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Linear-response magnetoresistance effects in chiral systems
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The chirality-induced spin selectivity (CISS) effect enables the detection of chirality as electrical charge
signals. It is often studied using a two-terminal circuit geometry where a ferromagnet is connected to a chiral
component, and a change of electrical resistance is reported upon magnetization reversal. This is however not ex-
pected in the linear response regime because of compensating reciprocal processes, limiting the interpretation of
experimental results. Here we show that magnetoresistance effects can indeed appear even in the linear response
regime, either by changing the magnitude or the direction of the magnetization or an applied magnetic field.
We illustrate this in a spin-valve device and in a chiral thin film as the CISS-induced Hanle magnetoresistance
(CHMR) effect. This effect helps to distinguish spin-transport-related effects from other effects, and can thereby
provide further insight into the origin of CISS.

DOI: 10.1103/PhysRevB.104.155420

I. INTRODUCTION

Chirality-induced spin selectivity (CISS) describes the
spin-dependent electron transport through a chiral (molecular)
system [1]. It promises novel applications such as using chiral
materials for information technologies (spintronics) [2] and
using spintronic techniques for chemistry and biology [3].
The understanding of CISS has been greatly advanced by
extensive experimental and theoretical research [4–28], but
there remains a major question: how can it be detected as an
electrical signal in the linear response regime, especially when
the chiral system is coupled to a ferromagnet [29–31]?

Electron transport in the linear response regime is sub-
ject to fundamental laws of thermodynamics, in particular,
the Onsager reciprocity [32] and the subsequently formulated
Büttiker reciprocity theorem [33,34]. For CISS, which we de-
fine as the spin-charge current interconversion within a chiral
system, reciprocity implies strict symmetry relations between
the spin-to-charge and charge-to-spin conversion mecha-
nisms. Therefore theoretical considerations must include both
mechanisms in a self-consistent way. This becomes extra
important when the chiral system is coupled to a ferromag-
net since they both provide spin-to-charge and charge-to-spin
conversion. Here a self-consistent treatment predicts a strict
zero result in the linear response regime for a two-terminal
circuit containing a chiral system and a ferromagnet (e.g.,
a conducting AFM geometry for chiral molecules using a
magnetic substrate or a magnetic probe, or a spin-valve device
geometry with ferromagnetic and chiral molecular layers).
There is no change of electrical resistance upon full mag-
netization reversal, i.e., no magnetoresistance (MR), as was
previously discussed [29–31]. Building on this, we predicted
that any possible (magnetization-reversal-induced) MR be-
yond linear response must first appear linear in bias, just as
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in the electrical magnetochiral effect [30,35]. These results
were supported by further theoretical analyses [25,28], but
still intrigued much discussion since in experiments where
a region of linear current-voltage behavior can be identified,
many do in fact observe different slopes for opposite mag-
netization directions, implying a nonzero MR in the linear
response regime [9,10,36–41].

Note that this discussion focuses on the MR generated by
the entire two-terminal circuit, but NOT the spin (current)
polarization generated by the chiral system. These two con-
cepts are fundamentally different. The MR generated by the
entire circuit is a magnetic-field-dependent electrical charge
signal. In contrast, the spin (current) polarization generated
by the chiral system is not a charge signal and cannot be
directly measured. The Onsager reciprocity implies that the
MR related to spin-transport must vanish in the linear re-
sponse regime. This does not impose constraints on MR of
other origin or on the spin (current) polarization generated
by the chiral system. This major distinction between MR and
spin (current) polarization was previously addressed [18,28–
30,41], but is sometimes still overlooked [42,43].

We emphasize that the Onsager reciprocity is based on the
fundamental microscopic reversibility and therefore should
hold universally. This was repeatedly demonstrated in exper-
iments [44,45], including for a spin-orbit system coupled to
a ferromagnet [46] and for strongly correlated systems [47].
Any deviation from the Onsager reciprocity indicates the pos-
sible presence of effects other than charge and spin transport.
These yet-unknown effects may as well depend on chirality
and magnetic field/magnetization, and may give rise to MR. It
is therefore extremely important to distinguish spin-transport-
related effects from other effects.

