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The success of brain-inspired deep learning in AI is naturally 
refocusing attention back onto those inspirations and abstrac-
tions from neuroscience1. One such example is the abstrac-

tion of the sparse, pulsed and event-based nature of communication 
between biological neurons into neural units that communicate real 
values at every iteration or timestep of evaluation, taking the rate of 
firing of biological spiking neurons as an analogue value (Fig. 1a). 
Spiking neurons, as more detailed neural abstractions, are theoreti-
cally more powerful than analogue neural units2 as they allow the 
relative timing of individual spikes to carry important information. 
A real-world example in nature is the efficient sound localization in 
animals such as Barn Owls using precise spike-timing3. The sparse 
and binary nature of communication similarly has the potential to 
drastically reduce energy consumption in specialized hardware, in 
the form of neuromorphic computing4.

Numerous approaches to learning in spiking neural networks 
(SNNs) have been developed since their introduction5–9. All such 
approaches define how input signals are transduced into sequences 
of spikes and how output spike-trains are interpreted with respect 
to goals, learning rules or loss functions. For supervised learning, 
approaches that calculate the gradient of the loss function with 
respect to the weights have to deal with the discontinuous nature of 
the spiking mechanism inside neurons. Local linearized approxima-
tions such as SpikeProp5 can be generalized to approximate surro-
gate gradients10, or even calculated exactly in special cases11. The use 
of surrogate gradients in particular has recently resulted in rapidly 
improving performance on select benchmarks, closing the perfor-
mance gap with conventional deep learning approaches for smaller 
image recognition tasks such as CIFAR10 and (Fashion) MNIST, 
and demonstrating improved performance on temporal tasks such 
as TIMIT speech recognition12. Still, SNNs have struggled to dem-
onstrate a clear advantage over classical artificial neural networks 
(ANNs)13,14.

Here we introduce a novel approach to spiking recurrent neural 
networks (SRNNs)15, networks that include recurrently connected 
layers of spiking neurons (Fig. 1b). We demonstrate how these net-

works can be trained to high performance on hard benchmarks to 
exceed the current state of the art in SNNs for all but one bench-
mark, and approaching or surpassing the state of the art in classical 
recurrent artificial neural networks. High performance in SRNNs 
is achieved by applying backpropagation through time (BPTT)16 to 
spiking neurons using a novel multi-Gaussian surrogate gradient and 
adaptive spiking neurons where the internal time-constant param-
eters are co-trained with network weights. The multi-Gaussian sur-
rogate gradient is constructed to include negative slopes (similar to 
the gradient of the sigmoid-like dSilu activation function17,18); we 
find that it consistently outperforms other existing surrogate gradi-
ents. Similarly, co-training the internal time-constants of adaptive 
spiking neurons always proved to be beneficial. We demonstrate 
that these ingredients jointly improve performance to a competitive 
level while maintaining sparse average network activity.

We demonstrate the superior performance of SRNNs for 
well-known benchmarks that have an inherent temporal dimen-
sion, such as electrocardiogram (ECG) wave-pattern classification, 
speech (Google Speech Commands, GSC; TIMIT), radar gesture 
recognition (project Soli) and classical hard benchmarks such 
as sequential MNIST and its permuted variant. We find that the 
SRNNs need very little communication, with the average spiking 
neuron emitting a spike once every 3 to 30 timesteps, depending on 
the task. Calculating the theoretical energy cost of computation, we 
then show that cheap accumulate operations dominate over more 
expensive multiply-and-accumulate (MAC) operations in SRNNs. 
Based on relative MAC versus accumulate energy cost13,14, we argue 
that these sparsely spiking SRNNs have an energy advantage rang-
ing from one to three orders of magnitude over RNNs and ANNs, 
with comparable accuracy, depending on the network and task 
complexity.

SRNNs. We focus here on multilayer networks of recurrently con-
nected spiking neurons, as illustrated in Fig. 1b; variations include 
spiking recurrent neural networks that receive bidirectional input 
(bi-SRNNs; Extend Data Fig. 2a).
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Spiking neurons are derived from models that capture the 
behaviour of real biological neurons19. Although biophysical 
models such as the Hodgkin–Huxley model are accurate, they 
are also costly to compute20. Phenomenological models such as 
the leaky integrate-and-fire (LIF) neuron model trade levels of 
biological realism for interpretability and reduced computational 
cost: LIF integrates input current in a leaky fashion and emits 
a spike when its membrane potential crosses its threshold from 
below, after which the membrane potential is reset to the reset 
membrane potential; the current leak is determined by a decay 
time constant τm.

