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Practical Multi-Party Private Set
Intersection Protocols

Aslı Bay , Zekeriya Erkin , Senior Member, IEEE, Jaap-Henk Hoepman, Simona Samardjiska, and Jelle Vos

Abstract— Privacy-preserving techniques for processing sets of
information have attracted the research community’s attention
in recent years due to society’s increasing dependency on the
availability of data at any time. One of the fundamental problems
in set operations is known as Private Set Intersection (PSI). The
problem requires two parties to compute the intersection between
their sets while preserving correctness and privacy. Although
several efficient two-party PSI protocols already exist, protocols
for PSI in the multi-party setting (MPSI) currently scale poorly
with a growing number of parties, even though this applies to
many real-life scenarios. This paper fills this gap by proposing
two multi-party protocols based on Bloom filters and threshold
homomorphic PKEs, which are secure in the semi-honest model.
The first protocol is a multi-party PSI, whereas the second
provides a more subtle functionality - threshold multi-party PSI
(T-MPSI) - which outputs items of the server that appear in
at least some number of other private sets. The protocols are
inspired by the Davidson-Cid protocol based on Bloom filters.
We compare our MPSI protocol against Kolesnikov et al., which
is among the fastest known MPSI protocols. Our MPSI protocol
performs better than Kolesnikov et al. in terms of run time, given
that the sets are small and there is a large number of parties. Our
T-MPSI protocol performs better than other existing works: the
computational and communication complexities are linear in the
number of elements in the largest set given a fixed number of col-
luding parties. We conclude that our MPSI and T-MPSI protocols
are practical solutions suitable for emerging use-case scenarios
with many parties, where previous solutions did not scale well.

Index Terms— Privacy-preserving protocols, PSI, MPSI,
threshold MPSI, threshold PKE, Bloom filters.

I. INTRODUCTION

MULTI-PARTY computation (MPC) has been an active
research field for several decades, and it enables us to

design functions with secret inputs from two or more parties.
The research challenge is to design such functions efficiently
in terms of several aspects such as run-time, bandwidth, and
storage needed to perform such functions. Recently, MPC has
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received more attention from the industry due to the General
Data Protection Regulation (GDPR), which was introduced in
the European Union in May 2018.

In this paper, we focus on a specific MPC problem, namely
Private Set Intersection (PSI), which aims at calculating the
intersection of two or more sets without revealing the set
items of the involved parties or in certain settings, even the
set sizes. The problem in the two-party setting has attracted
significant attention from the research community in the last
decades [1]–[9]. Some of these protocols have been extended
to the multi-party setting, commonly referred to as Multi-party
Private Set Intersection (MPSI). A much less common type
of protocol is Threshold MPSI (T-MPSI), which returns all
elements that are in at least a threshold amount of sets. This
type of protocol is also sometimes referred to as over-threshold
or d-and-over intersection.

So far, MPSI solutions have been designed towards numer-
ous applications: Online recommendation systems including
dating sites [10], confidential data sharing such as security
incident information [11], border protection against criminal
attempts [12], comparison of no-fly lists [7], network security
operations such as botnet detection and detecting intrusions by
finding the sets’ suspicious IPs [13]. Of course, these methods
reach much further than only these examples: MPSI protocols
can be used among several commercial companies to find
the intersection of customer lists where each list, except the
intersection, is protected. The list of common customers can
be used to plan promotions for such customers [14]; MPSI
can be used among the community of medical professionals
to find out the patients of a hospital who has participated in
the medical tests of different research labs [15]; MPSI can also
be used in multi-party access control, where several co-owners
of a common content each specify a set of users who are
permitted to access data. The ones in the intersection are
allowed to access the content [16]; MPSI can be employed
among several enterprises which have private audit logs of
connections to their corporate networks and are interested in
identifying similar activities in all networks [17].

Most of these multi-party applications feature only a
few parties t and generally large numbers of items n.
Many works have therefore reasonably focused on time and
bandwidth-efficient protocols in the case where n � t . How-
ever, these protocols typically translate poorly to a situation
with many parties and few elements. Two exemplary and
increasingly relevant applications are the following.

Identifying High-Risk Individuals in the Spread of Disease:
If a disease spreads in an organization, it is important to
identify those who form a high risk of exposure, particularly
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if the disease is hard to detect otherwise. Through contact
tracing, we can identify those at risk who have been in contact
with someone infected. This process requires those at risk to
share an exhaustive list of recent encounters. While this is an
important practice, this list might reveal additional sensitive
information such as visited locations and other specific behav-
iors. In situations where the collection of this information is
impermissible, a (threshold) MPSI can be used to identify
individuals that form a high risk while preserving the privacy
of others. For example, by performing an MPSI with threshold
T on a group of people’s contact details, we can identify those
individuals that have had contact with at least T other people,
which means that these people run a higher risk of infection.
The protocol only reveals those individuals that met many
others, and it does not reveal any other information.

Criminal Activities on Smart Roads: In our EU project
SECREDAS,1 we aim at enabling autonomous vehicles on
smart roads. Achieving this goal will have an enormous impact
on changing transportation in general, including but not limited
to reducing traffic jams and thus CO2 emission, better planning
for building roads, and most importantly, improving safety.
Given that smart roads and autonomous vehicles will heavily
rely on several types of sensory data and computation, it is also
mandatory to provide security and privacy while preserving
functional safety and operational performance.

While security and privacy are essential requirements in the
project, it is also essential to provide auditing functionality in
case of urgency where criminal activities are involved. One
such use case is detecting theft that happens at high-way
parking areas (this use case was first addressed in [18]). Within
a network of smart roads with parking areas, it is necessary
to identify a particular vehicle or vehicles that appear in a
number of parking areas. The ideal privacy-preserving solution
for a vehicle tracking system would be hiding the identifiers
of each car, thus providing privacy for the vehicle owners,
but in case of detecting criminal activity, it should be possible
to identify the vehicle that visits certain parking areas. More
precisely, it is possible to use cameras and other sensors to
detect vehicles in parking areas. What we are interested in is
the vehicles visiting more than a threshold number of parking
areas. Thus, our problem can be formalized as a T-MPSI
problem.

Anonymous Voting and Consensus: In voting, we often
encounter the situation where there are many voters t and few
candidates n. Consider an approval voting scheme, where we
let voters vote on multiple candidates to find which candidates
are approved in consensus or which candidates pass at least T
votes. In the simplest form, such a vote works by counting up
all votes and releasing the final counts. However, a candidate
might reason about voting behavior from these results and
trouble those from whom they had expected a vote. Another
example of a bad consequence of releasing all counts is that
voters might be urged to change their behavior in future
votes, dropping support for candidates close to surpassing
the threshold, while they might not necessarily disapprove.
Thus it is prudent that no other information than the set

1https://www.ecsel.eu/projects/secredas

of approved candidates is revealed, but at the same time,
the voters can be sure that the count was done securely.
This can be achieved using an MPSI protocol: Every voter
submits the set of candidates they approve of, and the final
intersection represents the vote results. In the same way,
a (threshold) MPSI protocol can be used for determining
threshold-approval.

A. Related Work

PSI protocols have been thoroughly studied, and some
works are already fast enough to compute the intersection of
large sets in the order of seconds [1], [2]. There are also many
other works that compute the private intersection of multiple
sets (MPSI) [13], [17], [19]–[24]. However, related to our
problem, namely the threshold MPSI (T-MPSI), existing work
is limited [19], [21].

Several different techniques are used to design PSIs and
MPSIs, such as oblivious transfer, permutation-based hashing,
circuit-based computations, Bloom filters, cuckoo hashing, and
oblivious programmable hashing.

