

 University of Groningen

The perception of Architectural Smells in Industrial Practice
Sas, Darius; Pigazzini, Ilaria; Avgeriou, Paris; Arcelli Fontana, Francesca

Published in:
Ieee software

DOI:
10.1109/MS.2021.3103664

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sas, D., Pigazzini, I., Avgeriou, P., & Arcelli Fontana, F. (2021). The perception of Architectural Smells in
Industrial Practice. Ieee software, 38(6), 35-41. https://doi.org/10.1109/MS.2021.3103664

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1109/MS.2021.3103664
https://research.rug.nl/en/publications/b735ce46-34dd-4122-9ccc-c0f3eda352b9
https://doi.org/10.1109/MS.2021.3103664

074 0 -74 5 9 / 21© 2 0 21I E E E NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE 35

FOCUS: TECHNICAL DEBT: 10 YEARS OF RESEARCH AND PRACTICE

 THE METAPHOR OF technical debt
(TD) reflects the technical compro-
mises that software practitioners

make to achieve a short-term ad-
vantage at the expense of creating a
technical context that increases com-
plexity and cost in the long-term.1

TD can be incurred throughout the
entire software development process,

so multiple types can be identified
(e.g., requirements, architecture, and
code).2 Architectural TD (ATD) was
found to be one of the most signifi-
cant types of TD, as, typically, key
architectural decisions are made
very early in the software lifecycle
and, thus, have a stronger impact.3

Architectural smells (AS) are one
type of ATD: all AS instances are ATD
items, but not all ATD items are AS.4

AS are defined as “commonly (al-
though not always intentionally) used
architectural decisions that negatively
impact system quality.”5

AS manifest themselves in the sys-
tem as undesired dependencies, an
unbalanced distribution of responsi-
bilities, excessive coupling between
components, and many other forms
that break one or more software design
principles and good practices, ultimate-
ly affecting maintainability and evolv-
ability.6 We note that the presence of
AS does not always inevitably indicate
that there is a problem, but it points
to places in the system’s architecture
that should be further analyzed.6

Despite the recent attention from
the research community on the topic,4

few studies investigated how prac-
titioners understand AS and experi-
ence the associated maintainability
issues in the real world.7 To address
this shortcoming, we interviewed 21
software developers and architects to
collect their opinions and experiences
from industrial practice regarding
three research questions (RQs) (see
“Study Design”).

Specifically, we focus on how prac-
titioners perceive AS, what main-
tenance and evolution issues they
associate with AS, and how they in-
troduce and deal with them in terms
of adopted practices and tools. The
goal is to enrich researchers’ under-
standing of AS and inform practitio-
ners on how they manifest themselves

The Perception
of Architectural
Smells in
Industrial
Practice
Darius Sas, University of Groningen

Ilaria Pigazzini, University of Milano–Bicocca

Paris Avgeriou, University of Groningen

Francesca Arcelli Fontana, University of Milano–Bicocca

// Architectural technical debt (TD) is the most

significant type of TD in industrial practice. Our

goals in this study were to better understand the

phenomenon of architectural smells, help practitioners

better manage them, and offer relevant support to

researchers. //

Digital Object Identifier 10.1109/MS.2021.3103664
Date of current version: 22 October 2021

Authorized licensed use limited to: University of Groningen. Downloaded on January 13,2022 at 10:45:55 UTC from IEEE Xplore. Restrictions apply.

36	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: TECHNICAL DEBT: 10 YEARS OF RESEARCH AND PRACTICE

in a real-world scenario, ultimately
supporting better AS management.

While there exist several kinds of
AS, we limited our scope to the four
types that are detected by most of
the available tools8 and are among
the most important currently de-
scribed in the literature7:

•	 Cyclic dependency (CD) is a set
of software artifacts (e.g., classes,
files, packages, components, and
so on) that depend upon each
other, thus creating a cycle. CD
breaks the acyclic dependencies
principle9 and increases coupling.