As an exceedingly simple spiking neuron model, the LIF neu-
ron lacks much of the complex behaviour of real neurons, including 
responses that exhibit longer history dependency such as spike-rate 
adaptation20. Bellec and colleagues21 demonstrated how using a spik-
ing neuron model that uses a generic form of adaptation improved 
performance in their SNNs. In this adaptive LIF (ALIF) neuron, the 
LIF neuron model is augmented with an adaptive threshold that 
increases after each emitted spike and then decays exponentially 
with time-constant τadp. Both LIF and ALIF neurons can be thought 
of as neural units with self-recurrency, as illustrated in Fig. 1c.

BPTT, surrogate-gradient and multi-Gaussian. Given a 
loss-function L(t|θ) defined over neural activity at a particular 

time t, the BPTT algorithm16 updates network parameters θ in the 
direction that minimizes the loss by computing the partial gradient 
∂L(t)/∂θ using the chain-rule. Here θ includes both the synaptic 
weights and the respective neural time-constants. In recurrently 
connected networks, past neural activations influence the current 
loss, and by unrolling the network, the contribution of these past 
activations to the current loss is accounted for. The roll-out of net-
work activity, through which the gradient is computed, is illustrated 
in Fig. 1d.

The discontinuous nature of the spiking mechanism in spiking 
neurons makes it difficult to apply the chain-rule connecting the 
backpropagating gradient between neural output and neural input5; 
in practice, replacing the discontinuous gradient with a smooth 
gradient function, a surrogate gradient, has proven effective10,12,22 
and has the added benefit of allowing the mapping of SNNs to 
RNNs in optimized deep learning frameworks such as PyTorch and 
Tensorflow10. Multiple surrogate gradient functions have been pro-
posed and evaluated, including Gaussian, linear21 and SLayer6 func-
tions; however, no notable differences in performance are reported 
for these functions10.

We here define the multi-Gaussian as a novel surrogate gradient 
f̂s′(·) comprising a weighted sum of multiple Gaussians N , where 
the hyperparameters h and s are chosen such that the multi-Gaussian 
contains negative parts:
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Fig. 1 | illustration of processing and learning in networks of spiking neurons. a, top: a classical artificial neural unit computes a weighted sum over  
input activations and then computes an output activation from this sum using a non-linear transfer function. time is modelled as iterated recomputation  
of the network graph. bottom: spiking neurons receive spikes that are weighted and added to the internal state (membrane potential) that further  
develops through time following differential equations. When the membrane potential crosses a threshold, a spike is emitted and the potential is reset.  
b, Example architecture of an SRNN: an input layer projects to a layer of recurrently connected spiking neurons. Recurrent layers then project to a read-out 
layer. Multiple recurrent layers can be connected in a feedforwards fashion, which is shown here for two recurrent layers. c, the decaying threshold and 
membrane potential of the LIF and ALIF neurons can be modelled as an internal state induced by self-recurrency. d, Roll-out of the computational graph of a 
spiking neuron as used for bPtt for a sequence t = 0...T. e, An illustration of different surrogate gradient functions f̂′s as a function of the neuron’s membrane 
potential and threshold, where the multi-Gaussian is parameterized as in the experiments below (s = 6, h = 0.15).
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f̂s′(ut|ϑ) = (1+ h)N (ut|ϑ, σ2)

−hN (ut|σ, (sσ)2)− hN (ut| − σ, (sσ)2),
(1)

where ut is the spiking neuron’s membrane potential, σ is the width 
of the Gaussian and ϑ is its internal threshold. The multi-Gaussian 
surrogate gradient is inspired by the dSilu17 activation function, 
which was shown to outperform the standard sigmoidal activa-
tion function both for accuracy and learning speed, and which 
has a derivative similar to the multi-Gaussian. The negative parts 
of multi-Gaussian gradient effectively regularize activity, as they 
penalize both relatively large inputs and small inputs18. The gradient 
function thus aids the SNN in achieving high accuracy with sparse 
neural activity. The shape of the multi-Gaussian and various other 
surrogate gradient functions is illustrated in Fig. 1e.

Computational cost. To estimate the efficiency of SNNs and com-
pare them with ANNs, we calculate the number of computations 
required in terms of accumulation (AC) and MAC operations23. 
We do this for an SRNN network with LIF or ALIF neurons and 
compare it with a complex recurrent ANN structure such as a 
long short-term memory (LSTM) network24 (Fig. 2; see Extended 
Data Fig. 2b for other ANNs). In ANNs, the contribution from 
one neuron to another requires a MAC for every timestep, mul-
tiplying each input activation with the respective weight before 
adding it to the internal sum. By contrast, for a spiking neuron, 
a transmitted spike requires only an accumulate at the target 
neuron, adding the weight to the potential, and where spikes 
may be quite sparse. Furthermore, the spiking neuron’s internal 
state needs to be updated at every timestep at the cost of several 
MACs depending on the spiking neuron model complexity14. As 
it is much more energetically expensive to calculate MACs than 
ACs (for example, 31-times more expensive on a 45 nm comple-
mentary metal–oxide–semiconductor25), the relative efficiency 
of SNNs is determined by the number of connections multiplied 
by activity sparsity and the spiking neuron model complexity. 