Among those methods, the fastest PSI protocols are by
Pinkas et al. [8], [9], where the former uses oblivious transfer
and permutation-based hashing and the latter is based on a
generic circuit-based multi-party computation.

One of the earliest works proposing an MPSI protocol is by
Lai et al. [20]. However, this protocol leaks information to the
involved parties about the contents of each party’s set, as it
sends part of each party’s set encoded as a Bloom filter to other
parties in plain text. Like a hash map, a Bloom filter consists
of bins, although these are Booleans for Bloom filters. The
parties compute the Bloom filter representing the intersection
using a logical AND operation between the bins of each filter.

Miyaji and Nishida in [21], [22] propose a multi-party
PSI protocol based on Bloom filters and an additively homo-
morphic encryption scheme. They also introduce a thresh-
old PSI [21] but do not provide a security analysis. Their
computational complexity is linear in the number of items
in the largest data set and linear in the size of the Bloom
filter.

Another work proposed by Many and Dimitropoulos [25]
is based on Counting Bloom Filters. Similar work is done by
Karapiperis et al. [26], in which they use a Count-Min sketch
data structure. In this work, by using homomorphic operations
and symmetric noise addition techniques, sketches are used
to represent the elements of local data sets which are then
intersected to provide a global synopsis [27], [28]. However,
in both [25] and [26], the T-MPSI definition is different from
ours. Namely, our protocol outputs the set of elements that
appear in at least a threshold number of parties’ data sets
(including the server’s), while their protocols also output the
number of times such an element appeared in all data sets. For
this reason, we do not compare them against our protocol.

Several PSI protocols use Cuckoo filters. Like Bloom filters,
they are an approximate set representation, but in the context
of PSI, they serve a fundamentally different purpose. While
Bloom filters contain bits that can be combined using a logical
AND operation to compute the Bloom filter representing the
intersection, a Cuckoo filter cannot be combined in such a way.
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Instead, such a filter contains bins that can contain multiple
entries, and they are merely used as a binning technique to
limit the number of pairwise comparisons. There exist other
such binning techniques as well [29], [30]. The protocol by
Pinkas et al. [30], for example, performs a private set inclu-
sion protocol for each element in one party’s set with regard to
the others set to find the intersection. By first distributing the
elements over bins, the problem is reduced to set inclusions
between respective bins rather than interactions between all
elements. Kolesnikov et al. [31] use a similar trick to reduce
the number of oblivious PRF interactions.

In addition to [21], Kissner and Song in [19] also address
the threshold PSI problem, using additively homomorphic
encryption, equivocal commitments, mix-net, and a shuffling
protocol. The proposed protocols, which are in the semi-honest
and malicious models, have cubic and quartic complexity in
the number of sets.

A radically different approach was presented by
Kolesnikov et al. [17], which uses a novel primitive based
on oblivious transfer to evaluate whether all parties have a
specific item in their sets. The authors also implemented this
scheme, and they showed that it is highly time-efficient for
large amounts of items. However, the time complexity scales
quadratically in the number of parties. Another scheme by
Inbar et al. [13] is also based on Oblivious Transfer and aims
to evaluate a Garbled Bloom Filter. This scheme was also
implemented, but the implementation is not readily available.
Interestingly, the authors also propose a scheme proven secure
in the augmented semi-honest model where communication
scales logarithmically in a hyper-cube optimization.

There is also a recent paper by Badrinarayanan et al.
[32] which provides threshold MPSIs which have sublinear
communication complexities with a threshold number T that
can be sublinear in the number of elements in data sets
(namely, n). However, their threshold MPSI functionalities are
completely different than ours. Namely, for t parties P1, P2,
. . . , Pt each of which holds a private data set Si of size n,
their first threshold functionality allows the parties to learn the
intersection S = ∩t

i=1 Si only if |S| ≥ n−T , while the second
functionality provides intersection if |∪t

i=1 Si−S| ≤ T . Neither
of the two matches our threshold definition so their work is
not comparable to ours.

Finally, a line of interesting research, although not directly
comparable to the other works we discussed, uses ε-differential
privacy [33] to achieve various operations while providing
some level of privacy. In general, differential privacy cannot
offer a provable guarantee of privacy and is always accompa-
nied by a trade-off between accuracy and security. Still, it is
widely used in practice, for example, by both Google and
Apple to aggregate and analyze user’s data [34], [35]. While
usually not a strictly PSI technique, it can be used for find-
ing (approximate) intersections.2 One dedicated PSI algorithm
using differential privacy is the one by Xue et al. [36]. It is
an MPSI protocol where each client locally perturbs their data
set using a randomized mechanism that satisfies ε-differential

2We have included Google’s general RAPPOR algorithm [34] in Table I,
but note that it is not optimized for PSI.

privacy and sends their data set in this new form to the
server. Then the server computes the set intersection privately.
While the protocol has linear complexity in the number of
parties, it also scales with the size of the universal set, which
is typically significantly larger than the size of a party’s set.

B. Our Contribution

We consider a scenario where many (t) parties - each
with their own small set of n items - want to compute the
intersection of all sets through communication with a single
leader – that we call server (as opposed to pairwise communi-
cation). Secondly, we consider a scenario where many parties
want to compute the collection of items that a leader shares
with at least � parties. In both cases, no party may learn the
other parties’ sets.

In particular, we propose two protocols in the semi-honest
security model – namely an MPSI protocol inspired by the
PSI of Davidson and Cid [3] that functions in a star topol-
ogy and solves the problem from the first scenario; and an
efficient threshold MPSI (T-MPSI) that solves the problem
from the second scenario. We use Bloom filters, which are
efficient probabilistic data structures for representing sets in a
finite space. Note that Bloom filters have been used before for
PSI in [3]–[7] and also for computing MPSIs in [13], [21],
[22]. For the construction of our T-MPSI, we further use a
secure comparison protocol (SCP) as a sub-protocol. Here we
describe and use in our implementation a modification of the
Kerschbaum et al. SCP [37]. The modification is necessary to
prevent leakage of private data. Note that it is possible to use a
different SCP as long as it satisfies our security requirements.

Our MPSI scheme bears some similarities with the MPSI
from [21], [22]: However, their protocol is not secure against
collusion that involves the dealer. Our proposed MPSI protocol
circumvents this issue by letting each party randomize individ-
ually. Furthermore, our scheme is significantly more efficient
by at least a factor of λ - the statistical security parameter
- and has the advantage that the functioning of the protocol
does not depend on an outside party.3

Our contributions can be summarized as follows:
• An MPSI protocol that scales linearly with the number

of parties. The protocol improves the state of the art
significantly for large numbers of (corruptible) parties,
for instance, when there are 10 or more parties with sets
of around 64 elements.

• A T-MPSI protocol that scales quadratically with the
number of parties. The protocol stays within 1 minute of
run-time when 50 parties have 4 elements in their sets.

