

 University of Groningen

Accurate and efficient time-domain classification with adaptive spiking recurrent neural
networks
Yin, Bojian; Corradi, Federico; Bohté, Sander M.

Published in:
Nature Machine Intelligence

DOI:
10.1038/s42256-021-00397-w

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Yin, B., Corradi, F., & Bohté, S. M. (2021). Accurate and efficient time-domain classification with adaptive
spiking recurrent neural networks. Nature Machine Intelligence, 3(10), 905-913.
https://doi.org/10.1038/s42256-021-00397-w

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1038/s42256-021-00397-w
https://research.rug.nl/en/publications/bee4e0f9-94b2-4765-893f-2c87a275b3bf
https://doi.org/10.1038/s42256-021-00397-w

Articles
https://doi.org/10.1038/s42256-021-00397-w

1CWI, Machine Learning group, Amsterdam, the Netherlands. 2Stichting Interuniversitair Micro-Elektronica Centrum (IMEC) Nederland, Eindhoven, the
Netherlands. 3Univ of Amsterdam, Faculty of Science, Amsterdam, the Netherlands. 4Rijksuniversiteit Groningen, Faculty of Science and Engineering,
Groningen, the Netherlands. ✉e-mail: byin@cwi.nl

The success of brain-inspired deep learning in AI is naturally
refocusing attention back onto those inspirations and abstrac-
tions from neuroscience1. One such example is the abstrac-

tion of the sparse, pulsed and event-based nature of communication
between biological neurons into neural units that communicate real
values at every iteration or timestep of evaluation, taking the rate of
firing of biological spiking neurons as an analogue value (Fig. 1a).
Spiking neurons, as more detailed neural abstractions, are theoreti-
cally more powerful than analogue neural units2 as they allow the
relative timing of individual spikes to carry important information.
A real-world example in nature is the efficient sound localization in
animals such as Barn Owls using precise spike-timing3. The sparse
and binary nature of communication similarly has the potential to
drastically reduce energy consumption in specialized hardware, in
the form of neuromorphic computing4.

Numerous approaches to learning in spiking neural networks
(SNNs) have been developed since their introduction5–9. All such
approaches define how input signals are transduced into sequences
of spikes and how output spike-trains are interpreted with respect
to goals, learning rules or loss functions. For supervised learning,
approaches that calculate the gradient of the loss function with
respect to the weights have to deal with the discontinuous nature of
the spiking mechanism inside neurons. Local linearized approxima-
tions such as SpikeProp5 can be generalized to approximate surro-
gate gradients10, or even calculated exactly in special cases11. The use
of surrogate gradients in particular has recently resulted in rapidly
improving performance on select benchmarks, closing the perfor-
mance gap with conventional deep learning approaches for smaller
image recognition tasks such as CIFAR10 and (Fashion) MNIST,
and demonstrating improved performance on temporal tasks such
as TIMIT speech recognition12. Still, SNNs have struggled to dem-
onstrate a clear advantage over classical artificial neural networks
(ANNs)13,14.

Here we introduce a novel approach to spiking recurrent neural
networks (SRNNs)15, networks that include recurrently connected
layers of spiking neurons (Fig. 1b). We demonstrate how these net-

works can be trained to high performance on hard benchmarks to
exceed the current state of the art in SNNs for all but one bench-
mark, and approaching or surpassing the state of the art in classical
recurrent artificial neural networks. High performance in SRNNs
is achieved by applying backpropagation through time (BPTT)16 to
spiking neurons using a novel multi-Gaussian surrogate gradient and
adaptive spiking neurons where the internal time-constant param-
eters are co-trained with network weights. The multi-Gaussian sur-
rogate gradient is constructed to include negative slopes (similar to
the gradient of the sigmoid-like dSilu activation function17,18); we
find that it consistently outperforms other existing surrogate gradi-
ents. Similarly, co-training the internal time-constants of adaptive
spiking neurons always proved to be beneficial. We demonstrate
that these ingredients jointly improve performance to a competitive
level while maintaining sparse average network activity.

We demonstrate the superior performance of SRNNs for
well-known benchmarks that have an inherent temporal dimen-
sion, such as electrocardiogram (ECG) wave-pattern classification,
speech (Google Speech Commands, GSC; TIMIT), radar gesture
recognition (project Soli) and classical hard benchmarks such
as sequential MNIST and its permuted variant. We find that the
SRNNs need very little communication, with the average spiking
neuron emitting a spike once every 3 to 30 timesteps, depending on
the task. Calculating the theoretical energy cost of computation, we
then show that cheap accumulate operations dominate over more
expensive multiply-and-accumulate (MAC) operations in SRNNs.
Based on relative MAC versus accumulate energy cost13,14, we argue
that these sparsely spiking SRNNs have an energy advantage rang-
ing from one to three orders of magnitude over RNNs and ANNs,
with comparable accuracy, depending on the network and task
complexity.

SRNNs. We focus here on multilayer networks of recurrently con-
nected spiking neurons, as illustrated in Fig. 1b; variations include
spiking recurrent neural networks that receive bidirectional input
(bi-SRNNs; Extend Data Fig. 2a).

Accurate and efficient time-domain classification
with adaptive spiking recurrent neural networks
Bojian Yin   1 ✉, Federico Corradi   2 and Sander M. Bohté   1,3,4

Inspired by detailed modelling of biological neurons, spiking neural networks (SNNs) are investigated as biologically plau-
sible and high-performance models of neural computation. The sparse and binary communication between spiking neurons
potentially enables powerful and energy-efficient neural networks. The performance of SNNs, however, has remained lacking
compared with artificial neural networks. Here we demonstrate how an activity-regularizing surrogate gradient combined with
recurrent networks of tunable and adaptive spiking neurons yields the state of the art for SNNs on challenging benchmarks in
the time domain, such as speech and gesture recognition. This also exceeds the performance of standard classical recurrent
neural networks and approaches that of the best modern artificial neural networks. As these SNNs exhibit sparse spiking, we
show that they are theoretically one to three orders of magnitude more computationally efficient compared to recurrent neural
networks with similar performance. Together, this positions SNNs as an attractive solution for AI hardware implementations.

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell 905

mailto:byin@cwi.nl
http://orcid.org/0000-0002-5074-4337
http://orcid.org/0000-0002-5868-8077
http://orcid.org/0000-0002-7866-278X
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00397-w&domain=pdf
http://www.nature.com/natmachintell

Articles NATurE MAcHINE INTEllIgENcE

Spiking neurons are derived from models that capture the
behaviour of real biological neurons19. Although biophysical
models such as the Hodgkin–Huxley model are accurate, they
are also costly to compute20. Phenomenological models such as
the leaky integrate-and-fire (LIF) neuron model trade levels of
biological realism for interpretability and reduced computational
cost: LIF integrates input current in a leaky fashion and emits
a spike when its membrane potential crosses its threshold from
below, after which the membrane potential is reset to the reset
membrane potential; the current leak is determined by a decay
time constant τm.

As an exceedingly simple spiking neuron model, the LIF neu-
ron lacks much of the complex behaviour of real neurons, including
responses that exhibit longer history dependency such as spike-rate
adaptation20. Bellec and colleagues21 demonstrated how using a spik-
ing neuron model that uses a generic form of adaptation improved
performance in their SNNs. In this adaptive LIF (ALIF) neuron, the
LIF neuron model is augmented with an adaptive threshold that
increases after each emitted spike and then decays exponentially
with time-constant τadp. Both LIF and ALIF neurons can be thought
of as neural units with self-recurrency, as illustrated in Fig. 1c.

BPTT, surrogate-gradient and multi-Gaussian. Given a
loss-function L(t|θ) defined over neural activity at a particular

time t, the BPTT algorithm16 updates network parameters θ in the
direction that minimizes the loss by computing the partial gradient
∂L(t)/∂θ using the chain-rule. Here θ includes both the synaptic
weights and the respective neural time-constants. In recurrently
connected networks, past neural activations influence the current
loss, and by unrolling the network, the contribution of these past
activations to the current loss is accounted for. The roll-out of net-
work activity, through which the gradient is computed, is illustrated
in Fig. 1d.