We also remark that on digital hardware, multiplication circuits 
require substantially more die area than addition circuits26.

results
Tasks. Recurrent neural networks provide state of the art perfor-
mance in various sequential tasks that require memory27 (typically in 
small and compact networks) and can operate in an online fashion. 
We distinguish two kinds of sequential tasks: (1) streaming tasks, 
where many inputs map to many specified outputs (many-to-many); 
and (2) classification tasks, where an input sequence maps to a sin-
gle output value (many-to-one). Sequential classification tasks can 
also be computed in an online fashion, where classification is deter-
mined for each timestep.

We selected benchmark tasks with an inherent temporal dimen-
sion that can also be computed with RNNs of modest size to fit 
the dynamics and constraints of SNNs. For these tasks, we trained 
several different SRNN network architectures with various gra-
dients, hyperparameters and spiking neuron models and com-
pared them with classical and state-of-the-art RNN architectures. 
Hyperparameters were selected using threefold cross-validation on 
the training data.

The ECG28 signal is composed of six different characteristic 
waveforms (P, PQ, QR, RS, ST and TP), whose shape and duration 
inform clinicians on the functioning of the cardiovascular system. 
The task requires the continuous recognition of all six waveforms, 
where we use signals from the QTDB dataset28. The ECG-wave 
labelling is an online and streaming task using only past informa-
tion. The sequential- and permuted-sequential S/PS-MNIST data-
sets are standard sequence classification tasks of length 784 derived 
from the classical MNIST digit recognition task by presenting pix-
els one at a time. The permuted version also first permutes each 
digit-class removing spatial information. The Spiking Heidelberg 
Digits (SHD) and Spiking Speech Command (SSC) datasets29 
are SNN-specific sequence classification benchmarks that com-
prise audio data converted into spike trains based on a detailed  
ear model.
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The Soli dataset30 gesture recognition task comprises a set of ges-
tures where each gesture is measured as a sequence of radar returns 
collected from the solid-state millimetre-wave radar sensor (Soli). 
We treat the Soli task as both an online streaming and classification 
task by processing frames sequentially; we thus obtain two mea-
sures, per-frame accuracy for streaming and whole sequence accu-
racy for classification.

Both the GSC31 and TIMIT datasets32 are classical speech recog-
nition benchmarks where, for TIMIT, we compute the frame error 
rate (FER) and where, similar to ref. 12, we apply a bidirectional 
architecture such that future information is also used to classify 
each frame (illustrated in Extended Data Fig. 2a). Samples from the 
ECG, SHD and Soli datasets are shown in Fig. 3a–c.

As shown in Table 1, we find that these SRNNs achieve state of 
the art performance for SNNs on all but one task, exceed conven-
tional RNNs such as LSTM models, and approach or exceed the 
state of the art for modern RNNs. For GSC, we exceed the SNN 

state of the art for recurrent and online processing and approach the 
non-streaming result of ref. 33. Moreover, we see that SRNNs con-
siderably close the accuracy gap (SHD, SSC, GSC) on non-recurrent 
architectures such as convolutional neural networks (CNNs) and 
attention-based networks; these networks, however, typically com-
prise many more neurons or parameters and cannot be computed in 
an online or streaming fashion.

We plot the accuracy for the various tasks using different surro-
gate gradients in Fig. 3d: although we see that there is little difference 
between previously developed gradients such as Gaussian, Linear and 
SLayer, we find that the multi-Gaussian function consistently outper-
forms these gradients. To better understand why the multi-Gaussian is 
beneficial, we removed either the left or right negative part of the gra-
dient for comparison. We found consistently that both performance 
and sparseness improved for both parts (Extended Data Table 2, and 
Extended Data Figs. 3 and 4), demonstrating that the negative parts of 
the multi-Gaussian act as effective regularizers.
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Table 1 | Comparisons of SrNN performances with respective rNN and SNN state-of-the art accuracy (Acc.)

task Network Method Acc. task Network Method Acc.