• To the best of our knowledge, among the MPSIs based
on public-key techniques, our MPSI protocol requires
the least effort in both computation and communication.
Furthermore, our complexity analysis shows that the
T-MPSI we propose is the most efficient among existing

3On the other hand, our T-MPSI is quite different from the one in [21]:
in our construction, we use a secure comparison protocol as a sub-protocol
which is not the case of the T-MPSI in [21], where again the outsourced
dealer must not collude. Our efficiency is again better both in computation
and communication (see Table I), and we provide a full simulation-based
proof, while the T-MPSI in [21] completely lacks a security analysis.
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TABLE I

THE COMPARISON OF PREVIOUS DESIGNS WITH OURS IN THE SEMI-HONEST SETTING. n IS THE NUMBER OF ELEMENTS IN A DATA SET; t IS NUMBER OF
PARTIES; u IS THE SIZE OF THE UNIVERSAL SET; � IS THE threshold OF HOMOMORPHIC PKE; κ IS THE COMPUTATIONAL SECURITY PARAMETER;

λ IS THE STATISTICAL SECURITY PARAMETER; AND log |X | IS THE SIZE OF THE CIPHERTEXT X IN BITS. THE MERGED COLUMNS REFER

TO A PROTOCOL’S TOTAL COMPLEXITY, WHILE SEPARATE SERVER AND CLIENT COLUMNS EXPRESS THE ISOLATED COMPLEXITIES

OF THE SERVER AND A CLIENT. ∗ , ∗∗–THESE SOLUTIONS ARE BASED ON DIFFERENTIAL PRIVACY, WHILE ALL THE OTHER
SOLUTIONS ARE CRYPTOGRAPHIC. ∗∗ IS NOT OPTIMIZED FOR PSI BUT IS A GENERAL PRIVACY

PRESERVING CROWDSOURCING STATISTICS TECHNOLOGY

ones: the computational and communication complexities
are linear in the number of items in the largest data set.
For the comparison of the existing MPSI and T-MPSI,
we refer the reader to Table I, where we give separate
complexities for the server and clients.4

• An implementation of both of our protocols in C++.5

It is to our knowledge the first T-MPSI protocol to be
implemented and open-sourced.

• Both protocols require no trusted dealer but only a server
that can be corrupted and can be freely chosen from the
involved parties.

• Both protocols are secure in the semi-honest model,
meaning that no party learns anything about the other
parties’ sets beyond their size. We provide a formal
simulation-based security proof for both of the protocols
to justify our security and privacy claims.

The rest of the paper is organized as follows: In
Section II, we give the necessary preliminaries and notations.
In Section III, our new MPSI protocol is introduced with its
security proof and complexity analysis. Later in Section IV,
we describe our T-MPSI and provide its security proof and
complexity analysis. Afterwards, we compare our implemen-
tation to the state of the art in Section V, and we conclude
our paper in Section VI.

II. PRELIMINARIES AND NOTATIONS

Throughout the paper we use the following notations:
ZN : the ring of residue classes modulo N .
When N is a prime p, it is denoted by Zp .
Zp[X]: the ring of polynomials with coefficients from Zp .
t : the number of parties.
u : the cardinality of the Universal set.

4For [21], the given complexities of the server are for the outsourced dealer.
5The source code for the implementation can be found at

https://github.com/jellevos/threshold-multiparty-psi

Pi : i -th party – a client for i ∈ {1, . . . , t − 1} and a server
for i = t .

Si : a private data set of i -th party.
ni : the size of Si .

n: the size of the biggest data set among all, n =
max{n1, n2, . . . , nt }.

�: a threshold of the homomorphic PKE.
PSI: private set intersection.
MPSI: multi-party private set intersection.
T-MPSI: threshold multi-party private set intersection.
κ : the computational security parameter.
λ: the statistical security parameter.
log |X |: the size of the ciphertext X in bits.
S: the intersection of Si ’s, S = ∩t

i=1 Si .
ST : T -threshold intersection of St with the Si ’s, ST =
{x ∈ St |∃Si1 , . . . , SiT , x ∈⋂T

j=1 Si j }
hi : hash function hi : {0, 1}∗ → {0, 1}m , 1 ≤ i ≤ k.
(pk, sk): a pair of public and private key.
ski : a secret share of sk among t participants.
Enc(pk, M) and Dec(sk, C) (shortly Enc(M) and

Dec(C)): generic public-key encryption of M and decryption
of C , respectively.

BFi: a Bloom filter of size m on the set Si .
IBFi : an inverted Bloom filter of size m on the set Si .
EBF and EIBF: entry-wise encryption of a Bloom filter and

an inverted Bloom filter, respectively.
’+H ’: homomorphic operation over ciphertexts.
I: a set I = {i1, . . . , iη} ⊂ {1, 2, . . . , t − 1}.
Ī: the complement of I with respect to {1, 2, . . . , t − 1}.
Inpi : the inputs of the clients where Inpi =

(Si , |Sj |tj=1, pk, ski ), i ∈ {1, . . . , t − 1}.
Inpt : the input of server, where Inpt = (St , |Sj |tj=1, pk).

A. Bloom Filters

Bloom filters were introduced by Bloom [38] as an efficient
representation of data sets.
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A Bloom Filter, BF = (BF[0], . . . , BF[ j ], . . . , BF[m − 1])
of length m encodes a set S of length at most n into m-
bit string by means of randomly chosen k hash function,
(h1, h2, . . . , hk ), where hi : {0, 1}∗ → [0, 1, . . . , m − 1].
In order to insert S into a Bloom filter, this is first done
by initializing all indices to 0, and then for every x ∈ S,
we set the indices h1(x), h2(x), . . . , hk(x) to 1. If the index
is already 1, we do nothing. Any party can verify whether an
element is stored in a Bloom filter or not by a simple checking
procedure. Bloom filters do not have a false negative error
as they are deterministic and when an element is represented
in a Bloom filter, in the query phase, their indices are all
one. However, they yield a false positive error as the values
BFi [hi (x)]might be all one for every i ∈ {1, . . . , k}. As shown
in [39], the probability that a particular bit in the Bloom filter is
1 is p = 1−(1−1/m)kn. The upper bound of the false positive

probability is ε = pk×
(

1+O
(

k

p

√
ln m − k ln p

m

))
, which is

negligible in the number of hash functions k. In order to cap ε
in a specific rate, the lower bound of m is m ≥ n log2 e·log2

1
ε ,

where e is the base of natural algorithm and the number of
hash functions is k = m

n ln 2. When substituting the minimal
m, we get the number of hash functions as k = log2 1/ε. For
example, when ε = 2−50, then we need k = 50 hash functions.
We make use of inverted and encrypted Bloom filters defined
in [3] as follows:

Inverted Bloom Filter: For a given Bloom filter BFi of Si

of a client i , the corresponding inverted Bloom filter IBFi is
defined as IBFi [ j ] = BFi [ j ] + 1 mod 2.

Encrypted Bloom Filter: Let BFi be the Bloom filter of a
data set Si of a client i , the corresponding encrypted Bloom
filter is EBFi [ j ] = Encpk(BFi [ j ]), where pk is a public key
of a secret key sk.

B. Security Definitions

We will need the following standard security definitions.
A function μ is called negligible (in k) if for every positive

polynomial p, and sufficiently large k it holds that μ(k) <
1/p(k). We denote negligible functions by negl(k).

Definition 1 (Computational Indistinguishability): We say
that two distribution ensembles X = {Xk}k∈N and Y =
{Yk}k∈N indexed by a security parameter k are computationally
indistinguishable if for any probabilistic polynomial time
algorithm A:

|Pr [1← A (Xk)]− Pr [1← A (Yk)]| = negl(k) .

We will denote this by X ≈c Y .
We prove the security of our protocols in the semi-honest

model with static adversaries where all protocol participants
are assumed to run in probabilistic polynomial time. We have:
• Adversaries - can be any subset of the protocol partic-

ipants. We will typically refer to them as the corrupted
parties. As usual, we do not consider outside adversaries,
because they can be mitigated by standard network secu-
rity techniques.