•	 Hub-like dependency (HL) is
an artifact that has an excessive

number of incoming and outgo-
ing dependencies, thus creating
a hub. HL breaks the modular-
ity of the system as the hub is
overloaded with responsibilities
and exacerbates the dependency
structure of the system.

•	 Unstable dependency (UD)
is a package (or any similar
construct—e.g., a component)
that has too many dependencies
to packages that are less stable
than itself, thus increasing its
reasons to change. A package is
said to be stable if it is resil-
ient to changes in neighboring
packages. UD breaks the stable
dependency principle (“Depend

in the direction of stability”9)
because the affected package
depends on packages less stable
than itself.

•	 A God component (GC) is a
package (or component) whose
size [measured using lines of
code] is noticeably bigger than
the other components in the
system.6 A GC breaks system
modularity and aggregates
too many concerns into a
single package.

It is important to note that partici-
pants in our study were asked not to
limit themselves to these four smells
only and were free to mention experi-
ences related to different types of AS.

Results

How AS Are Perceived (RQ1)
Participants reported being the most fa-
miliar with GCs among the four stud-
ied AS; several practitioners reported
personal experiences in managing this
kind of smell. GCs are perceived as a
common cause of maintenance issues
as well as reduced evolvability of the
affected component, mainly as a re-
sult of the high level of complexity that
characterizes its instances.

In particular, almost all practitio-
ners, except for two architects, had
rather strong opinions on this AS and
underlined its importance vividly. The
two architects, instead, expressed some
skepticism when discussing its impor-
tance and disregarded it, as they saw no
added technical value in splitting a GC.

Opinions on CD were gener-
ally aligned, and most interview-
ees considered it to be detrimental for
maintainability, reliability, and test-
ability. Concerns about reliability (e.g.,
deadlocks) were mostly expressed by
participants working on C/C++ proj-
ects, highlighting that, even if some

STUDY DESIGN

We performed a case study to collect experiences from industry regarding
three RQs:

•• RQ1: How are AS perceived by practitioners?
•• RQ2: What are the maintainability and evolvability issues experienced by

practitioners that relate to the presence of AS in the system?
•• RQ3: How do practitioners introduce and deal with AS?

For practitioners, answering these questions can help them understand and re-
late to issues experienced by others, obtain deeper knowledge about AS, and learn
how to manage them. Researchers, on the other hand, can better understand the re-
al-world problems experienced by practitioners and how exactly AS contribute to TD.

We collected data by interviewing 21 practitioners from three companies in
Europe operating in two different domains (Embedded Systems and Enterprise
Applications Development) with three main programming languages (C, C++, and
Java). The first company provided 12 participants; the second, six; and the third,
three. Practitioners’ backgrounds vary from a few years of activity (junior devel-
opers) up to 25 years of practice (architects). The average size of their projects
is about 50 million lines of code (LOC) for the first company, from 500,000 to
1,000,000 LOC for the second, and from 250,000 to 750,000 LOC for the third.

Interviews were semistructured, and each lasted approximately 30 min. We
chose to use interviews because they allow for follow-up questions and clarifica-
tions, ensuring that participants have understood the questions. Further details
about the design of this study can be found in the online appendix (available in
https://doi.org/10.1109MS.2021.3103664).

Authorized licensed use limited to: University of Groningen. Downloaded on January 13,2022 at 10:45:55 UTC from IEEE Xplore. Restrictions apply.

	 NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE � 37

CD instances have not caused issues
yet, they pose a high risk for future
undertakings.

On the other hand, interviewees
working with Java perceived CD as
less detrimental than other smell types,
like GC. This difference in perception
is probably due to the different appli-
cation domains of the companies and
not only the differences between Java
and C/C++.

We note that, typically, AS are the
symptom of a bigger and more pro-
found issue in the architecture6 that
needs to be studied case by case.
However, in cases where CD affected
reliability and testability, its very pres-
ence was considered as the problem
that developers were trying to resolve.