ECG RNN-Sota bi-LStM 80.8% SSC RNN-Sota LStM29 73.1%

SrNN this work 85.9% CNN-Sota CNN29 77.7%

S-MNISt RNN-Sota IndRNN44 99.5% SNN-base LIF29 50.1%

RNN LStM45 98.2% SRNN-SotA SNN46 60.1%

SRNN-Sota LSNN21 96.4% SrNN this work 74.2%

SrNN this work 98.7% Soli CNN-Sota CNN30 77.7%

PS-MNISt RNN-Sota IndRNN44 97.2% RNN-Sota CNN+LStM30 87.2%

RNN LStM45 88% SrNN this work 91.9%

SrNN this work 94.3% GSC RNN-Sota Att RNN47 95.6%

SHD RNN-Sota bi-LStM 87.2% CNN-Sota SCNN33 94.5%

CNN-Sota CNN29 92.4% SNN-Sota LSNN12 91.2 %

SNN-base LIF29 71.4% SrNN this work 92.1%

SNN SNN48 82.2% tIMIt RNN-Sota bi-LStM49 68.9%

SNN-Sota SNN46 82.7% SNN-Sota LSNN21 65.4%

SrNN this work 90.4% Bi-SrNN this work 66.1%

bold font indicates this work.
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As shown in the ablation study in Fig. 3e, we also find that, inde-
pendent of the surrogate gradient used, training the time-constants 
in the ALIF neurons consistently improves performance; not train-
ing τm or τadp—or training neither—reduces performance. Much 
of the power of the SRNNs seem to derive from their multilayer 
recurrent and self-recurrent architecture. When we make the spik-
ing neurons non-spiking by eliminating the spiking mechanism and 
communicating the rectified linear unit (ReLU) value of the mem-
brane potential, for almost all tasks we achieve performances that 
slightly exceed that of the spiking SRNNs.

The trained SRNNs communicate sparingly: most networks 
exhibit sparseness of less than 0.1, and only the ECG task requires 
more spikes as it was tuned to use the smallest SRNN network (46 
neurons). Sparseness of neural activity—which is expressed as the 
average firing probability per timestep per neuron—is plotted in Fig. 
3f. In general we find that increasing network size improves accu-
racy while decreasing the average sparsity (Fig. 3h,i), although the 
total number of spikes used in the network increases. The total aver-
age number of spikes required per sample (SOPs) and per sample 
per step (SOP per step) for the highest performing SRNNs are given 
in Fig. 3g. We also evaluated to what degree the internal recurrency 
of spiking neurons contributes compared to the intralayer recurrent 
connectivity: we find that the addition of intralayer recurrent con-
nections consistently improves accuracy (see Extended Data Table 2 
in the Supplementary Information).

Plotting the performance of networks using either ALIF or LIF 
neurons, we find that ALIF neurons consistently improve both 
performance and activity sparseness in the networks (Fig. 3h). 
Similarly, splitting a single large recurrent layer into two layers of 
recurrently connected layers in the SRNN architecture improves 
both performance and sparsity in the SHD task (Fig. 3i), with simi-
lar improvements in the other tasks.

We performed a grid search on the Soli and SHD datasets for the 
h and s hyperparameters to determine the optimal parameter values 
for the multi-Gaussian surrogate gradient using cross-validation. 
We find that there is a range of values where we can obtain both 
competitive accuracy and high sparsity (areas to the top left of the 
orange dotted line in Fig. 4a,b). We used a similar hyperparame-
ter search for the other tasks using selected values only from the 
high-accuracy/low activity area identified here; the training pro-
cedure also learns the time constants for the respective tasks. As 
shown in Fig. 4c for the SHD task, starting from a tight distribution 
of time-constants, the spiking neurons in the trained network con-
verge to using a wide variety of time-constants—the same effect is 
observed in the other tasks (not shown).

The streaming and online nature of several of the tasks allows 
the network to make any-time decisions. Figure 4d shows the clas-
sification of the various ECG waveforms for every timestep. When a 
new wave is presented, there is a brief delay before this class is cor-
rectly identified. In Fig. 4e–i, the average online classification per-
formance is shown for the S-MNIST, PS-MNIST, SHD, SSC and Soli 
datasets. We see that the S-MNIST and PS-MNIST digits can be rec-
ognized reliably quickly, whereas the SSC sounds require distinctly 
more time. The SHD sound recognition is much more erratic, and 
inspection of the data shows that this is caused by the various classes 
being placed at different times in the sound clip. Figure 4i plots the 
accuracy as a function of the number of frames shown for the Soli 
task. Most gestures can be recognized reliably already after having 
presented only 25 out of the 42 frames, comparing favourably with 
ref. 30: the SRNN allows decisions to be made earlier and with better 
accuracy.

Given the relative accumulate and MAC energy cost from  
refs. 14,25,34 and the computational complexity calculations from  
Fig. 2a, we plot in Table 2 the relative energy efficiency of the vari-
ous networks. We see that for the more complex tasks, SRNNs are 
theoretically at least 59-times more energy efficient than RNNs at 

equivalent performance levels, where for most tasks the non-spiking 
(ReLU) SRNN compares most favourably. More classical RNN 
structures such as LSTMs require many more parameters and oper-
ations, often being 1,000-times less efficient—we also calculate sim-
ilar estimates for other RNN structures in Extended Data Table 1.