• Static adversaries - the set of corrupted parties is deter-
mined before the execution of the protocol and does not

change during the execution. This means that the honest
parties cannot become corrupted and reveal their secret
values during the execution of the protocol.

• Semi-honest model - the corrupted parties follow the
protocol honestly: they cooperate collude) to infer infor-
mation about the honest parties, but do not exhibit active
malicious behavior and do not deviate from the proto-
col. This is in contrast to the malicious model where the
adversaries can behave in unpredictable ways and modify
and suppress messages or leave the protocol execution
altogether. While the semi-honest model offers weaker
security than in the malicious model, it is appropriate
in our privacy-preserving setting, since it guarantees that
there is no unintentional leakage of private information.
We emphasize that with appropriate extensions, the pro-
tocols can be turned into ones secure in the malicious
model, but much less efficient.

We use the following definition to define security against
semi-honest adversaries.

Definition 2 (Semi-Honest Security for Deterministic Func-
tionalities [40]):

Let f : ({0, 1}∗)t → ({0, 1}∗)t be a deterministic function-
ality of a t-party protocol �, where fi (x1, . . . , xt ) is the i -th
component of f . Let fI(x1, . . . , xt ) denote the sub-sequence
of fi1 (x1, . . . , xt ), . . . , fit (x1, . . . , xt ), for I = {i1, . . . , i�} ⊂
{1, 2, . . . , t},. We assume that t-party protocol computes f .
Then, the view of i -th party during an execution of the protocol
� on input x = (x1, . . . , xt ) is denoted by VIEW�

I (x) =
(I, VIEW�

i1
, . . . , VIEW�

it
). We say that � privately computes

f , if there exists a polynomial-time algorithm denoted by a
simulator S such that for every I:

{S(I, (xi1 , . . . , xi� ), fI(x))}x∈({0,1}∗)t

≈c {VIEW�
I (x)}x∈({0,1}∗)t .

This security definition states that the view of each party
in I can be simulated by only looking at their inputs and
outputs.

Remark 1: Note that if we are dealing with probabilistic
functionalities, the output of the protocol during the execution
corresponding to VIEW�

I (x) need not be the same as f (x).
Therefore, these need to be appended to the view of the
semi-honest coalition of parties in I and to the simulated view,
respectively.

Definition 3 (Public Key Encryption (PKE)): A public key
encryption scheme � = (KGen, Enc, Dec) consists of three
algorithms that for security parameter k ∈ N and two finite
sets M,R ⊆ {0, 1}∗ are defined as follows:

• The key-generation algorithm KGen is a probabilistic
algorithm that on input 1k and a random string outputs a
public and private key pair (pk, sk).

• The encryption algorithm Enc is a probabilistic algorithm
that on input public key pk, message M ∈M and random
r ∈ R outputs C = Enc(pk, M, r) as the ciphertext.

• The decryption algorithm Dec is a deterministic algo-
rithm that takes as input a secret key sk and ciphertext
C , and outputs either a message M � = Dec(sk, C) ∈M
or a symbol ⊥ /∈M to indicate an invalid ciphertext.
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Note that it is usually assumed that there is a trusted third
party who sets up all public parameters A standard security
notion for PKE is indistinguishability under chosen plaintext
attack captured in the following definition.

Definition 4 (IND-CPA Security): A PKE scheme � is
called IND-CPA-secure if any PPT algorithm A has only neg-
ligible advantage in the following Expind-cpa

�(1k)
(A) experiment:

Experiment Expind-cpa
�(1k)

(A)

(pk, sk)← KGen()
(M∗0 , M∗1 )← AODec(pk)

b
$← {0, 1}

C ← Enc(pk, M∗b )
Return 1 iff b = b� otherwise 0, i.e.

Adv = Pr
[
Expind-cpa

�(1k )
(A) = 1

]
− 1/2 = negl(k) .

Informally, a public key encryption scheme is additively
homomorphic, if given two ciphertexts c1 = Enc(pk, M1) and
c2 = Enc(pk, M2) one can efficiently compute Enc(pk, M1+
M2) without the knowledge of the secret key. More formally,
we have the following definition.

Definition 5 (Additive Homomorphism): A PKE scheme �
with message space M and ciphertext space C is additively
homomorphic if for all (sk, pk)← KGen(), all M1, M2 ∈M
and arbitrary scalar α, there exists an efficient homomorphic
operation +H over C, such that

Dec(sk, Enc(pk, M1)+H Enc(pk, M2)) = M1 + M2 and

Dec(sk, αEnc(pk, M1)) = αM1.

A useful algorithm for an additively homomorphic scheme
is a ReRand algorithm, that allows anyone knowing the public
key to rerandomize the ciphertext.

Definition 6: Given pk and a ciphertext C = Enc(pk, M),
encrypted using additively homomorphic PKE scheme,
the algorithm ReRand is defined as ReRand(C) = C +H

Enc(pk, 0), i.e. an encryption of 0 is added to the ciphertext.
Note that rerandomization does not change the plaintext of

C . On the other hand, rerandomization refreshes the ciphertext,
and this is necessary in order to assure that the randomness
in the final ciphertext is not related to the randomness used
to produce the initial ciphertext. Typically, one needs to
refresh/rerandomize the ciphertext after every homomorphic
operation.

Threshold Public Key Encryption Often it is desirable
that the secret key sk of a PKE is distributed among several
parties where each party holds a share of the key ski , and
decryption is only possible if enough parties (� out of t)
combine their decrypted shares of the message. In this setting,
the KGen algorithm generates several secret keys ski instead
of one; the encryption algorithm Enc works the same as in a
regular PKE; The decryption is realized through two separate
algorithms - a share decryption algorithm ShDec with which
� involved parties holding a secret key ski produce their
decryption share Ci , and a combining algorithm Comb which
using only the public key and the � decryption shares outputs
a message M � (or ⊥ to indicate invalid). We will denote such
a scheme as (�, t) TPKE. Note that parties in such a scheme

can either generate these keys using a suitable distributed key
generation protocol [41], or they can trust a third party to do
so.

Following the approach of [24] we require an extension
of the decryption algorithm of an additively homomorphic
threshold PKE that allows the involved parties to learn whether
a ciphertext is encryption of zero or not, but nothing else.
We will call such decryption algorithm “Decryption-to-zero”
and denote it by ShDec0. This property can typically be
achieved by randomizing the ciphertext by each of the involved
parties, combining the results in a new value, and jointly
decrypting this obtained value. The result is that the decrypted
value is randomized if it was different from 0 and nothing can
be learned from it, apart from not being zero.

C. Additivelly Homomorphic Threshold PKE Schemes

Our protocols require the existence of an additively homo-
morphic threshold PKE that additionally has a decryption-to-
zero variant defined. The threshold ElGamal PKE [42] and the
threshold Pailler PKE [43] are two well-known examples that
satisfy these properties. Here we briefly explain the latter.

Threshold Paillier PKE [43]. A (�, t)-threshold version of
the Paillier’s scheme is briefly described as follows:

Key Generation: Generate two primes p and q such that
p = 2 p� + 1 and q = 2q � + 1 where p� and q � are two other
primes and different from p and q , and gcd(N, φ(N)). Then
set N = pq and M = p�q �. Let β be an element randomly
chosen from Z

∗
N . Also, pick (a, b) ∈ Z

∗
N × Z

∗
N and set g =

(1+N)abN mod N2. The secret key sk = (β×M) is shared
as follows: Let a0 = βM and generate the polynomial f (X) =∑�

i=0 ai Xi where ai ∈R {0, . . . , N M − 1}. The private key
share of the i -th party is ski = f (i) mod N M for t number
of parties. The public key is pk = (g, N, θ = aMβ mod N).

