
PRDM16, which is targeted by miR-500a-3p and miR-361-3p. In a murine model, Stine et al.
showed that loss of Prdm16 inhibits transcription of many fatty-acid oxidation genes,
resulting in villous atrophy of the small intestine, which is a hallmark of CeD [35]. We
observed that a number of fatty-acid oxidation genes that are regulated by PRDM16
(CPT1A, ECI1, CD36, ACSL1, ACAA2, and HADH) are also targeted by CeD-associated
miRNAs (miR-361-3p, miR-155-5p, miR-15a-5p, miR-18a-3p, miR-425-5p, and miR-138-5p).
This shows that deregulated small intestinal miRNAs in CeD patients contribute to villous
atrophy by regulating genes related to fatty-acid metabolism. Another miRNA prioritized
in our study, miR-31-3p, is downregulated in CeD and has been previously associated with
cell cycle and immune pathways [14,15,20]. Tian et al. showed that miR-31-3p is highly
expressed in the intestinal epithelial crypt and that it is an important restorative factor in
the intestine through maintenance of the homeostasis of cell turnover from the intestinal
crypt to the villous tip [36]. MiR-31-3p knockout mice display more severe intestinal
inflammation as a response to chemically induced colitis (DSS), and this response can be
dampened by administration of miR-31-3p [37]. Other target transcripts that play a role in
intestinal epithelial maintenance are RXRA (targeted by the upregulated 155-5p, miR-1260b,
miR-132-3p, miR-425-5p, miR-18a-3p, and miR-425-5p; has a key role in retinol signaling in
the differentiation of mature enterocytes [38]), VAV2 (targeted by 155-5p, miR-15a/b-5p,
and miR-17-5p; has a role in wound repair in the intestine and in differentiation and
migration of mature enterocytes along the crypt-villous axis via RAC1 [39,40]), CUX1 (miR-
132-3p; transcription factor targeting VAV2 [40]), and PACSIN2 (miR-155-5p, miR-1260b,
miR-138-5p, and miR-361-3p; controls morphology of the microvilli [41]).

MiRNAs also appear to deregulate the immune response in CeD, for instance by
affecting interferon signaling, which is key in CeD pathophysiology [9,28,29]. Above, we
discussed how miR-31-3p is involved in intestinal barrier homeostasis, but downregulation
of miR-31-3p has also been shown to enhance the response of CD8+ cells to viral triggers,
leading to a higher pro-inflammatory interferon response [42]. The target genes of miR-31-
3p include HMGB2 and PRKDC, which are both nucleic acid sensors that are important
in eliciting an interferon response after sensing of cytosolic DNA [43,44]. Interestingly, a
paralog of HMGB2, HMGB1, has been proposed as a biomarker for CeD [45–47]. Another
prioritized and upregulated miRNA is miR-155-5p, a well-described immune miRNA that
also has a role in enhancing the interferon response [21–24]. UBXN1 is a target gene of
miR-155-5p in our miRNA-target transcript network. A previous study has shown that
UBXN1 inhibits pro-inflammatory NF-κB signaling and the interferon response to viral
stimuli [48,49]. Furthermore, knockdown of the miR-155-5p target gene JUNB in regulatory
T-cells has been shown to lead to increased production of pro-inflammatory cytokines,
such as IFN-gamma, in colonic tissue [50,51]. Regulatory T-cell function has previously
been shown to be affected in individuals with CeD [28]. In addition to miR-155-5p and
miR-31-3p, other miRNAs also play a role in interferon signaling. Our network connects six
additional downregulated miRNAs (miR-192-3p, miR-30a-3p, miR-653-5p, miR-22-5p, miR-
28-5p, and miR-151b) to transcripts involved in interferon-gamma response. Two of these
miRNAs, miR-22-5p and miR-30a-3p, were previously described to enhance interferon
signaling [52,53]. Altogether, our analysis shows that the deregulated interferon response
in CeD is partially regulated by a CeD-specific miRNA profile.