The discontinuous nature of the spiking mechanism in spiking
neurons makes it difficult to apply the chain-rule connecting the
backpropagating gradient between neural output and neural input5;
in practice, replacing the discontinuous gradient with a smooth
gradient function, a surrogate gradient, has proven effective10,12,22
and has the added benefit of allowing the mapping of SNNs to
RNNs in optimized deep learning frameworks such as PyTorch and
Tensorflow10. Multiple surrogate gradient functions have been pro-
posed and evaluated, including Gaussian, linear21 and SLayer6 func-
tions; however, no notable differences in performance are reported
for these functions10.

We here define the multi-Gaussian as a novel surrogate gradient
f̂s′(·) comprising a weighted sum of multiple Gaussians N , where
the hyperparameters h and s are chosen such that the multi-Gaussian
contains negative parts:

∑

x1

x2

xn

...

w1

w2

wn

f (⋅) y

Input
feature

Multiply accumulation

Output
feature

Transfer function

δ1

δ2

δn

...

w1

w2

wn

∑

umem

Time

ϑ

Synaptic accumulation

Output
spikesIntegrate & leaky

Input layer

SRNN layer 2

SRNN layer 1

Output layer

a b c

d e

Neuron model

Neural recurrence

Recurrent connection

Forwards connection

LIF

τm

ALIF

τm

τadpInput spikes

x0

uh,0

sh,0

so,0

uo,0

uh,−1

sh,−1

so,−1

uo,−1

x1

uh,1

sh,1

so,1

uo,1

. . .

. . .

. . .

. . .

. . .

Input
layer

Hidden
layer

Output
layer ̂ ̂yt yt

∂ℒ/∂z

̂ ̂

̂

yt yt
∂ℒ/∂z

Spike
based

1.0

0.8

0.6

0.4

0.2

0

–6 –4 –2 0 2 4 6

Membrane
based

Backwards
Forwards

st Spike
ut Membrane potential

xt Input

xT

uh,2

sh,T

so,T

uo,T

ℒ(yt,yt)

ℒ(yt,yt)

ut – �

f′ s

Multi-Gaussian

Gaussian

Linear

SLayer

yt Output

Fig. 1 | illustration of processing and learning in networks of spiking neurons. a, top: a classical artificial neural unit computes a weighted sum over
input activations and then computes an output activation from this sum using a non-linear transfer function. time is modelled as iterated recomputation
of the network graph. bottom: spiking neurons receive spikes that are weighted and added to the internal state (membrane potential) that further
develops through time following differential equations. When the membrane potential crosses a threshold, a spike is emitted and the potential is reset.
b, Example architecture of an SRNN: an input layer projects to a layer of recurrently connected spiking neurons. Recurrent layers then project to a read-out
layer. Multiple recurrent layers can be connected in a feedforwards fashion, which is shown here for two recurrent layers. c, the decaying threshold and
membrane potential of the LIF and ALIF neurons can be modelled as an internal state induced by self-recurrency. d, Roll-out of the computational graph of a
spiking neuron as used for bPtt for a sequence t = 0...T. e, An illustration of different surrogate gradient functions f̂′s as a function of the neuron’s membrane
potential and threshold, where the multi-Gaussian is parameterized as in the experiments below (s = 6, h = 0.15).

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell906

http://www.nature.com/natmachintell

ArticlesNATurE MAcHINE INTEllIgENcE

f̂s′(ut|ϑ) = (1+ h)N (ut|ϑ, σ2)

−hN (ut|σ, (sσ)2)− hN (ut| − σ, (sσ)2),
(1)

where ut is the spiking neuron’s membrane potential, σ is the width
of the Gaussian and ϑ is its internal threshold. The multi-Gaussian
surrogate gradient is inspired by the dSilu17 activation function,
which was shown to outperform the standard sigmoidal activa-
tion function both for accuracy and learning speed, and which
has a derivative similar to the multi-Gaussian. The negative parts
of multi-Gaussian gradient effectively regularize activity, as they
penalize both relatively large inputs and small inputs18. The gradient
function thus aids the SNN in achieving high accuracy with sparse
neural activity. The shape of the multi-Gaussian and various other
surrogate gradient functions is illustrated in Fig. 1e.

Computational cost. To estimate the efficiency of SNNs and com-
pare them with ANNs, we calculate the number of computations
required in terms of accumulation (AC) and MAC operations23.
We do this for an SRNN network with LIF or ALIF neurons and
compare it with a complex recurrent ANN structure such as a
long short-term memory (LSTM) network24 (Fig. 2; see Extended
Data Fig. 2b for other ANNs). In ANNs, the contribution from
one neuron to another requires a MAC for every timestep, mul-
tiplying each input activation with the respective weight before
adding it to the internal sum. By contrast, for a spiking neuron,
a transmitted spike requires only an accumulate at the target
neuron, adding the weight to the potential, and where spikes
may be quite sparse. Furthermore, the spiking neuron’s internal
state needs to be updated at every timestep at the cost of several
MACs depending on the spiking neuron model complexity14. As
it is much more energetically expensive to calculate MACs than
ACs (for example, 31-times more expensive on a 45 nm comple-
mentary metal–oxide–semiconductor25), the relative efficiency
of SNNs is determined by the number of connections multiplied
by activity sparsity and the spiking neuron model complexity.

We also remark that on digital hardware, multiplication circuits
require substantially more die area than addition circuits26.

results
Tasks. Recurrent neural networks provide state of the art perfor-
mance in various sequential tasks that require memory27 (typically in
small and compact networks) and can operate in an online fashion.
We distinguish two kinds of sequential tasks: (1) streaming tasks,
where many inputs map to many specified outputs (many-to-many);
and (2) classification tasks, where an input sequence maps to a sin-
gle output value (many-to-one). Sequential classification tasks can
also be computed in an online fashion, where classification is deter-
mined for each timestep.

We selected benchmark tasks with an inherent temporal dimen-
sion that can also be computed with RNNs of modest size to fit
the dynamics and constraints of SNNs. For these tasks, we trained
several different SRNN network architectures with various gra-
dients, hyperparameters and spiking neuron models and com-
pared them with classical and state-of-the-art RNN architectures.
Hyperparameters were selected using threefold cross-validation on
the training data.

The ECG28 signal is composed of six different characteristic
waveforms (P, PQ, QR, RS, ST and TP), whose shape and duration
inform clinicians on the functioning of the cardiovascular system.
The task requires the continuous recognition of all six waveforms,
where we use signals from the QTDB dataset28. The ECG-wave
labelling is an online and streaming task using only past informa-
tion. The sequential- and permuted-sequential S/PS-MNIST data-
sets are standard sequence classification tasks of length 784 derived
from the classical MNIST digit recognition task by presenting pix-
els one at a time. The permuted version also first permutes each
digit-class removing spatial information. The Spiking Heidelberg
Digits (SHD) and Spiking Speech Command (SSC) datasets29
are SNN-specific sequence classification benchmarks that com-
prise audio data converted into spike trains based on a detailed
ear model.

a b

Ct−1

ht−1

xt

Ct

ht

ALIF

LSTM

fsut−1

St

ut

1/τm
R

eset

1−1/τm

xt
LIF

σ σ tanh σ

tanh

ut = αut−1 + It

Wm,n Input_dim, output_dim

Time

LIF

Adaptive

It = (Wm,nXm + Wn,nSn
t−1)

ut = αut−1 + (1 − α)RmIt − St−1θ

α = exp(−dt/τm)

ρ = exp(−dt/τadp)

ηt = ρηt−1 + (1 − ρ)St−1

θ = b0 + βηt

LSTM

Energy

(mnFrin + nnFrout)EAC

(mnFrin + nnFrout)EAC

nEMAC

nEMAC + nEACFrout

(m + n + 2)nEMAC

2nEMAC
5nEMACht = ot ° σh (ct)

Total

4(mn + nn)EMAC

+17nEMAC

nEMAC + nEACFrout

nEMAC
+nEMAC

(m + n + 2)nEMAC

(m + n + 2)nEMAC

(m + n + 4)nEMAC

It = (Wm,nXm + Wn,nSn
t−1)

(mnFrin + nnFrout)EAC

+(nn + 2n)FroutEAC

+3nEMAC

mnFrin

1 – ρ

(1 – α)xt

t

ρηt−1

St−1

αut−1

ηt

St

ut

+θo

fs

ct = ft ° ct–1 + it ° ct
~

ct = σh (Wcxt + Ucht–1 + bc)~

ot = σg (Woxt + Uoht–1 + bo)
it = σg (Wixt + Uiht–1 + bi)

ft = σg (Wfxt + Ufht–1 + bf)

Fig. 2 | Complexity calculation. a, theoretical energy computation of different layers. the computational complexity calculation follows Hunger50. Given
the equations for evaluating a single neural LIF, ALIF or LStM unit (left), complexity is computed for a single recurrently connected layer where each
neuron receives n feedforward inputs with average spike probability, Frin, and m recurrent inputs with average spike probability, Frout; EAC and EMAC denote
the energy cost for accumulate (AC) and MAC operations, respectively. b, LIF, ALIF and LStM internal operation schematic.