Important to realize, the zero (transport-induced) MR pre-
dicted by Onsager reciprocity requires the full reversal of
magnetization or magnetic field. This leaves room for linear-
response MR effects to arise by varying the magnitude or
direction of the magnetization or magnetic field. We illustrate
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FIG. 1. The effect of ferromagnet and CISS polarization on the
charge and spin currents in a two-terminal spin valve geometry.
(a) The two-terminal spin valve device contains one ferromagnet and
one chiral component (blue helix) connected by a node (gray circle)
between two electrodes (wavy vertical lines). The chiral component
is assumed to display CISS with a set of spin-dependent electron
transmission probabilities and the accompanying self-consistent re-
flection probabilities. The node characterizes momentum relaxation
processes and is described by an electrochemical potential μ and a
spin accumulation μs. The electrodes are characterized by electro-
chemical potentials μL and μR, which are supplied by a bias voltage
V = −(μL − μR )/e (e is elemental charge), which drives the charge
and spin currents. [(b) and (c)] The two-terminal (charge current)
conductance G2T as a function of FM polarization and the CISS
polarization (see text for definition). [(d) and (e)] The spin current
conductance Gs (spin current per unit two-terminal voltage) in the
left lead, the node, and the right lead, as a function of the same
variables. The blue solid and the red dashed lines overlap because
of the identical spin currents in the left lead and the node.

these new MR effects and show how they can be detected in
common device geometries, such as in a spin valve and in a
chiral two-dimensional (2D) film.

II. MAGNETORESISTANCE IN TWO-TERMINAL
SPIN VALVE GEOMETRY

We first show how an magnetoresistance (MR) can arise in
the linear response regime in the two-terminal spin valve ge-
ometry introduced in Refs. [29,30] [see Fig. 1(a)]. The circuit
contains a single ferromagnet and a chiral component that dis-
plays CISS in the linear response regime. The two spin-charge
interconverting elements are connected by a node, which mod-
els relaxation processes within the device. We do not assume
a specific microscopic mechanism for CISS, but only phe-

nomenologically characterize the spin (current) polarization
generated by a charge current through the chiral component
using a CISS polarization parameter. (Note that this is the
Pt parameter in the coupled charge-spin transport matrix T
introduced in Ref. [30], also see Appendix A, Eq. (2). Below,
when evaluating the effect of changing Pt , the relevant param-
eters of matrix T are adjusted self-consistently to take into
account both of the reciprocal spin-charge interconversion
mechanisms.) Similarly, the ferromagnet is characterized by
the FM polarization parameter, which describes the spin po-
larization of the electrons transmitted through the ferromagnet
(tunnel junction).

We use the transport matrix formalism introduced in
Ref. [30] to calculate both charge and spin currents driven by a
two-terminal voltage, and show here the corresponding linear-
response conductances as a function of the two polarization
parameters. As plotted in Figs. 1(b) and 1(c), the two-terminal
(charge current) conductance G2T depends evenly on the FM
polarization and the CISS polarization. This confirms that
neither magnetization reversal (sign change for FM polariza-
tion) nor chirality reversal (sign change for CISS polarization)
can change the two-terminal charge current and generate an
MR signal. This vanishing MR is the consequence of the
exact compensation of the spin-to-charge and charge-to-spin
conversion mechanisms, which is inherent to the fundamental
nature of linear response. It does not depend on microscopic
details of the device, such as the exact conduction mechanism,
the electrode material, and/or the presence of spin-orbit inter-
action. This was first established by Onsager as a fundamental
law of thermodynamic processes [32], and then elaborated by
Büttiker for electron transport systems like the one discussed
here [33,34].

Nevertheless, the dependence suggests that changing the
magnitude of the FM polarization or the CISS polarization
can indeed change the two-terminal conductance and give rise
to an MR-type signal. In practice, the FM polarization can be
experimentally tuned by rotating the magnetization direction
using an external magnetic field, which changes the net mag-
netization projected along the relevant direction (collinear to
the charge current). The CISS polarization, on the other hand,
is in most cases fully determined by the choice of material
and is not easily accessible as an experimental variable, but it
can be tunable for some chiral molecules, such as a molecular
motor that gradually switches (sign of) chirality under light
illumination [7,48].