Encryption: Pick a random r ∈ Z
∗
N and encrypt the

message X by C = gXr N mod N2.
Share Decryption: The i -th party computes Ci = C2�ski

mod N2, where C is the ciphertext and � = t !.
Combining: Let S be a subset of � different Ci -s (of the

� involved parties). Combine the elements of S as follows:

X = L(
∏

i∈S C
2λS

0,i
i mod N2)× 1

4�2θ
mod N , where λS

0,i =
�

∏
i �∈S\{i} i �

i �−i ∈ Z and L(u) = u−1
N .

A Decryption-to-zero variant can be realized as follows:
Each party raises the ciphertext C to a nonzero random power
as Cri and the results of all parties are multiplied together to
obtain Cri = gX (ri )(rri )N mod N2. The obtained result
is then jointly decrypted by the involved parties. If the result
of the decryption is 0, they conclude that X = 0. Otherwise,
they see a random value coming from the randomization of
the ciphertext, from which nothing can be inferred about the
plaintext.

D. Davidson-Cid Two-Party Private Set Intersection Protocol

Our work builds upon Davidson-Cid’s two-party Private Set
Intersection (PSI) protocol proposed in [3]. In the protocol
both parties P1 and P2 are given k hash functions h1, . . . , hk ,
P1 has a pair of public pk (also available to P2) and private
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Fig. 1. Davidson-Cid two-party PSI [3].

key sk of an IND-CPA additively homomorphic scheme. They
want to jointly find the intersection of their sets S1 and
S2, in such a way that P1 learns the output, but no other
information is leaked to any of the parties apart from the sizes
of the sets, that is given as an input to both parties.

In essence, in the protocol P1 encrypts the inverted Bloom
filter IBF1 that represents the set S1 and sends it to P2. The
other party P2, based on it’s own set computes cumulative
randomized values over the ciphertexts, without learning any-
thing. This is made possible by the additive homomorphism
property of the encryption scheme. Finally P1 decrypts these
values which decrypt to 0 if the corresponding element of P2’s
set is in the intersection. Otherwise, the result is a random
value. We outline the protocol in Fig. 1.

Clearly, when y j ∈ S1, C j is encrypted to zero, so P1 will
correctly identify that y j needs to be added to the intersection.
Otherwise (when y j /∈ S1), the decryption of p̃ j will be a
random number and will not disclose y j . This correctness is
probabilistic due to the false positive rate of Bloom filters,
however it is negligible in k as explained in Section II-A.

E. Multi-Party Secure Comparison

In our threshold MPSI we make use of a multi-party secure
comparison protocol (SCP). Such a protocol compares two
values x0 and x1 in a multi-party setting, with the objective that
no party learns anything about x0 and x1 during the protocol
execution. For many applications, it is desirable that the output
of the protocol is also private as is in our case as well.

To the best of our knowledge, the problem of secure
comparison is actually the first ever MPC problem considered
in the literature known under the name of the millionaire’s
problem [44]. But despite a broad range of applications of the
two-party setting and numerous solutions proposed, we are not
aware of any multi-party solution in the literature but the one
of Kerschbaum et al. [37] that we describe shortly.

We use a slight modification of this protocol that addresses a
minor security issue, and we evaluate the performance of our
protocol including it as a sub-protocol. Notably, this means

that our T-MPSI inherits a linear round complexity, which is
not an artifact of the rest of our protocol. Since our protocol
can use any secure multi-party SCP, this potentially allows an
improvement in the round complexity if a constant round SCP
is designed in the future.

Kerschbaum et al. Secure Comparison Protocol [37].
The protocol securely compares two values x0 and x1 given
only their encrypted values Enc(x0) and Enc(x1) as input.
The output is a single encrypted bit Enc(b) that determines
whether x0 ≤ x1. In their protocol, Zp (where p is prime)
is represented by the upper half of the range [0, p − 1] as
negative, that is [� p

2 �, p − 1] ≡ [�− p
2 �,−1]. The objective

is to compute whether d = x0 − x1 is positive or not by
hiding d through multiplication with a large random number
r , i.e., d � r . Also, in order to avoid obtaining a factor of
d , they compute rd − r � where r � is random number which
is smaller than r . Let there be t parties such that they receive
Enc(x0) and Enc(x1) as input and run the following protocol:

• P1 computes (a1
1, a1

2, a1
3) = (Enc(1), Enc(0), Enc(c))

where,

Enc(c) = (Enc(x0)Enc(−x1))
r1 Enc(−r �1)

= Enc(r1(x0 − x1)− r �1),

by picking two prime numbers r1 and r �1 as explained
above. To compute Enc(−x1), P1 needs to compute the
multiplicative inverse of Enc(x1). P1 sends (a1

1, a1
2 , a1

3)
to P2.

• For every party Pi , 2 ≤ i ≤ t , Pi selects r �i < ri and
flips a coin bi ∈ {0, 1}, then computes (ai

1, ai
2, ai

3) in the
following way:
If bi = 0, then

ai
j = ai−1

j Enc(0), j ∈ {1, 2}; ai
3 = (ai−1

3 )ri Enc(−r �i )

If bi = 1, then

ai
j = ai−1

3− j Enc(0), j ∈ {1, 2}; ai
3 = (ai−1

3 )−ri Enc(r �i )

Pi then sends (ai
1, ai

2, ai
3) to Pi+1 (mod t) (Pt sends to P1).
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• All parties Pi , 1 ≤ i ≤ t , jointly decrypt at
3 to decide the

result. If Dec(at
3) < 0, then at

1 is the ciphertext of 1 (i.e.
Enc(1)), that is [x0 ≤ x1] = 1, else at

1 = Enc(0).

For the correctness of the protocol, we refer the reader
to [37].

We would like to emphasize that this protocol suffers from
information leakage. In fact, the parameters r1 and r2 in
r1(x0 − x1)+ r �1 cannot securely protect the relation between
x0 and x1 from an adversary. The reason is that r1 is not large
enough for multiplicative masking. To address this security
issue, we can switch to additive masking by choosing a large
r �1 at the computation cost of performing a homomorphic
exponentiation. The bit length of r �1 should be not less than
�+ κ + 1, where � is the bit length of the x0 and x1, and κ is
a security parameter. The security proof for this can be found
in [45].

For t parties, the asymptotic round complexity of this
protocol is O(t). To compute c for all the parties, there
are t rounds and one extra round to decrypt c (at

3). Hence,
the communicational and computational complexities are O(t)
ciphertexts and O(t) homomorphic encryptions respectively.

III. OUR MULTI-PARTY PRIVATE SET

INTERSECTION PROTOCOL

Our new multi-party private set intersection protocol is
inspired by the Davidson-Cid two-party PSI (see Section II-D).
In order to generalize their technique to the multi-party case,
we need to slightly change the setting. Let P1, . . . , Pt be the
parties involved in the protocol, where t ≥ 3. Each party Pi

holds a private data set Si of ni elements. The goal of the
protocol is to securely compute the intersection S =⋂t

j=1 Sj ,
while no party learns anything else. Parties P1 to Pt−1 will
be called clients, and Pt server. Unlike in the Davidson-Cid
two-party PSI, it is the server that computes the intersection.

For the sake of simplicity, we use the same notations with
Davidson-Cid’s paper. The formal description of the protocol
is given Fig. 2. The detailed steps are as follows:

Input: Each of the clients Pi , i ∈ {1 . . . , t − 1} holds
a shared decryption key ski of an additively homomorphic
threshold encryption scheme with decryption to zero algorithm
ShDec0. The public key pk is available to all parties.