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell 907

http://www.nature.com/natmachintell

Articles NATurE MAcHINE INTEllIgENcE

The Soli dataset30 gesture recognition task comprises a set of ges-
tures where each gesture is measured as a sequence of radar returns
collected from the solid-state millimetre-wave radar sensor (Soli).
We treat the Soli task as both an online streaming and classification
task by processing frames sequentially; we thus obtain two mea-
sures, per-frame accuracy for streaming and whole sequence accu-
racy for classification.

Both the GSC31 and TIMIT datasets32 are classical speech recog-
nition benchmarks where, for TIMIT, we compute the frame error
rate (FER) and where, similar to ref. 12, we apply a bidirectional
architecture such that future information is also used to classify
each frame (illustrated in Extended Data Fig. 2a). Samples from the
ECG, SHD and Soli datasets are shown in Fig. 3a–c.

As shown in Table 1, we find that these SRNNs achieve state of
the art performance for SNNs on all but one task, exceed conven-
tional RNNs such as LSTM models, and approach or exceed the
state of the art for modern RNNs. For GSC, we exceed the SNN

state of the art for recurrent and online processing and approach the
non-streaming result of ref. 33. Moreover, we see that SRNNs con-
siderably close the accuracy gap (SHD, SSC, GSC) on non-recurrent
architectures such as convolutional neural networks (CNNs) and
attention-based networks; these networks, however, typically com-
prise many more neurons or parameters and cannot be computed in
an online or streaming fashion.

We plot the accuracy for the various tasks using different surro-
gate gradients in Fig. 3d: although we see that there is little difference
between previously developed gradients such as Gaussian, Linear and
SLayer, we find that the multi-Gaussian function consistently outper-
forms these gradients. To better understand why the multi-Gaussian is
beneficial, we removed either the left or right negative part of the gra-
dient for comparison. We found consistently that both performance
and sparseness improved for both parts (Extended Data Table 2, and
Extended Data Figs. 3 and 4), demonstrating that the negative parts of
the multi-Gaussian act as effective regularizers.

Two-layer SRNN

One-layer SRNN

a b c

d e f

g h

*

Time (ms)

P
er

ce
nt

 te
st

 a
cc

ur
ac

y
(%

)

E
rr

or
 r

at
io

V
ol

ta
ge

E
rr

or
 r

at
io

P
er

ce
nt

 te
st

 a
cc

ur
ac

y
(%

)

Sparsity ratioSparsity ratio

C
ha

nn
el

i

Full

2.502.252.001.751.251.000.753.5

LIF neuron
Adp neuron

3.02.52.01.51.0

1.0

1.2

1.4

1.6

1.8

2.0

50

ECG
SHD

SSC
SoL

i

TIM
IT

60

70

80

90

100

0
0

100
200
300
400
500
600
700 Label 2

0.1 0.2 0.3

Time (s)

0.4 0.5

0 20 39

+tau_m

+tau_adp

+tau

+ReLu

Multi-Gaussian

Gaussian

Linear

Linear

SLayer

1.0

1.4

1.6

1.8

2.0

2.4

0

0.05

0.10

M
ea

n
fir

in
g

pr
ob

ab
ili

ty

0.15

0.20

0.25

0.30

2.2

1.2

1.50

Multi-Gaussian

Gaussian SLayer

ECG
SHD

SSC

SM
NIS

T

PSM
NIS

T
SoL

i

TIM
IT

Multi
Gaussian

Gaussian

Linear

SLayer

ECG
SHD

SoL
i

TIM
IT

SM
NIS

T

PSM
NIS

T
50

SOP
ECG
SHD
SSC
SMNIST
PSMNIST
SoLi
TIMIT
GSC 12,600

21,504
3,645.4
59,772.1
70,810.8
19,450
24,690
35,011.2 26.9

98.76
77.8
90.32
76.24
91.13
43.0
126

SOP per step

60

70

80

90

100

–1

0 50 100 150 200 250 300

0

1

2

3

4

5
ECG example P

PQ

QR

RS

ST

TP

Fig. 3 | Details of task performance. a–c, Examples of a single ECG signal channel labelled for each timestep (a); the input spike-trains for the spoken
number seven in the SHD dataset (b); and an example of gesture data (c), in which the top row shows the temporal evolution of the gesture and the bottom
row shows the corresponding range-doppler image. d, Effects of various surrogate gradients on performance. e, Effects of training the time-constant
hyperparameters τm and τadp. the legend denotes which hyperparameters are trained, whereas ReLU denotes the non-spiking analogue SRNN. f, the
per-timestep spike probability of the SRNNs on various tasks. g, total average spike operations (SOPs) per sample and SOPs per sample per step (timesteps
per frame). h, the effect of neuron types in terms of test accuracy and sparsity with various gradients (shown for the Soli dataset). the size of the nodes
indicates the network size, whereas the colours of the nodes represent the gradient type. i, Effect of the number of hidden recurrent layers on test accuracy
and sparsity with various gradients (shown for SHD dataset).

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell908

http://www.nature.com/natmachintell

ArticlesNATurE MAcHINE INTEllIgENcE

Table 1 | Comparisons of SrNN performances with respective rNN and SNN state-of-the art accuracy (Acc.)

task Network Method Acc. task Network Method Acc.

ECG RNN-Sota bi-LStM 80.8% SSC RNN-Sota LStM29 73.1%

SrNN this work 85.9% CNN-Sota CNN29 77.7%

S-MNISt RNN-Sota IndRNN44 99.5% SNN-base LIF29 50.1%

RNN LStM45 98.2% SRNN-SotA SNN46 60.1%

SRNN-Sota LSNN21 96.4% SrNN this work 74.2%

SrNN this work 98.7% Soli CNN-Sota CNN30 77.7%

PS-MNISt RNN-Sota IndRNN44 97.2% RNN-Sota CNN+LStM30 87.2%

RNN LStM45 88% SrNN this work 91.9%

SrNN this work 94.3% GSC RNN-Sota Att RNN47 95.6%

SHD RNN-Sota bi-LStM 87.2% CNN-Sota SCNN33 94.5%

CNN-Sota CNN29 92.4% SNN-Sota LSNN12 91.2 %

SNN-base LIF29 71.4% SrNN this work 92.1%

SNN SNN48 82.2% tIMIt RNN-Sota bi-LStM49 68.9%

SNN-Sota SNN46 82.7% SNN-Sota LSNN21 65.4%

SrNN this work 90.4% Bi-SrNN this work 66.1%

bold font indicates this work.