Opinions were much more polar-
ized when the HL smell was discussed.
Some participants mentioned that

•	 it should not be considered a
problem because it could be the
result of an intentional design
decision

•	 it should not be a cause
of concern as long as it is
understandable

•	 it is easy to solve, as one partici-
pant expressed.

•	 However, other respondents
(and especially the ones working
with Java) mentioned that HL is
very important to avoid because
it is not easy to manage and
hinders both maintainability and
evolvability by making it hard
to understand how to insert new
code in the presence of HL.

Concerning UD, participants gen-
erally perceived it as a threat to both
maintainability and evolvability,
highlighting their concerns about the
change ripple effects associated with
it and underlining the importance
of avoiding dependencies toward

packages that constantly evolve. Nev-
ertheless, one developer expressed
doubts about the importance of this
AS, while a few more stated that they
did not fully understand it and gave
no feedback about it.

From these results, it appears that,
while all AS are considered detrimen-
tal, they are perceived differently by
practitioners depending on their past
experiences, educational background,
and application domain: GC and CD
are perceived as the most important
ones, HL is considered “manageable,”
and UD is seen as detrimental but not
critical. It is also important to take
into account that UD is less visible
than the other smells: one cannot tell
by looking at a package that it is less
stable than another one without em-
ploying dedicated tooling.

Finally, we observed the exis-
tence of a slight correlation between
the experience of interviewees and
type of concerns expressed about an
AS. Junior participants tended to be
more concerned about short-term
problems (e.g., the presence of CDs
and their impact on the deployed sys-
tem), while senior interviewees were
keener on long-term evolvability and
team-related matters (e.g., new team
members making changes to a GC).

How AS Impact Maintenance
and Evolution (RQ2)
The participants discussed plenty
of anecdotes and experiences about
maintenance and evolution issues
that they associated with the presence
of AS. Almost all anecdotes about
GCs involve the difficulty of under-
standing the functionality provided
by the component, mainly caused by
the excessive internal entanglement of
files (or classes), significant amount
of functionality implemented, and
the way functionality is scattered
across the component.

The relationship between GCs and
code duplications was also frequently
discussed. Components affected by
a GC do not provide fine-grained
classes that can be easily reused inside
or outside the component but, rather,
large and entangled classes. Hence,
when developers need to reuse an
existing functionality, they prefer to
copy the entire class and adapt it for
the new purpose instead of extracting
a small, reusable functionality. On top
of creating duplicated code, this also
further enlarges the existing GC.

The experiences about CD are
rather diverse and range from dealing
with deadlocks and low throughput to
an unclear chain of command among
components and poor separation of
concerns in general. Cycles were also
reported as an “intertwined mess” that
is hard to understand—e.g., when there
is a package that requests data from an-
other package, which, in turn, requests
it back from the initial package.

These issues required a significant
amount of effort to fix or deal with
them along the way, and, in some
cases, they showed up only in pro-
duction or at the customer level. Par-
ticipants also mentioned problems
that had a more widespread impact;
for example, a cycle prevented the
creation of a microservice out of a
subset of packages, as all of the pack-
ages in the cycle had to be included in
the microservice. (The desired func-
tionality could not be isolated.)

Concerning HL, practitioners as-
sociated it with two types of issues:

•	 difficulty of understanding the
logic in the central component

•	 change ripple effects propagating
from the components that the
central component depends upon
to the components depending
on it, mentioning also a possible
overlap with UD.

Authorized licensed use limited to: University of Groningen. Downloaded on January 13,2022 at 10:45:55 UTC from IEEE Xplore. Restrictions apply.

38	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: TECHNICAL DEBT: 10 YEARS OF RESEARCH AND PRACTICE

The former was usually associated with
how the central component exposes its
functionality through its interface. The
latter caused changes to unexpected
parts of the system that practitioners did
not expect to relate to the initial change,
during activities such as bug fixing.

The maintenance issues most asso-
ciated with UD were change ripple ef-
fects. In several instances, practitioners
reported that functional changes to a
certain component (or package) also re-
quired several files in other components
to change as well. As reported by two
participants, the possibility of changes
propagating to other components in-
creases the difficulty of making changes:
practitioners are forced to only make
changes compatible with the other com-
ponents to avoid changing and recom-
piling those other components.