Interestingly, 13 of the CeD-associated target transcripts identified by our network
have previously been described to be potentially causally deregulated by CeD-associated
SNPs [9]. Two transcripts have also been experimentally validated to be the target of the
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CeD-associated miRNAs in our network: STAT1 has been shown to be regulated by miR-
30a-3p and ERRFI1 by miR-138-5p [9]. MiR-22-5p and miR-30a-3p, which we described
above as regulating genes associated with interferon signaling, also affect the transcripts of
genes in genetic risk loci for CeD such as STAT1 (miR-22-5p and miR-30a-3p) and TRAFD1
(miR-30a-3p) [9]. Several CeD-associated SNPs can cause altered binding sites for miRNAs,
thereby affecting the binding between miRNA and gene, depending on genotype [54].
The current study could not detect these kinds of differences due to the lack of genotype
information and, more importantly, limited sample size. However, taken together, these
results suggest that miRNAs and genetic risk SNPs associated with CeD cooperate in
deregulating the expression of transcripts in CeD pathophysiology.

A limitation in miRNA research is that most miRNA-target transcript interactions
have been predicted by target-prediction algorithms but have not been validated experi-
mentally. In the current network, 423 out of 2030 interactions have experimental evidence
supporting these interactions. The best way to get insight into physiological miRNA-target
transcript interactions would be via crosslinking-based methods such as HITS-CLIP, in
which miRNAs are crosslinked to target transcripts and subsequently sequenced [11,55].
Both miRNAs and mRNA are expressed in a cell type-specific manner, and therefore
expression in a biopsy is expected to depend on cell type differences between CeD and
controls (e.g., expansion of lymphocytes). Indeed, we observed that the predicted cell
type composition explained part of the miRNA differences that we observed between CeD
and controls. However, even though miRNAs may not be produced in the same cells as
the target transcripts, these miRNAs might still be able to affect transcripts with different
target cells [56,57]. Because of these cell type-dependent expression levels, miRNA-target
transcript interactions should ideally be performed at single cell-level [58,59]. While the
currently available single cell techniques are not yet capable of capturing the full spectrum
of miRNA-target transcript interactions, they do hold potential for the future [60].

Interestingly, our biopsy-focused approach identified three miRNAs—miR-21-3p,
miR-500a-3p, and miR-15b-5p—that also can be detected in circulation as biomarkers for
CeD [13,15,16,61] (Tan et al. submitted manuscript). We previously observed that these
three miRNAs were upregulated in the circulation of CeD patients compared to controls up
to two years the rise in current serological antibodies (anti-tissue transglutaminase) could
be detected (Tan et al. submitted manuscript).

Taken together, the results of our paired miRNA-target transcript sequencing study of
small intestinal biopsies of CeD patients versus controls have revealed that the miRNAs
deregulated in CeD could play a role in metabolic, cell cycle, and immune pathways that
are deregulated in the small intestine in CeD. Our study is an exploratory, hypothesis
generating study to investigate the potential role of miRNAs in CeD. Future functional
studies should be performed to validate and confirm the role of miRNAs candidates in
the pathogenesis of CeD, preferably in a cell-type specific manner. Moreover, to get more
insights in the specificity of these regulatory miRNA-gene interaction pathways, it would
be of value to also include other types of intestinal inflammation (e.g., Crohn’s disease) in
future studies. A better understanding of the role of these miRNAs in CeD pathogenesis
could aid in the search for biomarkers relevant to disease processes and the identification
of novel therapeutic options for CeD.

4. Materials and Methods
4.1. Sample Collection

Pediatric patients and controls were included at the San Gerardo Hospital, Monza,
Italy. The parents of all participants provided informed consent for the study. Duodenal
biopsies were collected from untreated CeD patients at time of diagnosis (n = 33). CeD diag-
nosis was established based on serology (anti-transglutaminase antibodies) and histopatho-
logical examination (villous atrophy and influx of intraepithelial lymphocytes). Biopsies
were also collected from control individuals (n = 10) who underwent upper endoscopies for
other indications and did not show signs of CeD in the histopathological examination of
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small-intestinal biopsies. Clinical characteristics are described in Supplementary Table S1.
The study was conducted after approval of the San Gerardo Hospital Ethical Committee,
Monza, Italy.