a b

d

P
ro

ba
bi

lit
y

e

g h

SSC

i

Time constant

F
re

qu
en

cy

A
cc

ur
ac

y

c

SoLiSHD

ECG

f

A
cc

ur
ac

y

A
cc

ur
ac

y

A
cc

ur
ac

y

PS-MNISTS-MNIST

A
cc

ur
ac

y

0 100 200 300 400 500 600 700 800

0 5 10 15 20 25 30 35 40

00 10010050 150 200200 250

0 10050 150 200 250 0 10050 150 200 250

0
0

10050

20

40

60

80

100

150 200 250

300 400 500 600 700 800

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

0

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

Pixel PixelTime

Frame Frame Frame

Pre-trained τadp

Pre-trained τm

Trained τm

Trained τadp

TPSTRSQRPQP

Low accuracy

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

1 2 3 4 5
Scale

6 7 8 9 10
Scale

1

1.1
1.0
0.9
0.8
0.7
0.6

H
ei

gh
t

H
ei

gh
t 0.5

0.4
0.3
0.2
0.190High accuracy

High firing
rate

Low firing rate

85

80

75

70

65

2 3 4 5 6 7 8 9 10

0.06

0.08

0.10

0.12

0.14

Fig. 4 | learning trade-offs and classification latency. a,b, Grid search for h (Height) and s (Scale) for the multi-Gaussian surrogate gradient on the Soli
dataset. the dotted line demarcates the top-left area of solutions with high accuracy (>0.91) (a) and high firing sparsity (>0.09) (b). the dashed green
box denotes the selected h and s values. c, Evolution of spiking neuron time constants evolving before and after training. d, An example of ECG streaming
classification: the prediction probability of each output label is calculated from the normalized output neurons’s membrane potential (dashed lines, bottom).
top, the colour-coded true labels. e–i, temporal evolution of classification accuracy for the S-MNISt recognition (e), PS-MNISt (f) and SHD recognition (g)
tasks, the SSC dataset (h) and for the Soli dataset (i).

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell 909

http://www.nature.com/natmachintell

Articles NATurE MAcHINE INTEllIgENcE

As shown in the ablation study in Fig. 3e, we also find that, inde-
pendent of the surrogate gradient used, training the time-constants
in the ALIF neurons consistently improves performance; not train-
ing τm or τadp—or training neither—reduces performance. Much
of the power of the SRNNs seem to derive from their multilayer
recurrent and self-recurrent architecture. When we make the spik-
ing neurons non-spiking by eliminating the spiking mechanism and
communicating the rectified linear unit (ReLU) value of the mem-
brane potential, for almost all tasks we achieve performances that
slightly exceed that of the spiking SRNNs.

The trained SRNNs communicate sparingly: most networks
exhibit sparseness of less than 0.1, and only the ECG task requires
more spikes as it was tuned to use the smallest SRNN network (46
neurons). Sparseness of neural activity—which is expressed as the
average firing probability per timestep per neuron—is plotted in Fig.
3f. In general we find that increasing network size improves accu-
racy while decreasing the average sparsity (Fig. 3h,i), although the
total number of spikes used in the network increases. The total aver-
age number of spikes required per sample (SOPs) and per sample
per step (SOP per step) for the highest performing SRNNs are given
in Fig. 3g. We also evaluated to what degree the internal recurrency
of spiking neurons contributes compared to the intralayer recurrent
connectivity: we find that the addition of intralayer recurrent con-
nections consistently improves accuracy (see Extended Data Table 2
in the Supplementary Information).

Plotting the performance of networks using either ALIF or LIF
neurons, we find that ALIF neurons consistently improve both
performance and activity sparseness in the networks (Fig. 3h).
Similarly, splitting a single large recurrent layer into two layers of
recurrently connected layers in the SRNN architecture improves
both performance and sparsity in the SHD task (Fig. 3i), with simi-
lar improvements in the other tasks.

We performed a grid search on the Soli and SHD datasets for the
h and s hyperparameters to determine the optimal parameter values
for the multi-Gaussian surrogate gradient using cross-validation.
We find that there is a range of values where we can obtain both
competitive accuracy and high sparsity (areas to the top left of the
orange dotted line in Fig. 4a,b). We used a similar hyperparame-
ter search for the other tasks using selected values only from the
high-accuracy/low activity area identified here; the training pro-
cedure also learns the time constants for the respective tasks. As
shown in Fig. 4c for the SHD task, starting from a tight distribution
of time-constants, the spiking neurons in the trained network con-
verge to using a wide variety of time-constants—the same effect is
observed in the other tasks (not shown).

The streaming and online nature of several of the tasks allows
the network to make any-time decisions. Figure 4d shows the clas-
sification of the various ECG waveforms for every timestep. When a
new wave is presented, there is a brief delay before this class is cor-
rectly identified. In Fig. 4e–i, the average online classification per-
formance is shown for the S-MNIST, PS-MNIST, SHD, SSC and Soli
datasets. We see that the S-MNIST and PS-MNIST digits can be rec-
ognized reliably quickly, whereas the SSC sounds require distinctly
more time. The SHD sound recognition is much more erratic, and
inspection of the data shows that this is caused by the various classes
being placed at different times in the sound clip. Figure 4i plots the
accuracy as a function of the number of frames shown for the Soli
task. Most gestures can be recognized reliably already after having
presented only 25 out of the 42 frames, comparing favourably with
ref. 30: the SRNN allows decisions to be made earlier and with better
accuracy.

Given the relative accumulate and MAC energy cost from
refs. 14,25,34 and the computational complexity calculations from
Fig. 2a, we plot in Table 2 the relative energy efficiency of the vari-
ous networks. We see that for the more complex tasks, SRNNs are
theoretically at least 59-times more energy efficient than RNNs at

equivalent performance levels, where for most tasks the non-spiking
(ReLU) SRNN compares most favourably. More classical RNN
structures such as LSTMs require many more parameters and oper-
ations, often being 1,000-times less efficient—we also calculate sim-
ilar estimates for other RNN structures in Extended Data Table 1.

Discussion
We showed how multilayered recurrent network structures are able
to achieve new state-of-the-art performance for SNNs on sequential
and temporal tasks. This was accomplished by using adaptive spik-
ing neurons with learned temporal dynamics trained with BPTT
using a novel surrogate gradient, the multi-Gaussian, where the
multi-Gaussian gradient consistently outperformed the other sur-
rogate gradients. These results approach or equal the accuracy of
conventional RNNs, where the non-spiking ReLU-SRNNs consis-
tently slightly outperformed the spiking version, demonstrating the
effectiveness of the SRNN network architecture. When expressed in
terms of computational operations, they demonstrate a decisive the-
oretical energy advantage of one to three orders of magnitude over
conventional RNNs. This advantage furthermore increases for more
complex tasks that required larger networks to solve accurately.

The multi-Gaussian gradient was inspired by a sigmoid-style
saturating activation function developed for standard artificial
neurons, the dSilu, which has a similarly shaped gradient. As
with the dSilu, we also find that the negative parts of the gradient
help improve accuracy, and in the SRNN also sparseness. The lat-
ter suggests that the negative parts of the gradient act as effective
regularizers.

Neither the SRNNs nor the presented RNNs were optimized
beyond accuracy and (for the SRNNs) sparsity: no optimizations
such as pruning and quantization were applied. When we compare
the SRNN for the GSC task with the attention-based CNN-network
TinySpeech23 (the recent state of the art in efficiency-optimized
speech recognition), we find that at an equivalent performance
level, the SRNN still requires 19.6-times fewer MACs, and where,
unlike TinySpeech, the SRNN operates in an online and streaming
fashion (Extended Data Table 1).

We focused on temporal or sequential problems with relatively
limited input dimensionality. With RNNs, such problems can be
solved with relatively small neural networks and hold direct prom-
ise for implementation in ultra-low power EdgeAI solutions. This
also was the reason for emphasizing streaming or online solutions
where no or fixed preprocessing and buffering is required: problems
where a temporal stream first has to be segmented and where these
segments are then classified greatly increase the complexity of such
solutions. We showed that most classification decisions could be
made early with near-optimal accuracy.