How AS Are Introduced
and Managed (RQ3)
Participants reported their experi-
ences with how they get to introduce
an AS in the system. Some interview-
ees admitted that it often happens
by design; for instance, concerning
GCs, the component or the file is in-
tended to be large. Subsequently, as
reported by other interviewees, de-
velopers tend to underestimate the
severity of the introduced GC, while
the incremental changes applied to it
contribute to making it even larger.

In other cases, AS are introduced
inadvertently. For example, partici-
pants reported that a bad separa-
tion of concerns at design time or the
wrong exploitation of class inheri-
tance can result in CD. Another re-
spondent mentioned that they used
to create a dedicated interface to hide
unstable components behind it as a
“practice” to avoid the propagation of
changes; however, this is precisely the
description of a UD smell, which is be-
ing misinterpreted as a good practice.

In many cases, introducing AS
seems unavoidable and accepted
as a “necessary evil.” For example,
one participant explained that,
in view of an imminent deadline,
they focus on developing the new
feature and having a first structure
of the code without caring about
its maintainability.

Moving on to the management
of AS, we asked participants about
their experiences with AS refactor-
ing. Most of them had experience
with the refactoring of GCs, in par-
ticular, the practice of splitting the
component into smaller pieces by
applying incremental changes or de-
taching the smallest, easiest subcom-
ponents first.

One interviewee had managed to
break a case of CD by remodeling the
involved dependencies to follow a hi-
erarchical structure; others reported
creating replacement interfaces and
slowly migrating clients to them
while refactoring the existing compo-
nents. In contrast, developers do not
commonly refactor HL because of
the required effort; if they can, they
tend to “code around it” without
removing it when developing new
features, allowing it to persist. One
interesting reason mentioned for not
refactoring an AS is the absence of a
comprehensive regression test suite.

Concerning practices that sup-
port the refactoring of AS, some
participants mentioned the usage of
SonarQube to keep the code read-
able and maintainable; this can ease
the refactoring of AS since, often,
the poor quality of the code makes
refactoring even more difficult and
time consuming. Another respon-
dent indicated pair programming
and the help of senior developers as
valid support.

However, not all of the inter-
viewees reported the adoption of

refactoring practices. Some even
pointed out that they avoid refactor-
ing because their clients do not pay
for refactoring time, and, as long as
the system has no visible problems in
production, they do not intervene.

Finally, we also asked whether
practitioners use tools to manage AS.
SonarQube was mentioned by quite
a few respondents, but only once re-
garding an AS (i.e., to detect cycles).
Besides that, practitioners do not rely
on any specific tool to manage AS.
Nonetheless, participants did men-
tion features that they would like to
have in an ideal tool that manages
AS. Due to space limitations, the
features are reported in our online
appendix (available in https://doi
.org /10.1109MS.2021.3103664),
and we created a mind map to sum-
marize the results of all three RQs
in Figure 1.

Discussion and
Implications
The presented results indicate that
AS clearly help incur ATD: they have
a direct, architecture-level impact on
the maintainability and evolvabil-
ity of the affected parts. AS make
changes harder to implement by in-
creasing the effort required to under-
stand the implications of a change,
making it easy to underestimate the
effort necessary for the change and
hard to plan ahead.

Practitioners are aware and well
informed about good design prac-
tices, but they struggle to follow
them diligently, often prioritizing de-
livering a feature over good design.
Fowler calls this reckless and delib-
erate TD,10 because practitioners un-
derstand the long-term implications
of their decisions but still decide to
incur TD. By doing so, practitio-
ners are forced, sooner rather than
later, to apply refactorings before

Authorized licensed use limited to: University of Groningen. Downloaded on January 13,2022 at 10:45:55 UTC from IEEE Xplore. Restrictions apply.