We also show in Figs. 1(d) and 1(e) the linear response
spin current per unit two-terminal voltage, which we define
as the spin current conductance Gs. It is evaluated separately
in the left lead, the node, and the right lead, and we show
here its dependence on the FM polarization and the CISS
polarization. An important observation here is that the spin
current is not conserved. It is the same in the left lead and in
the node since the ferromagnet (ideally) does not introduce
spin relaxations mechanisms, but it is different in the right
lead because of the spin-flip mechanisms that are inherent
to CISS-type spin-dependent transmission [19,25,29,30,49].
The spin current in the left lead and the node depends more
strongly on the FM polarization, while in the right lead it de-
pends more strongly on the CISS polarization. Note that even
when the CISS polarization is zero, the spin-flip mechanisms
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FIG. 2. Network model and the CISS-induced Hanle Magnetoresistance (CHMR) effect. (a) A network model for a uniform 2D chiral film.
It constitutes a number of chiral elements (blue helical wires) connected to each other via nodes (gray circles). The four edges are electrically
contacted by nonmagnetic electrodes (wavy lines) characterized by their electrochemical potentials μL (left), μR (right), μT (top), and μB

(bottom), respectively. [(b) and (c)] The longitudinal (Rxx) and transverse (Rxy) sheet resistances for a charge current along the x direction, as a
function of a perpendicular magnetic field strength By. [(d) and (e)] Rxx and Rxy under an in-plane rotating magnetic field (at constant strength),
plotted as a function of its angular direction θ with respect to the x axis.

are still present, and that is why in Fig. 1(e), Gs is different for
the node and the right lead at zero CISS polarization.

Another general observation is that the spin currents are
not even-functions of the polarization parameters. Therefore
a magnetization reversal or chirality reversal will change the
spin currents (and spin polarization) in the leads and the node.
This is indeed in agreement with theories that address the
spin polarization in such device geometries [12–18,22–24].
Important to realize, this changing spin polarization cannot
be experimentally detected as a charge signal because of the
zero MR upon polarization reversal.

The implication of reciprocity goes beyond transport
driven by a charge voltage. In Appendix C, we illustrate how
spin accumulation in the leads drives spin transport and how it
gives rise to specific symmetry relations between spin currents
in the leads.

Note that here we have omitted interface effects such as
spin-mixing conductance [50] and torque-induced spin pre-
cession [51], which may also apply to CISS. These effects
may generate spin components that are orthogonal to the spin
orientation of interest, thereby reducing the net spin density
for that orientation and affecting our results quantitatively, but
not qualitatively.

III. MAGNETORESISTANCE IN 2D CHIRAL FILM

Next, we introduce an alternative approach to detect CISS
in linear response. We extend our description of the chiral
elements to model a 2D chiral film. We illustrate how spin
precession dynamics in such a film can give rise to MR signals
that depend on both the orientation and the magnitude of an
applied magnetic field.

A. Network model for 2D chiral film

Device-based CISS experiments often employ chiral thin
films, where the spin-charge interconversion can be described
using spin currents and spin accumulations in the film. Such

films often consist of unaligned chiral molecules, and it is
their averaged property that is experimentally accessible. For a
qualitative analysis, we can consider a uniform film and model
it using a 2D network of (identical) chiral elements connected
via (identical) nodes, as illustrated in Fig. 2(a). With this, we
can separately treat the effects due to CISS (spin-charge con-
version and spin-flip reflection) and those generally present
in a device (additional spin relaxation and precession). The
nodes also allow us to evaluate voltages. This treatment is
for the ease of modeling and does not imply using physically
distinct materials within an actual film.

We consider the coupled charge and spin transport as-
sociated with an x-direction charge current Ix and the
accompanying spin currents within the film. These com-
bined give rise to a longitudinal charge voltage Vxx = −(μL −
μR)/e (between the left and right electrodes) and a transverse
charge voltage Vxy = −(μT − μB)/e (between the top and
bottom electrodes). This is characterized by a longitudinal
sheet resistance Rxx = Vxx/Ix and a transverse sheet resistance
Rxy = Vxy/Ix, which are experimentally accessible. Here we
assumed the film is a square, and the effect of film geometry
is discussed in Appendix A. Because of the coupled charge
and spin transport due to CISS, these resistances depend on
spin dynamics such as relaxation and precession around an
external magnetic field, which can be quantitatively evaluated
using the 2D network model.