The datasets discussed here were all selected for being amenable
to streaming and online processing by SRNNs with very limited
preprocessing; for example, calculating log Mel filters. In prelimi-
nary work, the use of conventional convolutional network layers to
extract useful features proved helpful for simple subsequent layers
of spiking neurons35. We similarly find (with a hybrid CNN-SRNN
we obtained an accuracy of 97.91% on the DVS128 dataset and
96.5% on the GSC dataset, with the CNN-SRNN code available
at https://github.com/byin-cwi/Efficient-spiking-networks/tree/
main/DVS128) that deep preprocessing improves accuracy consid-
erably for tasks such as GSC and also the DVS128 dataset36, where
SRNNs exhibited scores exceeding those reported by refs. 33,35. This
suggests that for even larger problems than those studies here, deep
preprocessing holds much promise when balanced against the
impact on complexity and energy requirement and also on the abil-
ity to process event-based streaming data.

Using surrogate gradients, the BPTT gradient in the SRNNs
can be computed using standard deep learning frameworks, where
we used PyTorch37. The code is available at https://github.com/

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell910

https://github.com/byin-cwi/Efficient-spiking-networks/tree/main/DVS128
https://github.com/byin-cwi/Efficient-spiking-networks/tree/main/DVS128
https://github.com/byin-cwi/Efficient-spiking-networks
http://www.nature.com/natmachintell

ArticlesNATurE MAcHINE INTEllIgENcE

byin-cwi/Efficient-spiking-networks. With this approach, compli-
cated architectures and spiking neuron models can be trained with
state-of-the-art optimizers, regularizers and visualization tools. At
the same time, this approach is costly in terms of memory use and
training time, as the computational graph is fully unrolled over all
timesteps, precluding online and on-chip learning. Furthermore,
the abundant spatial and temporal sparsity is not exploited in the
frameworks. This also limits the size of the networks to which this
approach can be applied; for considerably larger networks, either
dedicated hardware and/or sparsity optimized frameworks are
needed38. Approximations to BPTT such as eProp12 or alternative
recurrent learning methods such as RTRL39 may also help alleviate
this limitation.

We remark that the energy advantage of SRNNs we computed
is theoretical: although the computational cost in terms of MACs
is well-accepted23,34, this measure ignores real-world realities such
as the presence or absence of sufficient local memory, the cost of
accessing memory and the potential cost of routing spikes from one
neuron to another. In many EdgeAI applications, the energy cost of
conventional sensors may also dominate the energy equation. At the
same time, the numbers we present are unoptimized in the sense that
other than optimizing the surrogate gradient for both sparsity and
accuracy, we did not prune the networks or applied other standard
optimization and quantization techniques. Substantial improve-
ments here should be fairly straightforward. Training parameters of
spiking neuron models in the SRNNs can be extended further to
approaches that include parameterized short-term plasticity40 and
more complicated spiking neuron models.

The effectiveness of adjusting time-constant parameters to the
task may also have implications for neuroscience: though effective
time constants of real spiking neurons are variable and dynamic19,
the benefit of training these parameters in SRNNs suggests these
neural properties may be subject to learning processes in biology.

Methods
In the SRNNs, the LIF spiking neuron is modelled as:

ut−1 = ut−1(1 − St−1) + urSt−1 (2)

ut = ut−1(1 − 1/τm) + RmIt/τm (3)

St = fs(ut, ϑ) (4)

where It =
∑

ti wiδ(ti) + Iinj,t is the input signal comprising spikes at times ti
weighted by weight wi and an injected current Iinj,t; u is the neuron’s membrane
potential which decays exponentially with τm, ur is the reset potential, ϑ is the
threshold, Rm is the membrane resistance (which we absorb in the synaptic
weights). The function fs(ut, ϑ) models the spike-generation mechanism as
function of ϑ, which is set to 1 when the neuron spikes and otherwise is 0 (where
the approximating surrogate gradient is then f̂′s(ut, ϑ)). The value for the reset
potential ur was set to zero. The ALIF neuron is similarly modelled as :

ut = αut−1 + (1 − α)RmIt − ϑSt−1 (5)

ηt = ρηt−1 + (1 − ρ)St−1 (6)

ϑ = b0 + βηt (7)

St = f̂s(ut, ϑ), (8)

where α, γ are parameters related to the temporal dynamics (α = exp(−dt/τm)
and ρ = exp(−dt/τadp)), ϑ is a dynamical threshold comprising a fixed minimal
threshold b0 and an adaptive contribution βηt; ρ expresses the single-timestep decay
of the threshold with time-constant τadp. The parameter β is a constant that controls
the size of adaptation of the threshold; we set β to 1.8 for adaptive neurons as
default. Similarly, α expresses the single-timestep decay of the membrane potential
with time-constant τm.

The SRNNs were trained using BPTT, various spiking neuron models with
plastic time-constants and with various surrogate gradients. The standard Ta

bl
e

2
| C

om
pa

ris
on

 o
f S

rN
N

 e
ne

rg
y

co
ns

um
pt

io
n

w
ith

 re
sp

ec
tiv

e
rN

N
 a

nd
 S

N
N

 s
ta

te
-o

f-
th

e-
ar

t a
cc

ur
ac

y

ta
sk

M
et

ho
d

N
et

w
or

k
A

cc
.

en
er

gy
/s

te
p

ra
tio

ta
sk

M
et

ho
d

N
et

w
or

k
A

cc
en

er
gy

/s
te

p
ra

tio

M
A

C
A

C 
×

 fr
M

A
C

A
C 

×
 fr

EC
G

bi
-L

St
M

29
0a

80
.8

18
1,8

00
×1

,7
00

SH
D

bi
-L

St
M

12
8 

+
 12

8 
+

 10
0

87
.2

1,1
00

,0
0

×1
,7

00

Re
LU

4 
+

 3
6 

+
 6

86
.4

1,9
00

×1
8

Re
LU

12
8 

+
 12

8
88

.9
14

2,
60

0
×1

25

O
ur

s
(L

IF
)

4 
+

 3
6 

+
 6

49
.7

42
50

0
×0

.5
O

ur
s

(A
LI

F)
12

8 
+

 12
8

90
.4

78
8

10
,7

00
×

1

O
ur

s
4 

+
 3

6 
+

 6
85

.9
90

50
0

×
1

So
li

LS
tM

51
2 

+
 5

12
77

.7
2,

70
0,

00
×6

04

S-
M

N
IS

t
Re

LU
64

 +
 2

56
 +

 2
56

99
.0

15
7,

30
0

×5
9

Re
LU

51
2 

+
 5

12
79

.6
1,1

00
,0

0
×2

46

O
ur

s
64

 +
 2

56
 +

 2
56

98
.7

2,
00

0
20

,0
00

×
1

O
ur

s
51

2 
+

 5
12

79
.8

3,
10

0
42

,4
00

×1

PS
-M

N
IS

t
Re

LU
64

 +
 2

56
 +

 2
56

93
.5

15
7,

30
0

×6
3

G
SC

Re
LU

30
0 

+
 3

00
22

2,
60

0
×1

67

O
ur

s
64

 +
 2

56
 +

 2
56

94
.3

2,
00

0
15

,3
00

×
1

O
ur

s
30

0 
+

 3
00

92
.2

1,0
0

10
,10

0
×

1

SS
C

Re
LU

40
0 

+
 4

00
74

.4
76

6,
60

0
×2

36
tI

M
It

b
O

ur
s

25
6 

+
 6

1
66

.1
1,6

00
56

,7
00

×
1

O
ur

s
40

0 
+

 4
00

74
.2

2,
40

0
26

,10
0

×
1

th
e

re
la

tiv
e

en
er

gy
 c

os
t i

s
ca

lc
ul

at
ed

 u
si

ng
 th

e
nu

m
be

r o
f M

A
C

s
an

d
A

C
s

re
qu

ire
d

du
rin

g
in

fe
re

nc
e,

 w
he

re
 R

at
io

, t
he

 re
la

tiv
e

en
er

gy
 ra

tio
, i

s
co

m
pu

te
d

us
in

g
1 M

A
C

 =
 3

1 A
C

 (r
ef

. 25
).

th
e

av
er

ag
e

sp
ik

in
g

pr
ob

ab
ili

ty
 in

 th
e

SR
N

N
s

pe
r t

im
es

te
p

is
 d

en
ot

ed
 b

y
fr.

 t
he

 a
cc

ur
ac

y
in

 S
ol

i
da

ta
se

t i
s

pe
r f

ra
m

e
ac

cu
ra

cy
. F

or
 G

SC
, t

he
 R

eL
U

 S
RN

N
 d

id
 n

ot
 c

on
ve

rg
e.

 a th
e

bi
di

re
ct

io
na

l-L
St

M
 n

et
w

or
k

co
nt

ai
ns

 2
90

 L
St

M
 u

ni
ts

. b Fo
r t

IM
It

, t
he

 c
om

pl
ex

ity
 o

f c
om

pa
ra

bl
y

ac
cu

ra
te

 n
et

w
or

ks
 w

as
 n

ot
 a

va
ila

bl
e.