Discussion
We showed how multilayered recurrent network structures are able 
to achieve new state-of-the-art performance for SNNs on sequential 
and temporal tasks. This was accomplished by using adaptive spik-
ing neurons with learned temporal dynamics trained with BPTT 
using a novel surrogate gradient, the multi-Gaussian, where the 
multi-Gaussian gradient consistently outperformed the other sur-
rogate gradients. These results approach or equal the accuracy of 
conventional RNNs, where the non-spiking ReLU-SRNNs consis-
tently slightly outperformed the spiking version, demonstrating the 
effectiveness of the SRNN network architecture. When expressed in 
terms of computational operations, they demonstrate a decisive the-
oretical energy advantage of one to three orders of magnitude over 
conventional RNNs. This advantage furthermore increases for more 
complex tasks that required larger networks to solve accurately.

The multi-Gaussian gradient was inspired by a sigmoid-style 
saturating activation function developed for standard artificial 
neurons, the dSilu, which has a similarly shaped gradient. As 
with the dSilu, we also find that the negative parts of the gradient 
help improve accuracy, and in the SRNN also sparseness. The lat-
ter suggests that the negative parts of the gradient act as effective 
regularizers.

Neither the SRNNs nor the presented RNNs were optimized 
beyond accuracy and (for the SRNNs) sparsity: no optimizations 
such as pruning and quantization were applied. When we compare 
the SRNN for the GSC task with the attention-based CNN-network 
TinySpeech23 (the recent state of the art in efficiency-optimized 
speech recognition), we find that at an equivalent performance 
level, the SRNN still requires 19.6-times fewer MACs, and where, 
unlike TinySpeech, the SRNN operates in an online and streaming 
fashion (Extended Data Table 1).

We focused on temporal or sequential problems with relatively 
limited input dimensionality. With RNNs, such problems can be 
solved with relatively small neural networks and hold direct prom-
ise for implementation in ultra-low power EdgeAI solutions. This 
also was the reason for emphasizing streaming or online solutions 
where no or fixed preprocessing and buffering is required: problems 
where a temporal stream first has to be segmented and where these 
segments are then classified greatly increase the complexity of such 
solutions. We showed that most classification decisions could be 
made early with near-optimal accuracy.

The datasets discussed here were all selected for being amenable 
to streaming and online processing by SRNNs with very limited 
preprocessing; for example, calculating log Mel filters. In prelimi-
nary work, the use of conventional convolutional network layers to 
extract useful features proved helpful for simple subsequent layers 
of spiking neurons35. We similarly find (with a hybrid CNN-SRNN 
we obtained an accuracy of 97.91% on the DVS128 dataset and 
96.5% on the GSC dataset, with the CNN-SRNN code available 
at https://github.com/byin-cwi/Efficient-spiking-networks/tree/
main/DVS128) that deep preprocessing improves accuracy consid-
erably for tasks such as GSC and also the DVS128 dataset36, where 
SRNNs exhibited scores exceeding those reported by refs. 33,35. This 
suggests that for even larger problems than those studies here, deep 
preprocessing holds much promise when balanced against the 
impact on complexity and energy requirement and also on the abil-
ity to process event-based streaming data.

Using surrogate gradients, the BPTT gradient in the SRNNs 
can be computed using standard deep learning frameworks, where 
we used PyTorch37. The code is available at https://github.com/
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byin-cwi/Efficient-spiking-networks. With this approach, compli-
cated architectures and spiking neuron models can be trained with 
state-of-the-art optimizers, regularizers and visualization tools. At 
the same time, this approach is costly in terms of memory use and 
training time, as the computational graph is fully unrolled over all 
timesteps, precluding online and on-chip learning. Furthermore, 
the abundant spatial and temporal sparsity is not exploited in the 
frameworks. This also limits the size of the networks to which this 
approach can be applied; for considerably larger networks, either 
dedicated hardware and/or sparsity optimized frameworks are 
needed38. Approximations to BPTT such as eProp12 or alternative 
recurrent learning methods such as RTRL39 may also help alleviate 
this limitation.