4.2. RNA Isolation, Small RNA, and mRNA-Sequencing

RNA was isolated from the small-intestinal biopsies using either the miRVana isola-
tion Kit (Ambion, Carlsbad, CA, USA) or qiazol lysis reagent (Qiagen, Hilden, Germany,
79306). The proportion of CeD and controls did not differ between both isolation meth-
ods (χ2 P = 0.43). RNA quality was assessed using the Caliper GX bioanalyzer (Agilent,
Santa Clara, CA, USA). Small RNA-libraries were generated starting from 500 ng total
RNA using the TruSeq Small RNA Sample Prep kit (Illumina, San Diego, CA, USA), im-
plementing 15 amplification cycles. RNA libraries were prepared as previously described
in Zorro et al. [9,62], using the Illumina TruSeq stranded total RNA library kit with a ri-
boZero rRNA depletion step. After measurement of the cDNA concentration, libraries
were pooled equimolarly per lane on a HiSeq 2500 (Illumina San Diego, CA, USA). Raw
reads were aligned to miRbase 22 (small-RNA-seq) and human_g1k_v37 ensemble Release
75 (RNA-seq), as described previously (Tan et al. submitted manuscript; [62]). For all
43 samples, small-RNA libraries were generated and sequenced. Bulk RNA-sequencing
was performed for 5/10 of the controls and 6/33 of the CeD patients (GEO accession
number GSE146190) [9,62].

4.3. Prioritizing Genes Targeted by miRNAs in the Small Intestinal Biopsies
4.3.1. Differential Expression Analyses in miRNA Sequencing and RNA Sequencing

To find miRNAs and genes that are deregulated in CeD in small intestinal biopsies,
we performed differential expression analysis between CeD patients and controls for the
miRNA profiles and RNA profiles separately (R-package DESeq2, version 1.26.0 [63]),
while correcting for the covariates age and sex. p-values were adjusted for multiple testing
using the Benjamini-Hochberg correction for False Discovery Rate (FDR) [64]. Regularized
log-normalized miRNA and RNA counts were used in all downstream analyses.

4.3.2. miRNA-Target Transcript Network

To build a miRNA-target transcript network (see Figure 1), we first identified miRNA-
target transcript pairs by combining data provided by two prediction databases (TargetScan
version 7.2 [65] and microTCDS version 7.0 [66]) and by two experimentally-validated
miRNA target databases (TarBase version 7.0 [67] and miRTarbase version 7.0 [68]). We
then calculated Pearson’s correlations for all miRNA-target transcript pairs, and only
those pairs with negative Pearson’s correlations (R < −0.7) and a p-value < 0.05 were
subsequently integrated into the miRNA-target transcript network and visualized with the
RedeR package [69].

4.4. Enrichment Analyses

We performed pathway analyses to identify which pathways were associated to
(1) transcripts that were differentially expressed in CeD versus controls and (2) all the
transcripts combined that are targeted by miRNAs in the miRNA-target transcript network.
To zoom in on specific functions of the individual miRNAs in the miRNA-target transcript
network, we also performed pathway analyses using separate transcript lists per miRNA.
Pathway analyses were performed using the R-package clusterProfiler (version 3.14.3)
using Gene Ontology (GO) terms (Biological Process) [70]. The online tool REVIGO was
used to reduce the number of redundant GO terms from the long lists of significantly
associated GO terms (settings: small 0.5) [71].

4.5. Cell Type-Enrichment Analyses

To gain insight into the cell types that might contribute to the miRNA and bulk
transcript differences between CeD and controls, we calculated enrichment scores for cell
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types using two approaches. In the first approach, we used xCell, an in-silico method
that can be used to reliably calculate enrichment of certain cell types in bulk RNA-seq
samples [72–74]. In the second approach, we used cell type–specific miRNA information
to calculate cell type–enrichment scores from the miRNA-seq data. Here, we extracted
the top 10 most-enriched miRNAs specific for immune cells and intestinal epithelial cells
from a publicly accessible miRNA expression atlas [26]. This list was then used as input
for the R-package GSVA (version 1.34.0) to perform single sample enrichment analyses
to calculate: (1) the miRNA-based cell type enrichment score and (2) the enrichment for
previously prioritized CeD genes [9].
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