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell 911

https://github.com/byin-cwi/Efficient-spiking-networks
http://www.nature.com/natmachintell

Articles NATurE MAcHINE INTEllIgENcE

validation sets were used where available to determine overfitting; for SHD we
held out 5% of the training data and for (P)S-MNIST 10%. Apart from the SSC
and SHD datasets, analogue input values are encoded into spikes either using
spikes generated by a level-crossing scheme (ECG) or by directly injecting a
proportional current into the first spiking layer (S-MNIST, PS-MNIST, Soli,
TIMIT, GSC). We used one of two methods to decode the output of the network:
either spike-counting over the whole time-window, for the (P)S-MNIST task,
non-spiking LIF neurons (TIMIT, SHD, Soli, and GSC) or spiking ALIF neurons
(ECG). With spike-counting, classification is decoded from the sum of the output
spikes as ŷ = softmax (

∑
tS

t
i,out) where Sti,out is the spike of the output neuron

i at time t. For either non-spiking LIF neurons and spiking ALIF neurons as
outputs, a softmax classification is computed from the output neurons’s membrane
potential uout,t at each timestep as ŷt = softmax (uout,t). For ECG, we used spiking
ALIF neurons for outputs as they performed best, which we believe is related
to the fact that this is the only task in which classification switches within the
sample (the spiking then functions effectively as resets). We use a standard BPTT
approach12 to minimize the cross-entropy or negative-log-likelihood loss for
each task using the Adam41 optimizer, where we unroll all input timesteps from
end to the start. The error gradient is calculated and accumulated through all
timesteps after which the weights are updated. The BPTT for the spiking neurons
is calculated retrogradely along with the self-recurrence circuits. As shown in Fig.
1d, given an input sequence X = x0, x1, x2, …, xT, and a neuron with initial states
{uh,0, uo,0, Sh,0, So,0}, we obtain for each timestep t ∈ {0, T} the spiking neuron states
{uh,t, Sh,t, uo,t, So,t}, where Sh,t refers to a neuron firing-or-not in a hidden layer and
So,t to an output neuron (if spiking), and uh,t and uo,t denote hidden and output
neurons’s membrane potentials. We then obtain a classification ŷ(t) either for
each timestep or for the whole sequence ŷ and an associated loss. In classification
tasks with C classes, the prediction probability of class c – ŷc is computed after
having read the whole sequence, and then the loss of the network is calculated as
L =

∑C
c=1 yclog ŷc, where yc is the target probability of class c. In streaming tasks

(ECG, Soli), the total loss is computed as the sum of the loss at each timestep,
L =

∑T
t=1 Lt. For the BPTT-derived gradient, we compute ∂L∂z = ŷ − y and for

recurrent weights, Wh2o, we compute ∂L
∂Wh2o

= ∂L
∂z

∑T
t′

∂So,t′
∂Wh2o

, where each term can

be computed at each timestep t′ as
∂So,t′
∂Wh2o

=
∂So,t′
∂uo,t′

∂uo,t′
∂Wh2o

+
∑t′−1

ξ=0
∂So,t′
∂ut′

∂uo,t′
∂uo,ξ

∂uo,ξ
∂Wh2o

and
∂So,t′
∂Wh2h

=
∑t′

ξ=0
∂So,t′
∂uh,ξ

∂uh,ξ
∂Wh2h

, and where Wh2h refers to weights between neurons

in the hidden layers, and Wh2o to weights between hidden and output neurons. The
discontinuous spiking function enters the gradient as the term ∂S∂u, and here we use
the differentiable surrogate gradients10.

For the multi-Gaussian surrogate gradient, we found effective parameter
values h = 0.15 and s = 6.0 based on a grid search, and we set σ to 0.5. The
standard surrogate gradients were defined following ref. 10, with the linear
surrogate gradient as f̂s′(ut|ϑ) = ReLU(1 − αlinear|ut − ϑ|); the SLayer6 gradient
as f̂s′(ut|ϑ) = exp(−αslayer|ut − ϑ|), and the Gaussian surrogate gradient
as f̂s′(ut|ϑ) = N (ut|ϑ, σG); for all gradients, α is positive. We optimized all
surrogate gradients hyperparameters in the experiments using grid searches; in the
experiments we used αlinear = 1.0, αslayer = 5.0 and σG = 0.5.

Network initialization. Compared with ANNs, SRNNs require initializing both
weight and the spiking neurons’s hyperparameters (that is, neuron type, time
constants, thresholds, starting potential). We randomly initialize the time constants
following a tight normal distribution (μ, σ) with per-layer specific parameters given
in Supplementary Table 1. For all neurons, the starting value of the membrane
potential is initialized with a random value distributed uniformly in the range[0,ϑ].
The bias weights of the network are initialized as zero and all feedforwards
weights are initialized using Xavier-uniform initialization; weights for recurrent
connections are initialized as orthogonal matrices. We compared networks with
constant, uniform and normal initializers for the time-constants and found that the
normal initializer achieved the best performance (Extended Data Fig. 1).

For the various tasks, the loss-function, sequence length, maximum number
of epochs, learning rate and decay schedule, and minibatch size are specified in
Supplementary Table 1. Validation showed that the SRNNs were not prone to
overfitting and test accuracy was measured at the last epoch. Unless specified
otherwise, the network architecture consists of inputs densely connected to
one or more fully recurrently connected layers of spiking neurons connected
to a layer of output neurons, as illustrated in Fig. 1b. For the ECG task, the
QTDB dataset 28 consists of two channels of ECG signals. We apply a variant
of the level-crossing encoding42 threshold on the derivative of the normalized
ECG signal to convert the original continuous values x into a spike train: each
channel was transformed into two separate spike trains representing value
increasing events and value decreasing events, respectively. The level crossing
encoding we used is defined as

S
+

=

{ 1, if xt − xt−1 ≥ L
+

0, otherwise
, S− =

{ 1, if xt−1 − xt ≥ L−

0, otherwise

where x is the signal being encoded, S+, S− denote spikes for the positive and
negative spike-train, respectively, and we used L+ = 0.3 and L− = 0.3.

For the SHD, the audio records were aligned to 1 s by cutting or completing
with zeros. As in a work by Cramer and colleagues29, two speakers were held out
for the test dataset, and 5% of samples from other speakers were also added into
the test dataset. The training dataset thus comprises 8,156 samples, whereas the
test dataset contains 2,264 samples. For the SSC dataset, the speech commands
were also uniformly aligned to 1 s with a 250 Hz sampling frequency, and the
dataset was randomly split into training, validation and test dataset with a ratio
of 72:8:20%, respectively. For the Soli dataset, the sequence of 40 range-doppler
images was fed into the model frame-by-frame as input and split into training and
testset as in Wang and colleagues30. The original range-doppler images have four
channels, but we found empirically that using one channel was sufficient. For the
Soli task, the first layer of the SRNN, we use a feedforwards spiking dense layer,
followed by a recurrent layer. As in Wang and colleagues30, separate networks
were trained for per-frame accuracy (Accs) and per-sequence accuracy (Accc), for
the streaming and classification version of the task, respectively. In the S-MNIST
tasks, the network read the image pixel by pixel; for the PS-MNIST task, pixels are
read into the network using a sliding window of size four with stride 1. For both
tasks, the pixel value is fed into the network directly as injected current into the
neurons of the first hidden layer as a fully connected layer with its own weights.
We use the GSC v.1 (ref. 31). For preprocessing, log Mel filters and their first and
second-order derivatives are extracted from raw audio signals using Librosa43.
For the FFTs, a window of 30 ms and a hop of 10 ms is used. The timestep of
the simulation is 10 ms. We calculate the logarithm of 40 Mel filters coefficients
using the Mel scale between 20 Hz and 4 kHz. Furthermore, spectrograms are
normalized to ensure that the signal in each frequency has a variance of 1 across
time; we then selected the first three derivative orders as three distinct input
channels. The input to the SRNN is thus a sequence of 101 frames, where each
frame comprises of a 40 × 3 matrix.