	 NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE � 39

F
IG

U
R

E
 1

.
A

 m
in

d
m

ap
 s

um
m

ar
iz

in
g

th
e

pe
rc

ep
tio

n,
 e

xp
er

ie
nc

es
, p

re
ve

nt
io

n,
 in

tr
od

uc
tio

n,
 a

nd
 p

re
se

nc
e

of
 A

S
 a

s
de

sc
rib

ed
 b

y
pa

rt
ic

ip
an

ts
. I

n
pa

re
nt

he
se

s,
 w

e
re

po
rt

 th
e

nu
m

be
r

of

da
ta

 p
oi

nt
s

an
d,

 if
 a

pp
ro

pr
ia

te
, t

he
 t

yp
e

of
 a

ss
oc

ia
te

d
A

S
.

Im
po

rt
an

t B
ec

au
se

 It
 Is

 N
ot

G
oo

d
to

 D
ep

en
d

on
E

vo
lv

in
g

P
ac

ka
ge

s
U

D
 (

2)
H

in
de

rs
U

nd
er

st
an

da
bi

lit
y

G
C

 (
5)

P
ot

en
tia

l C
au

se
 fo

r
R

un
tim

e
E

rr
or

s
C

D
 (

5)

Im
po

rt
an

t t
o

A
vo

id
 a

nd

H
ar

d
to

 M
an

ag
e

H
L

 (
3)

Im
po

rt
an

t,
B

ut
 L

es
s

T
ha

n
G

C
 C

D
 (

3)

C
ha

ng
e

R
ip

pl
e

E
ffe

ct
s

U
D

 (
7)

 H
L

 (
8)

 C
D

 (
2)

D
iff

ic
ul

t t
o

U
nd

er
st

an
d

F
un

ct
io

na
lit

y
H

L
 (

6)
 G

C
 (

8)
 C

D
 (

5)

E
nt

an
gl

em
en

t a
nd

E
xc

es
si

ve
 F

un
ct

io
na

lit
y,

P
re

ve
nt

in
g

E
vo

lu
tio

n
G

C
 (

4)

D
ea

dl
oc

ks
 C

D
 (

5)

H
ar

d
to

 T
es

ts
 H

L
 (

2)

H
ar

d
to

 U
nd

er
st

an
d

If
th

e
C

ha
ng

e
Im

pa
ct

ed
 O

th
er

P
ar

ts
 H

L
 (

3)
 G

C
 (

1)

In
te

rn
al

 D
es

ig
n

D
ec

is
io

n
H

L
 a

n
d

 G
C

 (
2)

In
tr

od
uc

tio
n

of
 C

od
e

D
up

lic
at

io
n

to
 A

vo
id

 R
ip

pl
e

C
ha

ng
es

 (
5)

F
un

ct
io

na
lit

y
of

 G
C

s
A

ttr
ac

tin
g

M
or

e
F

un
ct

io
na

lit
y

(4
)

P
rio

rit
iz

in
g

Im
pl

em
en

ta
tio

n
of

 N
ew

 F
ea

tu
re

s
O

ve
r

M
ai

nt
ai

na
bi

lit
y

D
ue

 to
 T

im
e

(1
)

F
ra

m
ew

or
ks

 L
ik

e
S

pr
in

g
M

ak
in

g
D

ep
en

de
nc

y
S

tr
uc

tu
re

s
W

or
se

 (
1)

P
er

ce
pt

io
n

(R
Q

1)

E
xp

er
ie

n
ce

d
Is

su
es

 (
R

Q
2)

A
S

R
ef

ac
to

ri
ng

s
(R

Q
3)

P
re

ve
n

ti
n

g
In

tr
o

d
u

ct
io

n
 (

R
Q

3)

M
an

ag
in

g
 P

re
se

n
ce

(R
Q

3)

G
en

er
al

 Q
uo

te
s

(R
Q

3)

In
tr

o
d

u
ct

io
n

 o
f

S
m

el
ls

 (
R

Q
3)

In
cr

em
en

t C
ha

ng
es

 to
 S

pl
it

F
un

ct
io

na
lit

y
G

C
 (

3)
 A

ll
(2

)