We assume the spin accumulation is evenly distributed in
the nodes as an approximation for the averaged property of the
film. Each node (or per unit area) supports a spin accumulation
μs = (μsx, μsy, μsz ) = ns/2ν, where ns = (nsx, nsy, nsz ) is the
spin density (with x, y, and z labeling the spin orientation),
and ν is the averaged density of states in the film. These spins
are injected in the nodes and they undergo other dynamical
processes. Here we consider the effect of spin relaxation
(characterized by a spin lifetime τs) and Larmor spin preces-
sion (induced by a magnetic field B). Note that we assume the
spin lifetime τs and the response of spins to the magnetic field
are isotropic (in spin space).
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We are interested in the steady-state condition of these
dynamical processes under the presence of the charge current
Ix. The spin injection mechanism that we focus on here is the
charge to spin conversion due to CISS, and we write the total
injected spin current in a node as Is,CISS (see Appendix A for
detail). Note that there are also other spin injection mecha-
nisms such as (optical or radio-frequency) spin pumping, but
these are beyond the scope of this discussion. The steady-state
condition is

0 = ∂ns

∂t
= − Is,CISS

e
+ 2μB

h̄
B × ns − ns

τs
, (1)

where μB is the Bohr magneton, and h̄ is the reduced Planck’s
constant.

The key to coupling this spin dynamics to charge signals is
the spin-charge interconversion. Via CISS, the charge current
Ix generates a collinear spin current Is,CISS,x and spin density
nsx. These spins precess due to the (noncollinear) magnetic
field, which generates spin currents and spin densities along
x, y, and z (in spin space). These are then converted to charge
currents along x, y, and z directions due to the reciprocal
effect of CISS, thereby affecting the charge signal in both
longitudinal and transverse directions.

B. CISS-induced Hanle magnetoresistance (CHMR)

We analytically solve the expression of the longitudinal
and transverse sheet resistances Rxx and Rxy, and the result
demonstrates two ways of detecting the linear-response MR
due to the spin precession dynamics. In Figs. 2(b) and 2(c), we
consider a magnetic field along the y direction and show the
effect of varying its strength. The longitudinal sheet resistance
Rxx depends on the field strength but not its sign. It reaches
a minimum at zero field and increases with increasing field
strength. This is because the finite perpendicular magnetic
field induces spin precession, which reduces the net spin
density along the direction that was originally aligned to be
converted to a longitudinal charge current via inverse CISS.
This precession-induced spin density reduction reduces the
longitudinal charge current by spin-charge interconversion,
and thereby exhibits as an increased Rxx. Meanwhile, the
transverse sheet resistance Rxy remains zero, because the pre-
cessing spins are always orthogonal to y and thereby cannot
give rise to charge transport along the y direction.

In Figs. 2(d) and 2(e), we consider a magnetic field of 1 T
rotating within the sample plane, and plot the sheet resistances
as a function of its angle θ with respect to x. Both Rxx and Rxy

are sinusoidal/cosinusoidal to the field angle with a period of
180◦ but with a angular phase shift of 45◦. The Rxx is at its
minimum when the field is collinear with the charge current
and at its maximum when they are orthogonal, and at these
two directions the Rxy is zero. The range of Rxx is the same
in Figs. 2(b) and 2(d), while Rxy in Fig. 2(e) varies between
opposite signs with the same range span.

This MR effect arises from the magnetic field-induced
spin precession. It is comparable to the Hanle magnetoresis-
tance (HMR) in spin-Hall materials [52–54], albeit here with
CISS as the spin-charge conversion mechanism. We thereby
name these effects the CISS-induced Hanle magnetoresis-
tance (CHMR). It can be distinguished from HMR by its

(a) (b)

(c)

FIG. 3. The CISS-induced Hanle Magnetoresistance (CHMR)
effect at different spin lifetimes τs = 100, 10, and 1 ns. (τs = 100 ns
was used in Fig. 2.) (a) The longitudinal sheet resistance Rxx as a
function of perpendicular magnetic field strength By for different spin
lifetimes. [(b) and (c)] Rxx and Rxy as a function of in-plane magnetic
field angle θ for different spin lifetimes.

angular dependence. CHMR shows Rxx minimum when the
field is collinear to the charge current, while HMR shows Rxx

minimum when the two are perpendicular. This difference is
associated with which spin orientations are generated by the
charge current through these different mechanisms.

Another important note is that although the CHMR effect
can detect whether chirality is present in the 2D film, it cannot
determine its sign. This is because both the charge-to-spin and
the spin-to-charge conversion processes change sign simulta-
neously once the chirality (or the sign of CISS) is reversed,
and the net result is an unchanged charge signal.