The TIMIT database contains 3,696 and 192 samples in training and test data,
respectively. We preprocessed the original audio data as in Bellec and colleagues12,
using Mel-frequency cepstral coefficient (MFCC) encoding; 10% of the training
dataset was randomly selected as validation dataset, and the network was trained
on the remainder. Similar to bidirectional LSTMs, we use a bidirectional adaptive
SRNN for this task (see Extended Data Fig. 2a); we use two SRNN layers in the
network, reading the sequence from the forwards and backwards directions,
respectively. The mean of these layers’s output is then fed into the last layer, an
integrator, to generate the class prediction.

Data availability
The data analysed during this study are open source and publicly available.
The dataset for ECG streaming dataset is derived from original QTDB dataset
(https://physionet.org/content/qtdb/1.0.0/). Spiking datasets (SHD and SSC)
belong to Spiking Heidelberg Datasets, which are available at https://zenkelab.
org/resources/spiking-heidelberg-datasets-shd/. The MNIST dataset can
be downloaded from http://yann.lecun.com/exdb/mnist/. The Soli dataset
can be downloaded at https://polybox.ethz.ch/index.php/s/wG93iTUdvRU8EaT.
TIMIT Acoustic-Phonetic Continuous Speech Corpus are available on request
via https://doi.org/10.35111/17gk-bn40. Further information can be found in
our repository (see the Code Availability section). Source data are provided
with this paper.

Code availability
The code used in the study is publicly available from the GitHub repository
(https://github.com/byin-cwi/Efficient-spiking-networks).

Received: 23 March 2021; Accepted: 1 September 2021;
Published online: 14 October 2021

references
 1. Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M.

Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017).
 2. Maass, W. Networks of spiking neurons: the third generation of neural

network models. Neural Netw. 10, 1659–1671 (1997).
 3. Gerstner, W., Kempter, R., Van Hemmen, J. L. & Wagner, H. A neuronal

learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996).
 4. Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip

learning. IEEE Micro 38, 82–99 (2018).
 5. Bohte, S. M., Kok, J. N. & La Poutré, J. A. SpikeProp: backpropagation for

networks of spiking neurons. In European Symposium on Artificial Neural
Networks (ESANN) Vol. 48, 17–37 (ESANN, 2000).

 6. Shrestha, S. B. & Orchard, G. Slayer: spike layer error reassignment in time.
In Advances in Neural Information Processing Systems Vol. 31, 1412–1421
(NeurIPS, 2018).

 7. Zenke, F. & Ganguli, S. Superspike: supervised learning in multilayer spiking
neural networks. Neural Comput. 30, 1514–1541 (2018).

 8. Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J. & Masquelier, T.
STDP-based spiking deep convolutional neural networks for object
recognition. Neural Netw. 99, 56–67 (2018).

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell912

https://physionet.org/content/qtdb/1.0.0/
https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/
https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/
http://yann.lecun.com/exdb/mnist/
https://polybox.ethz.ch/index.php/s/wG93iTUdvRU8EaT
https://doi.org/10.35111/17gk-bn40
https://github.com/byin-cwi/Efficient-spiking-networks
http://www.nature.com/natmachintell

ArticlesNATurE MAcHINE INTEllIgENcE

 9. Falez, P., Tirilly, P., Bilasco, I. M., Devienne, P. & Boulet, P. Multi-layered
spiking neural network with target timestamp threshold adaptation and
STDP. In International Joint Conference on Neural Networks (IJCNN) 1–8
(IEEE, 2019).

 10. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in spiking
neural networks. IEEE Signal Process. Mag. 36, 61–63 (2019).

 11. Wunderlich, T. C. & Pehle, C. Event-based backpropagation can compute
exact gradients for spiking neural networks. Sci. Rep. 11, 12829 (2021).

 12. Bellec, G. et al. A solution to the learning dilemma for recurrent networks of
spiking neurons. Nat. Commun. 11, 1–15 (2020).

 13. Sengupta, A., Ye, Y., Wang, R., Liu, C. & Roy, K. Going deeper in spiking neural
networks: VGG and residual architectures. Front. Neurosci. 13, 95 (2019).

 14. Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence
with neuromorphic computing. Nature 575, 607–617 (2019).

 15. Yin, B., Corradi, F. & Bohté, S. M. Effective and efficient computation with
multiple-timescale spiking recurrent neural networks. In International
Conference on Neuromorphic Systems 2020 1–8 (ACM, 2020).

 16. Werbos, P. J. Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 1550–1560 (1990).

 17. Elfwing, S., Uchibe, E. & Doya, K. Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning. Neural Netw. 107,
3–11 (2018).

 18. Elfwing, S., Uchibe, E. & Doya, K. Expected energy-based restricted
boltzmann machine for classification. Neural Netw. 64, 29–38 (2015).

 19. Gerstner, W. & Kistler, W. M. Spiking Neuron Models: Single Neurons,
Populations, Plasticity (Cambridge Univ. Press, 2002).

 20. Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw.
14, 1569–1572 (2003).

 21. Bellec, G., Salaj, D., Subramoney, A., Legenstein, R. & Maass, W. Long
short-term memory and learning-to-learn in networks of spiking neurons. In
Advances in Neural Information Processing Systems 787–797 (NeurIPS, 2018).

 22. Bohte, S. M. Error-backpropagation in networks of fractionally predictive
spiking neurons. In International Conference on Artificial Neural Networks
(ICANN) 60–68 (Springer, 2011).

 23. Wong, A., Famouri, M., Pavlova, M. & Surana, S. Tinyspeech: attention
condensers for deep speech recognition neural networks on edge devices.
Preprint at https://arxiv.org/abs/2008.04245 (2020).

 24. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput.
9, 1735–1780 (1997).

 25. Horowitz, M. 1.1 Computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC) 10–14 (IEEE, 2014).

 26. Ludgate, P. E. On a proposed analytical machine. In The Origins of Digital
Computers 73–87 (Springer, 1982).

 27. Shewalkar, A., Nyavanandi, D. & Ludwig, S. A. Performance evaluation of
deep neural networks applied to speech recognition: RNN, lSTM and GRU. J.
Artif. Intell. Soft Comput. Res. 9, 235–245 (2019).

 28. Laguna, P., Mark, R. G., Goldberg, A. & Moody, G. B. A database for
evaluation of algorithms for measurement of QT and other waveform
intervals in the ECG. In Computers in Cardiology 1997 673–676 (IEEE, 1997).

 29. Cramer, B., Stradmann, Y., Schemmel, J. & Zenke, F. The Heidelberg spiking
data sets for the systematic evaluation of spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems 1–14 (IEEE, 2020);
https://doi.org/10.1109/TNNLS.2020.3044364

 30. Wang, S., Song, J., Lien, J., Poupyrev, I. & Hilliges, O. Interacting with Soli:
exploring fine-grained dynamic gesture recognition in the radio-frequency
spectrum. In Proc. 29th Annual Symposium on User Interface Software and
Technology 851–860 (ACM, 2016).

 31. Warden, P. Speech commands: a dataset for limited-vocabulary speech
recognition. Preprint at https://arxiv.org/abs/1804.03209 (2018).

 32. Garofolo, J. S. TIMIT Acoustic Phonetic Continuous Speech Corpus (Linguistic
Data Consortium, 1993).

 33. Pellegrini, T., Zimmer, R. & Masquelier, T. Low-activity supervised
convolutional spiking neural networks applied to speech commands
recognition. In 2021 IEEE Spoken Language Technology Workshop
(SLT) 97–103 (IEEE, 2021).