C
re

at
e

R
ep

la
ce

m
en

t I
nt

er
fa

ce
an

d
S

lo
w

ly
 M

ig
ra

te
 C

lie
nt

s
A

ll
(2

)

M
od

el
 D

ep
en

de
nc

ie
s

Li
ke

 a
W

at
er

fa
ll

C
D

 (
1)

S
pl

it
th

e
E

as
ie

st
S

ub
co

m
po

ne
nt

 G
C

 (
1)

A
rc

hi
te

ct
ur

e
R

ul
e:

 “O
ne

 c
om

po
ne

nt
/

pa
ck

ag
e

fo
r

on
e

fu
nc

tio
na

lit
y.

”
(S

in
gl

e-
R

es
po

ns
ib

ili
ty

 P
rin

ci
pl

e)
 (

5)
C

od
in

g
P

ra
ct

ic
es

 a
nd

D
es

ig
n

R
oa

dm
ap

 (
2)

C
od

e
G

en
er

at
io

n
(1

)

In
tr

od
uc

tio
n

of
 N

ew
 A

rc
hi

te
ct

ur
e

La
ye

rs
 to

 In
cr

ea
se

 S
ep

ar
at

io
n

of
C

on
ce

rn
s

(1
)

R
ef

ac
to

rin
g

B
ef

or
e

A
pp

ly
in

g
N

ew
 C

ha
ng

es
 (

1)

P
ai

r
P

ro
gr

am
m

in
g

(1
)

H
el

p
of

 S
en

io
r

D
ev

el
op

er
 (

1)

U
se

 S
on

ar
Q

ub
e

to
 M

ak
e

C
od

e
M

or
e

R
ea

da
bl

e
(3

)

“A
s

lo
ng

 a
s

co
de

 w
or

ks
 in

pr
od

uc
tio

n,
 w

e
do

n’
t r

ef
ac

to
r.

”
(1

)

“C
us

to
m

er
 d

oe
s

no
t p

ay
 u

s
to

 r
ef

ac
to

r.
”

(1
)

“C
D

 m
ig

ht
 b

e
ea

sy
 to

 r
ef

ac
to

r,
un

cl
ea

r
ho

w
 to

 d
o

it,
 th

ou
gh

.”
 (

1)

“H
ar

d
to

 b
re

ak
 a

 G
C

;
w

e
pl

an
 to

 ta
ke

 fi
ve

 to
 te

n
ye

ar
s.

” (
2)

Authorized licensed use limited to: University of Groningen. Downloaded on January 13,2022 at 10:45:55 UTC from IEEE Xplore. Restrictions apply.

40 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: TECHNICAL DEBT: 10 YEARS OF RESEARCH AND PRACTICE

proceeding with the implementation
of new features (as mentioned by the
participants) and pay a considerable
amount of TD interest every time
they need to extend the system.

As emerged from the interviews,
TD is also incurred inadvertently,10

either recklessly because of poor
knowledge about the design of the
parts affected by the change (e.g., a
component requesting a parameter
that belongs to itself from another
component), or prudently because
the optimal design solution becomes

clear only after implementing the
chosen solution. The introduction of
TD through nonoptimal solutions
that is then detected as an AS is not
automatically controlled, as we ob-
served a lack of adoption of tooling
dedicated to managing AS—practi-
tioners mostly focus on code TD.

At any rate, regardless of the how,
incurring TD is inevitable and inherent
to the software development process,
so practitioners must adopt practices
that enable its management. Simi-
lar to any other type of TD item, the

first step in managing AS is detecting
them. Azadi et al.8 recently provided
a list of tools that detect AS for practi-
tioners to consider.

Another—even more important—
step is prevention. Practitioners should
pay particular attention to how they
create internal dependencies, as there
is a fine balance between changeabil-
ity and the number of dependencies per
file: too many, and files become entan-
gled, making the system hard to modify
and giving rise to GCs and CD; too few,
and the system is also hard to modify
because fewer classes are reused (a tree-
like dependency graph6), resulting in
multiple classes implementing similar
functionality (and applying the same
change to all of them is repetitive).