We remark that the energy advantage of SRNNs we computed 
is theoretical: although the computational cost in terms of MACs 
is well-accepted23,34, this measure ignores real-world realities such 
as the presence or absence of sufficient local memory, the cost of 
accessing memory and the potential cost of routing spikes from one 
neuron to another. In many EdgeAI applications, the energy cost of 
conventional sensors may also dominate the energy equation. At the 
same time, the numbers we present are unoptimized in the sense that 
other than optimizing the surrogate gradient for both sparsity and 
accuracy, we did not prune the networks or applied other standard 
optimization and quantization techniques. Substantial improve-
ments here should be fairly straightforward. Training parameters of 
spiking neuron models in the SRNNs can be extended further to 
approaches that include parameterized short-term plasticity40 and 
more complicated spiking neuron models.

The effectiveness of adjusting time-constant parameters to the 
task may also have implications for neuroscience: though effective 
time constants of real spiking neurons are variable and dynamic19, 
the benefit of training these parameters in SRNNs suggests these 
neural properties may be subject to learning processes in biology.

Methods
In the SRNNs, the LIF spiking neuron is modelled as:

ut−1 = ut−1(1 − St−1) + urSt−1 (2)

ut = ut−1(1 − 1/τm) + RmIt/τm (3)

St = fs(ut, ϑ) (4)

where It =
∑

ti wiδ(ti) + Iinj,t is the input signal comprising spikes at times ti 
weighted by weight wi and an injected current Iinj,t; u is the neuron’s membrane 
potential which decays exponentially with τm, ur is the reset potential, ϑ is the 
threshold, Rm is the membrane resistance (which we absorb in the synaptic 
weights). The function fs(ut, ϑ) models the spike-generation mechanism as 
function of ϑ, which is set to 1 when the neuron spikes and otherwise is 0 (where 
the approximating surrogate gradient is then f̂′s(ut, ϑ)). The value for the reset 
potential ur was set to zero. The ALIF neuron is similarly modelled as :

ut = αut−1 + (1 − α)RmIt − ϑSt−1 (5)

ηt = ρηt−1 + (1 − ρ)St−1 (6)

ϑ = b0 + βηt (7)

St = f̂s(ut, ϑ), (8)

where α, γ are parameters related to the temporal dynamics (α = exp(−dt/τm) 
and ρ = exp(−dt/τadp)), ϑ is a dynamical threshold comprising a fixed minimal 
threshold b0 and an adaptive contribution βηt; ρ expresses the single-timestep decay 
of the threshold with time-constant τadp. The parameter β is a constant that controls 
the size of adaptation of the threshold; we set β to 1.8 for adaptive neurons as 
default. Similarly, α expresses the single-timestep decay of the membrane potential 
with time-constant τm.

The SRNNs were trained using BPTT, various spiking neuron models with 
plastic time-constants and with various surrogate gradients. The standard Ta
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validation sets were used where available to determine overfitting; for SHD we 
held out 5% of the training data and for (P)S-MNIST 10%. Apart from the SSC 
and SHD datasets, analogue input values are encoded into spikes either using 
spikes generated by a level-crossing scheme (ECG) or by directly injecting a 
proportional current into the first spiking layer (S-MNIST, PS-MNIST, Soli, 
TIMIT, GSC). We used one of two methods to decode the output of the network: 
either spike-counting over the whole time-window, for the (P)S-MNIST task, 
non-spiking LIF neurons (TIMIT, SHD, Soli, and GSC) or spiking ALIF neurons 
(ECG). With spike-counting, classification is decoded from the sum of the output 
spikes as ŷ = softmax (

∑
tS

t
i,out) where Sti,out is the spike of the output neuron 

i at time t. For either non-spiking LIF neurons and spiking ALIF neurons as 
outputs, a softmax classification is computed from the output neurons’s membrane 
potential uout,t at each timestep as ŷt = softmax (uout,t). For ECG, we used spiking 
ALIF neurons for outputs as they performed best, which we believe is related 
to the fact that this is the only task in which classification switches within the 
sample (the spiking then functions effectively as resets). We use a standard BPTT 
approach12 to minimize the cross-entropy or negative-log-likelihood loss for 
each task using the Adam41 optimizer, where we unroll all input timesteps from 
end to the start. The error gradient is calculated and accumulated through all 
timesteps after which the weights are updated. The BPTT for the spiking neurons 
is calculated retrogradely along with the self-recurrence circuits. As shown in Fig. 
1d, given an input sequence X = x0, x1, x2, …, xT, and a neuron with initial states 
{uh,0, uo,0, Sh,0, So,0}, we obtain for each timestep t ∈ {0, T} the spiking neuron states 
{uh,t, Sh,t, uo,t, So,t}, where Sh,t refers to a neuron firing-or-not in a hidden layer and 
So,t to an output neuron (if spiking), and uh,t and uo,t denote hidden and output 
neurons’s membrane potentials. We then obtain a classification ŷ(t) either for 
each timestep or for the whole sequence ŷ and an associated loss. In classification 
tasks with C classes, the prediction probability of class c – ŷc is computed after 
having read the whole sequence, and then the loss of the network is calculated as 
L =