C. Role of spin relaxation

Another process included in Eq. (1) is spin relaxation (in
addition to the spin-flip reflections inherent to CISS), which
is characterized by the spin lifetime τs. In Fig. 3(a), we show
how τs affects the dependence of Rxx on the perpendicular
magnetic field By. Increasing spin lifetime narrows the Hanle
dip around zero field and increases the Rxx value at finite field
strengths. For low magnetic field strengths that are generally
experimentally available, higher τs strengthens the magnetic
field dependence and makes the CHMR effect easier to
observe.

In Figs. 3(b) and 3(c), we show how τs affects the angu-
lar dependence of the CHMR effect on an in-plane rotating
magnetic field. The spin lifetime only affects the amplitude of
the sinusoidal angular dependence, i.e., the range in which Rxx

and Rxy are modulated. Increasing spin lifetime increases this
range and makes the effect easier to observe.

Here we have compared spin lifetimes from 1 ns to 100 ns.
Choosing this range is based on the assumed low spin-orbit
coupling in most carbon-based organic materials.
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FIG. 4. Multiterminal device geometries for the electrical detec-
tion of CISS in linear response. (a) Detecting the spin accumulation
generated by a charge current via CISS. The outer normal-metal con-
tacts are used to source a charge current, and the inner ferromagnet
contact is used for detecting voltage. This voltage is expected to
change upon magnetization reversal because of the presence of spin
accumulation. (b) Detecting the charge voltage generated by a spin
current via CISS. The spin current is injected into the chiral film by
techniques such as spin pumping. It generates a charge current (hence
also a voltage) across the film, which is then detected using normal
metal contacts.

D. Multiterminal device geometries

The above MR effects enable the detection of CISS in the
linear response regime, but cannot separately address spin-to-
charge and charge-to-spin conversion processes. In Fig. 4, we
illustrate two multiterminal devices that can separate spin and
charge contributions, which help to study the (a), charge-to-
spin and (b), spin-to-charge conversion, respectively.

In Fig. 4(a), a charge current Iinj is sent through in the
chiral film through normal-metal electrodes, and a voltage
drop Vdet can be detected along the current path. If the voltage
probe is a ferromagnet, as shown in the figure, an additional
voltage can be picked up due to the spin accumulation in the
film, which will change upon magnetization reversal. This
magnetization-dependent signal allows to evaluate the charge-
to-spin conversion property of the chiral film.

The device in Fig. 4(b) provides us the access to the
reciprocal process, i.e., the spin-to-charge conversion. Here
the chiral film is deposited on a surface where spin current
can be uniformly injected. This can be done by, for instance,
radio-frequency spin pumping from a ferromagnetic insulator
[55]. The injected spins are converted to a collinear charge
current by CISS, which is then detected by the normal-metal
voltage probes.

The voltage signals in both device geometries depend on
the spin accumulation in the chiral film. This implies that
these multi-terminal measurements are also affected by the
spin relaxation and spin precession mechanisms introduced
for the CHMR. Unlike for CHMR though, the sign of these
signals does depend on the chirality of the material, enabling
these devices to be used as chirality detectors.

IV. DISCUSSION

In summary, we introduced here two new types of MR
signals for electrically detecting CISS in the linear response
regime. They are generated by changing the magnitude or
orientation of the magnetization or a magnetic field. This is
in contrast to the previously reported MR signals based on
magnetization or magnetic field reversal, which, according to

fundamental theories, should only be possible in the nonlinear
response regime.

We first considered the case of a common two-terminal
spin valve device, where the new type of MR is generated
by changing the net magnetization (magnitude) parallel to the
current path. This can be done by rotating the total magne-
tization using a magnetic field. This type of MR does not
require new device geometries and can be tested using existing
devices. Note that this mechanism implies that an incomplete
magnetization reversal would also give rise to an MR signal
in linear response. This is relevant to test experimentally.