The size of the private sets |Si |, i ∈ {1 . . . , t} is also
available to all parties.

Initialization: Pt randomly selects a set of hash functions
{h1, h2, . . . , hk} ∈ H and sends them to the clients Pi , 1 ≤
i ≤ t − 1.

Local EIBF generation: Each client Pi , where 1 ≤ i ≤
t − 1,

1) Computes their corresponding Bloom filter BFi of their
data set Si .

2) Inverts BFi to obtain IBFi .
3) Computes their encrypted inverted Bloom filter EIBFi

by encrypting each element IBFi [ j ] in the inverted
Bloom filter with the public key pk.

4) Sends EIBFi to Pt (server).

Set Intersection computation: The server Pt :

1) Computes k hash values of each element y j ∈ St ,
and for each i , computes {Ci, j

1 , . . . , Ci, j
k }, as Ci, j

d =
EIBFi [hd(y j )] for all j ∈ {1, . . . , nt }.

2) Computes Ci
j = Ci, j

1 +H · · ·+H Ci, j
k . Then, he computes

C j = ReRand(C1
j +H · · ·+H Ct−1

j ). The rerandomiza-
tion is necessary because of the deterministic nature of
the homomorphic operation.

3) Sends (C1, C2, . . . , Cnt ) to � parties among t−1 parties
and asks them to mutually decrypt-to-zero each C j .
We allow � ≤ t − 1 for more flexibility, although often
� = t − 1.

4) Each client Pi computes their decryption share shi, j

for all j ∈ {1, . . . , nt } as follows: They first send a
randomized C

ri, j
j to the server; the server combines them

into C̄ j = C
ri, j
j and sends C̄ j to each party. Now

each party decrypts to obtain their shares shi, j for all
j ∈ {1, . . . , nt }. Finally the shares are sent to the server.
Note that in Figure 2 we have abused notation to
improve the readability, and this whole step of producing
shares with the ShDec0 algorithm is denoted as shi, j =
ShDec0(ski , C j ) for all j ∈ {1, . . . , nt }.

5) For each j ∈ {1, . . . , nt } the server runs the com-
bining algorithm on the obtained shares and computes
Dec(C j )← Comb(sh1, j , . . . , sht−1, j ).

6) For each j ∈ {1, . . . , nt }, if Dec(C j ) = 0 the server
adds the corresponding y j to the intersection S = {y j }∪
S, otherwise he discards y j .

Output: Pt outputs S.

A. Protocol Correctness

Pt can compute the intersection if the corresponding plain-
texts of all Ci

j ’s are zero. This happens only when y j appears
in every Si , for i ∈ {1, . . . , t−1} simultaneously which results
in y j ∈ S1∩· · ·∩St−1. The correctness is not perfect as in [3],
because of the false positive probability of Bloom filters. This
probability is however can be made negligible in number of
hash functions k (see Sec. II-A).

B. Security Against Semi-Honest Adversaries

We will prove the security of the protocol under the
assumption of the existence of a IND-CPA-secure additively
homomorphic threshold PKE scheme � with threshold � < t .
Here, we consider the protocol participants as corrupted by
the adversary where they are curious but honest. Outside
adversaries are not considered in this context as they can be
mitigated by standard network security techniques.

We remind that the inputs of the clients are Inpi =
(Si , |Sj |tj=1, pk, ski ), i ∈ {1, . . . , t − 1} whereas of the server
it is Inpt = (St , |Sj |tj=1, pk). The output of the clients is ∅,
and of the server S =⋂t

j=1 Sj . We will consider two scenarios
in both of which we assume η < �:

1) The server Pt is honest, and a subset PI of the clients
is corrupted.

2) The server Pt is corrupted, and a subset PI of the clients
is corrupted.
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Fig. 2. Our multi-party private set intersection protocol based on Bloom filters.

In the first case, the simulator is given InpI and no output and
he needs to simulate the honest server towards the η corrupted
parties. He needs to produce simulated (C̃1, C̃2, . . . , C̃nt )
indistinguishable from the real (C1, C2, . . . , Cnt ), because this
is the only message that appears in the view of the corrupted
parties. The simulator S starts by choosing a random input
for the honest parties that comply with what the corrupted
parties know - the public hash functions h1, . . . , hk , and the
sizes of the sets of the honest parties. Then S follows the
protocol and produces (C̃1, C̃2, . . . , C̃nt ) from the EIBFs of
the corrupted parties and the ones produced from random input
of the honest parties. Suppose there is an adversary A that can
distinguish between (C1, C2, . . . , Cnt ) and (C̃1, C̃2, . . . , C̃nt )
with non-negligible probability. Since each of Ci and C̃1 are
rerandomized homomorphic sums, they both look like fresh
encryptions of a IND-CPA secure scheme �. Therefore, it is
straightforward to construct an adversary A� from A that
breaks the IND-CPA-security of �.

If the server Pt is also corrupted, but the number of
corrupted clients η is still smaller than the threshold �,
the corrupted parties learn also the output of the protocol, i.e.
the intersection S = ⋂t

j=1 Sj . In this case, the simulator S
needs to simulate the EIBFs of the honest parties, but also to
be able to produce decryption shares without the knowledge
of a secret share of the key. The simulated decryption shares
must be such that, after combining all of the decryption shares,
the result agrees with the output of Pt . The simulator starts by
choosing sets S̃i , i ∈ Ī, such that

⋂
j∈I Sj ∩⋂

j∈Ī S̃ j = S.
He then follows the protocol, forms the EIBFs corresponding
to the sets S̃i and sends them to the corrupted server. The

corrupted clients also send their randomized EIBFs to the
server. The server then computes the (C̃1, C̃2, . . . , C̃nt ) as in
the protocol and sends them to a subset of � parties. Since the
number of corrupted parties η is smaller than �, there must
be at least one honest party that receives (C̃1, C̃2, . . . , C̃nt ),
in particular, there are � − η honest parties, The simulator
receives these, and simulates the shares of the honest parties
as follows: It invokes the share decryption algorithm ShDec0
on C̃i and random element from the secret key space, s̃kk for
each of �−η−1 honest parties. For the last remaining honest
party, if y j ∈ S, the simulator computes the decryption share
from the decryption shares of the corrupted parties and the
simulated honest parties, such that the combining algorithm
Comb outputs 0. The simulator achieves this by calling a
simulator for ShDec0. Note that such a simulator exists both
for the Elgamal threshold encryption and Pailler generalized
threshold encryption schemes. If y j /∈ S, it forces the output
to a random value. Now clearly the simulated EIBFs are
indistinguishable from the real ones, otherwise the IND− CPA
security of the TPKE breaks. Also, the decryption shares are
produced by a simulator for ShDec0, so the adversary cannot
distinguish them from the real execution.

C. Complexity Analysis

1) Communicational Complexity: Our protocol consists of
five rounds. The amount of communicated data of the clients
is dominated by the first round in which the clients send to the
server their EIBFs each of which contains m ciphertexts. For
an optimal Bloom filter size, m must be at least kn log e bits
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long (see Section II-A). Therefore, to define the complexity
in terms of the size of the data sets n, one can safely say that
each client sends O(λn) ciphertexts to the server, where λ = k
is a statistical security parameter. To compare the complexity
to that of previous designs, we set the server’s communication
cost to O(n�) ciphertexts. Note that this cost is incurred only
during the shared decryption (rounds 2− 5),

2) Computational Complexity: The computational complex-
ity is dominated by the first round in which each client
performs O(m) (or equivalently O(λn)) encryptions. Here
we focus on the concrete instantiation from the Elgamal
or Paillier scheme, where the homomorphic addition +H is
multiplication in ZN . The details are as follows.