∑C
c=1 yclog ŷc, where yc is the target probability of class c. In streaming tasks 

(ECG, Soli), the total loss is computed as the sum of the loss at each timestep, 
L =

∑T
t=1 Lt. For the BPTT-derived gradient, we compute ∂L∂z = ŷ − y and for 

recurrent weights, Wh2o, we compute ∂L
∂Wh2o

= ∂L
∂z

∑T
t′

∂So,t′
∂Wh2o

, where each term can 

be computed at each timestep t′ as 
∂So,t′
∂Wh2o

=
∂So,t′
∂uo,t′

∂uo,t′
∂Wh2o

+
∑t′−1

ξ=0
∂So,t′
∂ut′

∂uo,t′
∂uo,ξ

∂uo,ξ
∂Wh2o

 

and 
∂So,t′
∂Wh2h

=
∑t′

ξ=0
∂So,t′
∂uh,ξ

∂uh,ξ
∂Wh2h

, and where Wh2h refers to weights between neurons 

in the hidden layers, and Wh2o to weights between hidden and output neurons. The 
discontinuous spiking function enters the gradient as the term ∂S∂u, and here we use 
the differentiable surrogate gradients10.

For the multi-Gaussian surrogate gradient, we found effective parameter 
values h = 0.15 and s = 6.0 based on a grid search, and we set σ to 0.5. The 
standard surrogate gradients were defined following ref. 10, with the linear 
surrogate gradient as f̂s′(ut|ϑ) = ReLU(1 − αlinear|ut − ϑ|); the SLayer6 gradient 
as f̂s′(ut|ϑ) = exp(−αslayer|ut − ϑ|), and the Gaussian surrogate gradient 
as f̂s′(ut|ϑ) = N (ut|ϑ, σG); for all gradients, α is positive. We optimized all 
surrogate gradients hyperparameters in the experiments using grid searches; in the 
experiments we used αlinear = 1.0, αslayer = 5.0 and σG = 0.5.

Network initialization. Compared with ANNs, SRNNs require initializing both 
weight and the spiking neurons’s hyperparameters (that is, neuron type, time 
constants, thresholds, starting potential). We randomly initialize the time constants 
following a tight normal distribution (μ, σ) with per-layer specific parameters given 
in Supplementary Table 1. For all neurons, the starting value of the membrane 
potential is initialized with a random value distributed uniformly in the range[0,ϑ]. 
The bias weights of the network are initialized as zero and all feedforwards 
weights are initialized using Xavier-uniform initialization; weights for recurrent 
connections are initialized as orthogonal matrices. We compared networks with 
constant, uniform and normal initializers for the time-constants and found that the 
normal initializer achieved the best performance (Extended Data Fig. 1).

For the various tasks, the loss-function, sequence length, maximum number 
of epochs, learning rate and decay schedule, and minibatch size are specified in 
Supplementary Table 1. Validation showed that the SRNNs were not prone to 
overfitting and test accuracy was measured at the last epoch. Unless specified 
otherwise, the network architecture consists of inputs densely connected to 
one or more fully recurrently connected layers of spiking neurons connected 
to a layer of output neurons, as illustrated in Fig. 1b. For the ECG task, the 
QTDB dataset 28 consists of two channels of ECG signals. We apply a variant 
of the level-crossing encoding42 threshold on the derivative of the normalized 
ECG signal to convert the original continuous values x into a spike train: each 
channel was transformed into two separate spike trains representing value 
increasing events and value decreasing events, respectively. The level crossing 
encoding we used is defined as

S
+

=

{ 1, if xt − xt−1 ≥ L
+

0, otherwise
, S− =

{ 1, if xt−1 − xt ≥ L−

0, otherwise

where x is the signal being encoded, S+, S− denote spikes for the positive and 
negative spike-train, respectively, and we used L+ = 0.3 and L− = 0.3.