The second type of MR is what we call CISS-induced
Hanle magnetoresistance (CHMR), and it arises from the
spin precession dynamics under the presence of an applied
noncollinear magnetic field. We illustrated how it can be
detected in a 2D chiral film by measuring the longitudinal
and transverse sheet resistances as a function of an external
magnetic field that varies in strength or direction. This effects
depends on the spin lifetime within the chiral film as well
as the strength of the CISS effect. Its magnetic field angular
dependence resolves the spin orientation (with respect to a
charge current) generated by CISS, and distinguishes it from
other spin–charge conversion mechanisms. We have restricted
our discussion to an in-plane magnetic field in order to focus
on spin-related effects. Should an out-of-plane magnetic field
be of concern, orbital effects such as Hall effect should also be
taken into account. Moreover, other spin dynamics will also
contribute to these effects and should be carefully analyzed
for specific devices.
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APPENDIX A: STEADY-STATE SOLUTION FOR
LONGITUDINAL AND TRANSVERSE

SHEET RESISTANCES

In the 2D network model, we describe CISS as an averaged
property that is evenly distributed within the film. We sepa-
rately concentrate the spin-charge conversion mechanisms in
the chiral elements and (additional) relaxation mechanisms in
the nodes. This constructs a repeating pattern in both x and
y directions, which is analogous to the repeating unit cells in
2D crystals. When electrically contacted as shown in Fig. 2,
each unit cell behaves identically at steady state. We can
therefore derive the steady-state solution for the longitudinal
and transverse conduction through the 2D chiral film.

We first look at a single chiral unit along the x direction
which is contacted by a node on each side, as illustrated
in Fig. 5. The chiral unit generates spin-dependent electron
transmission and reflections, which is illustrated using the
black arrows in the same way as in Ref. [30]. The node
on the left (right) side of the chiral unit is described by a
charge electrochemical potential μl (μr) and a spin accumu-
lation μsl (μsr). The spin-specific electrochemical potentials
are therefore μl ± μsl (μr ± μsr), whose differences drive the
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FIG. 5. Spin-charge interconversion by a chiral unit.

spin-specific electron transmission and reflection processes,
giving rise to spin currents Isl , Isr , and charge current I .

Under this description, following the transport matrix for-
malism introduced in Ref. [30], the coupled spin-charge
transport equation for this chiral unit and the neighboring
nodes is

⎛
⎝ I

−Isl

Isr

⎞
⎠ = −Ne

h

⎛
⎝ t s s

Prr γr γt

Pt t γt γr

⎞
⎠

⎛
⎝μl − μr

μsl

μsr

⎞
⎠, (A1)

where N is number of spin-degenerate channels, e is elemental
charge (positive value), h is Planck’s constant, and matrix
elements t , s, Pt , Pr , γt , and γr describe the transport property
of the chiral unit and is introduced in Ref. [30].

When the 2D film is electrically contacted in the way
shown in Fig. 2 and is at steady state, all chiral units (along
the x direction) are identical and the electrochemical potential
drop across each of them is identically �μx. Also, all nodes
are identical and they support the same spin accumulation μs

and the same CISS-induced spin current injection Is,CISS . We
therefore have

�μx = μl − μr,

μsl = μsr = μs,

Is,CISS = Isr − Isl

= −2Ne

h
(s�μx + (γr + γt )μs),

∂ns,CISS

∂t
= − Is,CISS

e
= α�μx + βns, (A2)

where we define α = 2Ns/h and β = N (γr + γt )/hν to sim-
plify further derivations. Here we used μs = ns/2ν, where ν

is the spin-degenerate density of states in the node and ns is
the spin density.

To extend this to a 2D film, we take into account that the
charge and spin currents flow in both x and y directions while
the spin orientation also includes the z component. The vector
equation Eq. (1) can therefore be decomposed into its spacial
components

x̂ : −nsx

τs
+ γ (Bynsz − Bznsy) + α�μx + βnsx = 0, (A3a)

ŷ : −nsy

τs
+ γ (Bznsx − Bxnsz ) + α�μy + βnsy = 0, (A3b)

ẑ : −nsz

τs
+ γ (Bxnsy − Bynsx ) = 0, (A3c)

where γ = 2μB/h̄ is the gyromagnetic ratio for electrons in
the 2D film, and we assume here the g factor is 2.

In addition, we have the continuity condition of the charge
currents along both x and y directions [derived from Eq. (A1)]

Ix = −Ne

h
(t�μx + 2sμsx ) = A�μx + Bnsx, (A4a)

Iy = −Ne

h
(t�μy + 2sμsy) = A�μy + Bnsy = 0, (A4b)

where we define A = −Net/h and B = −Nes/hν to simplify
further derivations, and we used μs = ns/2ν to rewrite spin
accumulation in terms of spin density. For Iy = 0, we assume
the top and bottom contacts are voltage probes and there is no
net charge current entering them.