In the first round, each client Pi computes its Bloom filter of
size m by computing k hash values of each element requiring
O(kn) hash computations. Then, each client makes O(λn)
encryptions for encrypting its Bloom filter. In the second
round, for each element of his private set St , the server
Pt makes k hash evaluations to retrieve the corresponding
values in the encrypted inverted Bloom filters. This requires
O(kn) hash computations. When considering all elements in
its private set, Pt makes O(n(t+k)) homomorphic additions in
total. Afterwards, the server initiates shared decryption-to-zero
for all C j ’s. Each involved client runs the ShDec0 algorithm
which essentially consists of two parts. First, each client ran-
domizes the ciphertext by raising it to the power of a random
value and sends back to the server. The server multiplies
all randomized ciphertexts performing O(n�) multiplications
and resends to the clients. Then, each client calculates his
decryption share. This requires O(n) exponentiation for each
client. The server Pt makes O(n) decryptions in total in the
last round.

IV. OUR THRESHOLD MULTI-PARTY PSI PROTOCOL

A common requirement in real-world applications is to com-
pute a set of elements that appear in the private sets of most
of the involved parties, say in at least T private sets. More
formally, we would like to compute the threshold set inter-
section ST = {x ∈ St |∃Si1 , . . . , SiT , x ∈⋂T

j=1 Si j }. Based on
the protocol described in Section III, we here propose a new
protocol for achieving this goal. Our Threshold Multi-Party
PSI Protocol makes use of a slightly modified version of the
Secure Comparison Protocol of Kerschbaum et al. [37] (see
Section II-E). The difference to this protocol is that the server
that initiates the protocol does not actually take active part in it.
Everything else is exactly the same, so all security arguments
are naturally inherited.

The formal description of our T-MPSI protocol is given
Fig. 3. The detailed steps are as follows:

Input: As in our Multi-party PSI protocol from Section III
we have t − 1 clients P1, . . . , Pt−1 and a server Pt , each of
which holds a private data set Si of size ni . Let pk be the
public key of a secret key sk shared among all t − 1 clients
of an additivelly homomorphic threshold encryption scheme.
The parties compute the threshold intersection ST as follows.

Initialization: Pt randomly selects a set of hash functions
{h1, h2, . . . , hk} ∈ H and sends them to the clients Pi , where
1 ≤ i ≤ t − 1.

Local EBFs generation: Each client Pi , where 1 ≤ i ≤
t − 1:

1) Computes their Bloom filter of their private data set Si ,
where 1 ≤ i ≤ t − 1.

2) Computes their encrypted Bloom filter EBFi by encrypt-
ing each element of BFi [ j ] using pk.

3) Forward their EBFi ’s to the server Pt .

We note that in this protocol, inverted Bloom filters are not
required.

Set Intersection generation by the server: The server Pt :

1) Computes k hash values of each element y j ∈ St , and
for each party Pi .

2) Extracts {Ci, j
1 , . . . , Ci, j

k }, where Ci, j
d = EBFi [hd (y j )]

and j ∈ {1, . . . , nt }.
3) Computes Ci

j = ReRand(Ci, j
1 +H · · · +H Ci, j

k ) for
each y j ∈ St and for each party Pi (1 ≤ i ≤ t − 1).
We emphasize that if y j ∈ Si where i �= t , then
the corresponding plaintext of Ci

j must be k which
corresponds to the number of entries of y j in the Bloom
filter as all one.

4) For each Ci
j computes a fresh encryption Enc(pk, k).

5) Runs t · nt SCP protocols ( [37]) in parallel with any �
clients Pi to compare Ci

j to Enc(pk, k).
6) Gets the results Enc(pk, αi, j ) from the SCP. The output

Enc(pk, αi, j ) will be the encryption of 1 if the decrypted
value of Ci

j is greater than or equal to k and will be the
encryption of 0 if the decrypted value of Ci

j is less than
k.

7) Computes, Enc(α j ) = ReRand(Enc(α1, j ) +H · · · +H

Enc(αt−2, j )+H Enc(αt−1, j )).
8) Runs nt SCPs in parallel with any � clients to compare

Enc(α j ) to a fresh encryption Enc(T ).
9) Gets the results from the SCP (Enc(β1), . . . , Enc(βnt )),

randomizes each one of them and obtains C j =
ReRand(Enc(β j )).

10) Asks � clients Pi to perform joint decryption of C j ,∀ j
(in a random order).

11) After combining the shares from the involved clients
obtains (Dec(C1), . . . , Dec(Cnt )).

12) For all j , if Dec(C j ) = 1 then adds y j to ST , else
discards y j .

Output: Pt outputs ST .

A. Protocol Correctness

The server Pt computes the threshold intersection of his data
set if β j is greater than or equal to the predetermined threshold
T . The reason is that β j counts the number of appearances
of y j ∈ St in clients’ private data sets. As previously,
the correctness is not perfect.

B. Security

As in our MPSI protocol from Section III, we will prove
the security of the protocol under the assumption of exis-
tence of a IND-CPA-secure additively homomorphic threshold
PKE scheme � with threshold � < t . We will use the
notations from Section III. The difference is that the output
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Fig. 3. Our threshold multi-party private set intersection protocol based on Bloom filters.

of the server is now the threshold intersection ST = {x ∈
St |∃Si1 , . . . , SiT , x ∈ ⋂T

j=1 Si j }.
Again, we will consider two scenarios in both of which

η < �:

1) The server Pt is honest, and a subset PI of η clients is
corrupted.

2) The server Pt is corrupted, and a subset PI of η clients
is corrupted.

In the first case, given InpI and no output, the simula-
tor first needs to produce simulated (C̃i

1, C̃i
2, . . . , C̃i

nt
), i ∈

{1, . . . , t − 1} that the corrupted parties receive as input
in the SCP protocol. Similarly as in the MPSI protocol,
S starts by choosing random inputs of the correct size
for the honest parties, and follows the protocol to produce
(C̃i

1, C̃i
2, . . . , C̃i

nt
), i ∈ {1, . . . , t − 1}. Then S gets involved

in the first run of the SCP protocol, simulating the actions
of the honest parties. Basically, for each Ci

j there is one
comparison to a fresh encryption of E(k) carried out using
an atomic SCP. In particular, to simulate the output of a
honest party, for received (ar

1,i, j , ar
2,i, j , ar

3,i, j ) from a corrupt

party, the simulator produces (ar+1
1,i, j , ar+1

2,i, j , ar+1
3,i, j ) following

exactly the SCP protocol and gives it to a corrupt party.
The last a�

3,i, j is then jointly decrypted by the � involved
parties. In the joint decryption, the corrupt parties send their
decryption shares to the simulator. The simulator encrypts 0
nt times and randomizes Enc(α j ) for each j . Then it gets
involved in the SCP once again, and follows the protocol: for
received (ar

1,i, j , ar
2,i, j , ar

3,i, j ) from a corrupt party, the simula-

tor produces (ar+1
1,i, j , ar+1

2,i, j , ar+1
3,i, j ) and sends to the next corrupt

party. In the end, the simulator collects the decrypted shares,
and rerandomizes the results, exactly as in the previous run.
Once again, it sends the obtained C j to the corrupt parties for
joint decryption, and they return their decryption shares.