 34. Kundu, S., Datta, G., Pedram, M. & Beerel, P. A. Spike-thrift: Towards
energy-efficient deep spiking neural networks by limiting spiking activity via
attention-guided compression. In Proc. IEEE/CVF Winter Conference on
Applications of Computer Vision 3953–3962 (IEEE, 2021).

 35. Fang, W. et al. Incorporating learnable membrane time constant to enhance
learning of spiking neural networks. Preprint at https://arxiv.org/abs/2007.
05785 (2020).

 36. Amir, A. et al. A low power, fully event-based gesture recognition system. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition
7243–7252 (IEEE, 2017).

 37. Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems Vol. 32,
8024–8035 (NeurIPS, 2019).

 38. Zenke, F. et al. Visualizing a joint future of neuroscience and neuromorphic
engineering. Neuron 109, 571–575 (2021).

 39. Zenke, F. & Neftci, E. O. Brain-inspired learning on neuromorphic substrates.
Proc. IEEE Vol. 109, 1–16 (IEEE, 2021).

 40. Keijser, J. & Sprekeler, H. Interneuron diversity is required for
compartment-specific feedback inhibition. Preprint at https://doi.
org/10.1101/2020.11.17.386920 (2020).

 41. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd
International Conference on Learning Representations (DBLP, 2015).

 42. Lichtsteiner, P., Posch, C. & Delbruck, T. A 128 × 128 120 db 15 μs latency
asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43,
566–576 (2008).

 43. McFee, B. et al. librosa: audio and music signal analysis in Python. In
Proc.14th Python in Science Conference Vol. 8, 18–25 (SciPy, 2015).

 44. Li, S., Li, W., Cook, C., Zhu, C. & Gao, Y. Independently recurrent neural
network (indrnn): building a longer and deeper RNN. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
5457–5466 (IEEE, 2018).

 45. Arjovsky, M., Shah, A. & Bengio, Y. Unitary evolution recurrent neural
networks. In International Conference on Machine Learning 1120–1128
(ACM, 2016).

 46. Zenke, F. & Vogels, T. P. The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural networks.
Neural Comput. 0, 1–27 (2021).

 47. Perez-Nieves, N., Leung, V. C., Dragotti, P. L. & Goodman, D. F. Neural
heterogeneity promotes robust learning. Preprint at https://www.biorxiv.org/
content/10.1101/2020.12.18.423468v2.full (2021).

 48. de Andrade, D. C., Leo, S., Viana, M. L. D. S. & Bernkopf, C. A
neural attention model for speech command recognition. Preprint at
https://arxiv.org/abs/1808.08929 (2018).

 49. Graves, A. & Schmidhuber, J. Framewise phoneme classification with
bidirectional lstm and other neural network architectures. Neural Netw. 18,
602–610 (2005).

 50. Hunger, R. Floating Point Operations in Matrix-Vector Calculus (Munich Univ.
Technology, 2005).

Acknowledgements
B.Y. is funded by the NWO-TTW Programme ‘Efficient Deep Learning’ (EDL)
P16-25. We gratefully acknowledge the support from the organizers of the Capo
Caccia Neuromorphic Cognition 2019 workshop and Neurotech CSA, as well as
J. Wu and S. S. Magraner for helpful discussions.

Author contributions
B.Y., F.C. and S.B. conceived the experiments, B.Y. conducted the experiments, B.Y., F.C.
and S.B. analysed the results. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s42256-021-00397-w.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42256-021-00397-w.

Correspondence and requests for materials should be addressed to Bojian Yin.

Peer review information Nature Machine Intelligence thanks Thomas Nowotny
and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

NAture MAChiNe iNtelligeNCe | VOL 3 | OCtObER 2021 | 905–913 | www.nature.com/natmachintell 913

https://arxiv.org/abs/2008.04245
https://doi.org/10.1109/TNNLS.2020.3044364
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/2007.05785
https://arxiv.org/abs/2007.05785
https://doi.org/10.1101/2020.11.17.386920
https://doi.org/10.1101/2020.11.17.386920
https://www.biorxiv.org/content/10.1101/2020.12.18.423468v2.full
https://www.biorxiv.org/content/10.1101/2020.12.18.423468v2.full
https://arxiv.org/abs/1808.08929
https://doi.org/10.1038/s42256-021-00397-w
https://doi.org/10.1038/s42256-021-00397-w
http://www.nature.com/reprints
http://www.nature.com/natmachintell

Articles NATurE MAcHINE INTEllIgENcEArticles NATurE MAcHINE INTEllIgENcE

Extended Data Fig. 1 | effects of different time constant initialization schemes on network training and performance on the Soli dataset. a, training
accuracy b, training Loss c, Mean Firing rate of the network. the MGconstant is the network where τ is initialized with a single value; for MGuniform the network
is initialized with uniformly distributed time-constants near the single value of MGconstant; for MGstd5, a normal distribution with std 5.0 is used near the same
single value.

NAture MAChiNe iNtelligeNCe | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATurE MAcHINE INTEllIgENcE ArticlesNATurE MAcHINE INTEllIgENcE

Extended Data Fig. 2 | Si-panel. a, bi-directional SRNN architecture. b, Computational cost computation of different layers for regular RNNs and GRU
units. the computational complexity calculation follows50.

NAture MAChiNe iNtelligeNCe | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATurE MAcHINE INTEllIgENcEArticles NATurE MAcHINE INTEllIgENcE

Extended Data Fig. 3 | Variants of Multi-gaussian gradient. As illustrated, we remove either the left(MG-R) or right(MG-L) negative part of the
Multi-Gaussian gradient for comparison, leaving on the ablated part the positive Gaussian gradient.

NAture MAChiNe iNtelligeNCe | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATurE MAcHINE INTEllIgENcE ArticlesNATurE MAcHINE INTEllIgENcE

Extended Data Fig. 4 | Study of different forms of gradients on eCg-liF. (a,b) shows the result of the using various Multi-Gaussian negative gradient
ablations on the ECG-LIF task where the σ of the central (positive) Gaussian as defined in Eq (1) is varied. the effect of varying σ is shown for test accuracy
(a) and sparsity (b). We find that also then, the standard Multi-Gaussian outperforms variations in terms of accuracy and sparsity.

NAture MAChiNe iNtelligeNCe | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATurE MAcHINE INTEllIgENcEArticles NATurE MAcHINE INTEllIgENcE

Extended Data Fig. 5 | A grid search was performed on the Soli dataset and ShD for the h and s parameters of the multi-gaussian surrogate gradient.
In the grid search, we calculated the performance of each pair of parameters by averaging the test accuracy and firing rate over tri-folder cross-validation.
the white dashed line delineates the upper left region for models with high accuracy ( > 0.91) in (a) and high firing rate ( > 0.09) in (b). the red lines in (c)
approximately delineate regions with accuracy above and below 0.87, and the white curve in (d) approximately demarcates models with an average firing
rate above or below 0.1.

NAture MAChiNe iNtelligeNCe | www.nature.com/natmachintell

http://www.nature.com/natmachintell

	Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks

	SRNNs.
	BPTT, surrogate-gradient and multi-Gaussian.
	Computational cost.
	Results

	Tasks.

	Discussion

	Methods

	Network initialization

	Acknowledgements

	Fig. 1 Illustration of processing and learning in networks of spiking neurons.
	Fig. 2 Complexity calculation.
	Fig. 3 Details of task performance.
	Fig. 4 Learning trade-offs and classification latency.
	Extended Data Fig. 1 Effects of different time constant initialization schemes on network training and performance on the SoLi dataset.
	Extended Data Fig. 2 SI-panel.
	Extended Data Fig. 3 Variants of Multi-Gaussian gradient.
	Extended Data Fig. 4 Study of different forms of gradients on ECG-LIF.
	Extended Data Fig. 5 A grid search was performed on the SoLi dataset and SHD for the h and s parameters of the multi-Gaussian surrogate gradient.
	Table 1 Comparisons of SRNN performances with respective RNN and SNN state-of-the art accuracy (Acc.
	Table 2 Comparison of SRNN energy consumption with respective RNN and SNN state-of-the-art accuracy.