We consider nsx, nsy, nsz, �μx, and �μy as a function
of longitudinal current Ix, and rewrite the above five linear
equations in matrix form⎛
⎜⎜⎜⎜⎜⎝

− 1
τs

+ β −γ Bz γ By α 0

γ Bz − 1
τs

+ β −γ Bx 0 α

−γ By γ Bx − 1
τs

0 0
B 0 0 A 0
0 B 0 0 A

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

nsx

nsy

nsz

�μx

�μy

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0
0
0
Ix

0

⎞
⎟⎟⎟⎟⎠.

(A5)
We name the 5 × 5 matrix M, and the solution for the

above equation is ⎛
⎜⎜⎜⎜⎜⎝

nsx

nsy

nsz

�μx

�μy

⎞
⎟⎟⎟⎟⎟⎠

= M−1

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
Ix

0

⎞
⎟⎟⎟⎟⎟⎠

. (A6)

With this, we establish the relation between �μx, �μy,
and Ix. These quantities are evaluated for a unit area only.
To calculate the longitudinal and transverse resistances of the
film, we need to take into account its length L (along x) and
width W (along y). We assume a square film with L = W , and
derive the sheet resistances

Rxx = Vxx

W Ix
= −L�μx

eW Ix
= −�μx

eIx
, (A7a)

Rxy = Vxy

W Ix
= −W �μy

eW Ix
= −�μy

eIx
. (A7b)

These are the quantities plotted in the main text.
Note that we have assumed a uniform film where the elec-

trodes cover entire edges. This may not be the case in practice,
and one needs to also consider effects related to the width of
the contact, the spin relaxation length in the film, and spin
accumulation on sample edges. For the experimental geom-
etry we proposed in Fig. 4 where the spin detection with an
ferromagnet or spin injection with spin pumping takes place
out of the film plane, one should also consider the thickness of
the film and how that compares to the spin relaxation length.

APPENDIX B: PARAMETERS FOR PLOTS

In Figs. 1(b)–1(e), we tune either the ferromagnet or CISS
polarization parameter. We vary one of them between ±1,
and keep the other constant at 0.5. All other parameters are
set according to the zero-bias point in Fig. 2(d) of Ref. [30],
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and the conductances are calculated following the formalism
developed in Ref. [30].

For Fig. 2, we assume the CISS polarization is 0.5 for
each chiral element and the available spin-degenerate chan-
nels through each chiral element is 10. All other parameters
for the chiral element are assumed the same as in Fig. 1. For
the film, we assume the density of states to be 1015 eV−1 m−2.
The spin lifetime τs is set as 100 ns. Figure 3 uses the same
set of parameters but with different spin lifetimes as specified.

APPENDIX C: RECIPROCITY OF SPIN CURRENTS

To further illustrate the Onsager reciprocity, we show here
the reciprocal relation between the spin currents driven by
spin accumulations in either leads. We consider the same
two-terminal circuit as in Fig. 1(a), but now consider finite
spin accumulation in the left and right leads.

We illustrate here a case where the charge and spin trans-
port is purely driven by spin accumulation. For this, we
consider zero bias voltage, i.e., μL = μR, and calculate the
spin currents injected into one lead per unit spin accumula-
tion in the same/opposite lead. We term this the spin current
conductance, and show how it depends on the FM polarization
and CISS polarization in Fig. 6. Here Isl (Isr) is the spin current
in the left (right) lead, and μsl (μsr) is the spin accumulation
in the left (right) lead.

The Onsager reciprocity is highlighted by the symmetries
of these curves. In Figs. 6(a) and 6(b), we show the spin
currents in a lead driven by the spin accumulation in the
same lead. This spin current is an even function of both FM
polarization and CISS polarization. This shows that a full
magnetization (or chirality) reversal will not change the spin
currents produced by a spin accumulation in the lead itself.

(a)

(c)

(b)

(d)

FIG. 6. Reciprocity of spin currents in the leads driven by spin
accumulations in the same [(a) and (b)] and opposite [(c) and (d)]
lead. The circuit parameters for obtaining these curves are identical
as those in Fig. 1.

In Figs. 6(c) and 6(d), we show how a spin accumulation
in one lead drives spin current in the opposite one. Here reci-
procity implies specific symmetry relation between the two
curves in each panel: they are central symmetric with respect
to the origin. Therefore the two curves in each panel obtain a
sign difference when the FM or CISS polarization is reversed
for one of them.
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