Since everything that the simulator sends to the corrupted
parties is rerandomized, it is indistinguishable from fresh
encryption. Thus, an adversary that can distinguish the simu-
lated run from the real one, can break the IND-CPA-security
of the underlying �.

If the server Pt is also corrupted, the corrupted parties learn
also the output of the protocol, i.e. the threshold intersec-
tion ST . Now, the simulator needs to simulate everything as in
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the previous case, plus the shares of the honest parties in the
last joint decryption. This can be done by forcing the outcome
of the algorithm Comb to 1, for all y ∈ ST , similarly as in the
MPSI protocol from Section III where the result was forced to
0 by the simulator. The security argument is then essentially
the same.

C. Complexity Analysis

1) Communicational Complexity: The number of rounds of
the protocol is O(t), which is dominated by the �SCP protocol.
The communication complexity of the server is dominated
by the first execution of �SCP in which the server sends
O(nt�) ciphertexts. As in our first protocol, the communi-
cational complexity of each client in the first round is O(λn)
ciphertexts. In the rest of the rounds, the communicational
complexity of each (active) client is due to the execution of
the �SCP protocols which is O(nt) ciphertexts. Therefore,
the dominating communicational complexity of each client is
O(max(λ, t)n) ciphertexts. For the details of the analysis of
the �SCP protocol, we refer to Section II-E.

2) Computational Complexity: One of the dominating steps
in terms of computational complexity of each of the clients is
the construction of their encrypted Bloom filters which takes
O(λn) operations. The second dominating computational step
of the protocol is the execution of the �SCP’s. We remind that
each execution of �SCP does O(1) homomorphic encryptions
for each client and the server. As the �SCP protocol is executed
nt times, for the server and each (active) client, the compu-
tational complexity is for each of them O(nt) homomorphic
encryptions. Therefore, the dominating complexity for each
client is O(max(λ, t)n), and it is O(nt) for the server.

V. IMPLEMENTATION

We have developed a reference implementation of both pro-
tocols in C++. The implementation depends on the GMP [46]
and NTL [47] libraries, as well as code for MurmurHash3 [48],
which is used as a fast hash function for Bloom filters. The
implementation for the MPSI protocol runs on one machine
and spawns one thread for each client for concurrency, while
the main thread represents the server. The T-MPSI protocol
runs on a single thread so it demonstrates an upper bound
of the run time, which we believe can still be reduced
significantly using multi-threading.

A. Set-up

We evaluate the run time performance of the protocols by
performing 10 set intersections for each combination of para-
meters, where all sets contain n random elements. We provide
both the mean and standard deviation of these measurements.
Our benchmarks were executed on a 64-bit Unix machine with
an INTEL CORE I7-1065G7 processor at 8 × 1.30GHz and a
memory capacity of 16GB. For our work, we choose security
parameter κ = 1024 as is common for public-key encryption.

B. MPSI Protocol

We compare the run time of our private set intersection
protocol with the protocol by Kolesnikov et al. [17] (with

Fig. 4. Run time comparison for the MPSI protocol at � = 1
2 t averaged over

10 runs. The gray line indicates the extrapolated results for Kolesnikov et al.
The filled in areas represent the 99% confidence intervals (±3σ ).

κ = 128 as is common for Oblivious Transfers) because their
implementation is readily available and the empirical run time
appears to be generally superior to that of similar works. While
their protocol is time-efficient for large numbers of elements,
our proposed protocol is efficient for larger numbers of par-
ties t . Our bandwidth is also drastically lower for an increasing
number of (corruptible) parties. To ensure an overwhelming
probability of correctness we fixed the accuracy to a false
positive rate of less than 1%, by choosing k = 7 hashes
and m = � 7n

log 2� bits. We note that Kolesnikov et al. [17]
achieve a far higher probability of correctness (the probability
of incorrectness is 2−40) since an increase in their number
of bits achieves an exponential reduction in the false positive
rate. Applications that require such a low false positive rate
can choose a larger m and k but they will incur longer run
times and bandwidth.

1) Run Time Results: We present the results of our run time
comparison in Figure 4 for a threshold � = � 1

2 t�. We also
evaluate the run time for � = t − 1, the result of which is
relatively similar and can be found in Table II. We capped
the number of parties t at 50 for Kolesnikov et al. [17] but
this was only due to memory constraints when running the
protocol. Our protocol can be easily run with many more
parties, and there are no theoretical reasons why the results
could not be extended to a larger number of parties for
Kolesnikov et al. as well. For this reason we extrapolated the
results to t = 100 in Figure 4 using a quadratic fit.

2) Discussion: For every number of elements n there is a
lower bound on the number of parties t where our protocol
becomes more efficient than [17]. For small n such as n =
16 our protocol already becomes more efficient at t ≥ 10
parties, and for a larger n = 64 our protocol is more efficient
from t ≥ 30 parties onwards. Notably, even for 100 parties
our runtime stays within 60 seconds for n = 64 and within
120 seconds for n = 128. As highlighted by the filled in
areas in our plot that represent three standard deviations from
the mean, our measurements are statistically consistent. For a
different collusion threshold � runtime changes only slightly
as demonstrated in Table II.
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TABLE II

MEAN RUN TIME RESULTS IN SECONDS FOR THE MPSI PROTOCOL AVERAGED OVER 10 RUNS, WHERE ± REPRESENTS THE STANDARD
DEVIATION σ . *FOR THESE RESULTS WE HAD TO CHOOSE � = 30 TO STAY WITHIN MEMORY

TABLE III

MEAN RUN TIME RESULTS IN SECONDS FOR THE T-MPSI PROTOCOL

AVERAGED OVER 10 RUNS, WHERE ± REPRESENTS
THE STANDARD DEVIATION σ

Fig. 5. Run time comparison for the MPSI protocol at � = 1
2 t averaged over

10 runs. The filled in areas represent the 99% confidence intervals (±3σ ).

C. T-MPSI Protocol

We also present an implementation of our T-MPSI proto-
col. Even though the runtime seems promising already, these
results can be considered an upper bound as we believe a
significant gain in efficiency can still be achieved through
multi-threading. We evaluate the run time for T-MPSI on
smaller instances of the problem than the MPSI protocol, with
fewer parties and lower set sizes to perform the experiments
in reasonable time.

1) Run Time Results: We present the results of our run time
experiment in Figure 5, and the results for smaller instances

can be found in Table III. We do not compare our protocol
against another as there were no other threshold-intersection
implementations available. As a set-intersection threshold we
chose half of the number of parties: T = t

2 .
2) Discussion: For smaller set sizes the experiments show

that our protocol proves to scale efficiently. Specifically, when
run with n = 4 elements, as might be the case in a voting
scenario, the protocol takes roughly 1 minute for t = 50
parties. Even for n = 32 elements and t = 50 parties runtime
stays within 8 minutes. While the protocol scales quadratically
in the number of parties t these results demonstrate that for a
small number of elements n the protocol can still be considered
practical. Note that when the collusion threshold � is chosen
to be a fixed number, the protocol instead scales linearly with
a growing number of parties t .

VI. CONCLUSION

In this paper, we describe two efficient multi-party private
set intersection protocols for both regular and threshold inter-
sections, which we prove to be secure in the semi-honest
model. For threshold intersections, only those elements of
the server that appear in at least a pre-determined threshold
number of private sets are revealed. Our protocols are based on
Bloom filters as an efficient set representation, and threshold
homomorphic PKEs. To the best of our knowledge, our
proposed protocols are the fastest tools for computing private
set intersections and threshold set intersections in real-world
problems where many parties are involved in the computation.
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