For the SHD, the audio records were aligned to 1 s by cutting or completing 
with zeros. As in a work by Cramer and colleagues29, two speakers were held out 
for the test dataset, and 5% of samples from other speakers were also added into 
the test dataset. The training dataset thus comprises 8,156 samples, whereas the 
test dataset contains 2,264 samples. For the SSC dataset, the speech commands 
were also uniformly aligned to 1 s with a 250 Hz sampling frequency, and the 
dataset was randomly split into training, validation and test dataset with a ratio 
of 72:8:20%, respectively. For the Soli dataset, the sequence of 40 range-doppler 
images was fed into the model frame-by-frame as input and split into training and 
testset as in Wang and colleagues30. The original range-doppler images have four 
channels, but we found empirically that using one channel was sufficient. For the 
Soli task, the first layer of the SRNN, we use a feedforwards spiking dense layer, 
followed by a recurrent layer. As in Wang and colleagues30, separate networks 
were trained for per-frame accuracy (Accs) and per-sequence accuracy (Accc), for 
the streaming and classification version of the task, respectively. In the S-MNIST 
tasks, the network read the image pixel by pixel; for the PS-MNIST task, pixels are 
read into the network using a sliding window of size four with stride 1. For both 
tasks, the pixel value is fed into the network directly as injected current into the 
neurons of the first hidden layer as a fully connected layer with its own weights. 
We use the GSC v.1 (ref. 31). For preprocessing, log Mel filters and their first and 
second-order derivatives are extracted from raw audio signals using Librosa43. 
For the FFTs, a window of 30 ms and a hop of 10 ms is used. The timestep of 
the simulation is 10 ms. We calculate the logarithm of 40 Mel filters coefficients 
using the Mel scale between 20 Hz and 4 kHz. Furthermore, spectrograms are 
normalized to ensure that the signal in each frequency has a variance of 1 across 
time; we then selected the first three derivative orders as three distinct input 
channels. The input to the SRNN is thus a sequence of 101 frames, where each 
frame comprises of a 40 × 3 matrix.

The TIMIT database contains 3,696 and 192 samples in training and test data, 
respectively. We preprocessed the original audio data as in Bellec and colleagues12, 
using Mel-frequency cepstral coefficient (MFCC) encoding; 10% of the training 
dataset was randomly selected as validation dataset, and the network was trained 
on the remainder. Similar to bidirectional LSTMs, we use a bidirectional adaptive 
SRNN for this task (see Extended Data Fig. 2a); we use two SRNN layers in the 
network, reading the sequence from the forwards and backwards directions, 
respectively. The mean of these layers’s output is then fed into the last layer, an 
integrator, to generate the class prediction.

Data availability
The data analysed during this study are open source and publicly available.  
The dataset for ECG streaming dataset is derived from original QTDB dataset 
(https://physionet.org/content/qtdb/1.0.0/). Spiking datasets (SHD and SSC) 
belong to Spiking Heidelberg Datasets, which are available at https://zenkelab. 
org/resources/spiking-heidelberg-datasets-shd/. The MNIST dataset can  
be downloaded from http://yann.lecun.com/exdb/mnist/. The Soli dataset  
can be downloaded at https://polybox.ethz.ch/index.php/s/wG93iTUdvRU8EaT. 
TIMIT Acoustic-Phonetic Continuous Speech Corpus are available on request  
via https://doi.org/10.35111/17gk-bn40. Further information can be found in  
our repository (see the Code Availability section). Source data are provided  
with this paper.

Code availability
The code used in the study is publicly available from the GitHub repository 
(https://github.com/byin-cwi/Efficient-spiking-networks).
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Extended Data Fig. 1 | effects of different time constant initialization schemes on network training and performance on the Soli dataset. a, training 
accuracy b, training Loss c, Mean Firing rate of the network. the MGconstant is the network where τ is initialized with a single value; for MGuniform the network 
is initialized with uniformly distributed time-constants near the single value of MGconstant; for MGstd5, a normal distribution with std 5.0 is used near the same 
single value.
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Extended Data Fig. 2 | Si-panel. a, bi-directional SRNN architecture. b, Computational cost computation of different layers for regular RNNs and GRU 
units. the computational complexity calculation follows50.
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Extended Data Fig. 3 | Variants of Multi-gaussian gradient. As illustrated, we remove either the left(MG-R) or right(MG-L) negative part of the 
Multi-Gaussian gradient for comparison, leaving on the ablated part the positive Gaussian gradient.
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Extended Data Fig. 4 | Study of different forms of gradients on eCg-liF. (a,b) shows the result of the using various Multi-Gaussian negative gradient 
ablations on the ECG-LIF task where the σ of the central (positive) Gaussian as defined in Eq (1) is varied. the effect of varying σ is shown for test accuracy 
(a) and sparsity (b). We find that also then, the standard Multi-Gaussian outperforms variations in terms of accuracy and sparsity.
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Extended Data Fig. 5 | A grid search was performed on the Soli dataset and ShD for the h and s parameters of the multi-gaussian surrogate gradient. 
In the grid search, we calculated the performance of each pair of parameters by averaging the test accuracy and firing rate over tri-folder cross-validation. 
the white dashed line delineates the upper left region for models with high accuracy ( > 0.91) in (a) and high firing rate ( > 0.09) in (b). the red lines in (c) 
approximately delineate regions with accuracy above and below 0.87, and the white curve in (d) approximately demarcates models with an average firing 
rate above or below 0.1.
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