P ractitioners should carefully
balance how these dependen-
cies are created by devising

clear architectural rules that prevent the
creation of undesired dependencies that
end up generating AS. Our research
work to date has focused precisely on
addressing these issues, culminating in
the development of Arcan, a tool to
make AS detection and dependency
analysis as easy as possible to practi-
tioners who work either in Java or C/
C++—and, soon, Python and C#.

Acknowledgments
This article has supplementary down-
loadable material available at https://
doi.org/10.1109MS.2021.3103664
provided by the authors.

 References
1. P. Avgeriou, P. Kruchten, I. Oz-

kaya, and C. Seaman, “Manag-

ing technical debt in software

engineering (Dagstuhl Seminar

16162),” Dagstuhl Rep., vol. 6, no.

4, pp. 110–138, 2016. 10.4230/

DagRep.6.4.110

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

DARIUS SAS is a Ph.D. student at the Bernoulli Institute for
Mathematics, Computer Science, and Artificial Intelligence,
University of Groningen, Groningen, 9747 AG, The Nether-
lands. His research interests include architectural technical
debt elimination in embedded systems and the interplay
among technical debt, energy efficiency, and dependability.
Sas received his master’s degree in computer science from
the University of Milano–Bicocca, Milan, Italy. Contact him
at d.d.sas@rug.nl.

ILARIA PIGAZZINI is a Ph.D. student in computer science
at the Department of Computer Science, Systems, and Com-
munications, University of Milano–Bicocca, Milan, 20216,
Italy. Her research interests include reverse engineering,
architectural smell detection, and the refactoring of object-
oriented systems. Pigazzini received her M.Sc. in computer
science from the University of Milano–Bicocca. Contact her
at i.pigazzini@campus.unimib.it.

PARIS AVGERIOU is a professor of software engineering at
the University of Groningen, Groningen, 9747 AG, The Neth-
erlands. His research interests include software architecture
with a strong emphasis on architecture modeling, knowledge,
evolution, analytics, and technical debt. Avgeriou received
his Ph.D. from the Department of Electrical and Computer
Engineering of the National Technical University of Athens.
Contact him at p.avgeriou@rug.nl.

FRANCESCA ARCELLI FONTANA is a full professor and
head of the Software Evolution and Reverse Engineering Lab
at the University of Milano–Bicocca, Milan, 20216, Italy. Her
research interests include software evolution, reverse engi-
neering, managing technical debt, and software quality assess-
ment. Fontana received her Ph.D. in computer science from
the University of Milano. Contact her at francesca.arcelli@
unimib.it.

Authorized licensed use limited to: University of Groningen. Downloaded on January 13,2022 at 10:45:55 UTC from IEEE Xplore. Restrictions apply.

	 NOVEMBER/DECEMBER 2021 | IEEE SOFTWARE � 41

2.	N. S. R. Alves, T. S. Mendes, M. G. De

Mendonça, R. O. Spinola, F. Shull, and

C. Seaman, “Identification and man-

agement of technical debt: A systematic

mapping study,” Inf. Softw. Technol.,

vol. 70, pp. 100–121, Nov. 2016. doi:

10.1016/j.infsof.2015.10.008.

3.	N. A. Ernst, S. Bellomo, I. Oz-

kaya, R. L. Nord, and I. Gorton,

“Measure it? Manage it? Ignore it?

software practitioners and technical

debt,” in Proc. 10th Joint Meeting

on Foundat. Softw. Eng. – ESEC/

FSE 2015, 2015, pp. 50–60. doi:

10.1145/2786805.2786848.

4.	R. Verdecchia, I. Malavolta, and P.

Lago, “Architectural technical debt

identification: The research land-

scape,” in Proc. ACM/IEEE Int.

Conf. Tech. Debt., 2018, pp.

11–20. doi: 10.1145/3194164.

3194176.

5.	J. Garcia, D. Popescu, G. Edwards,

and N. Medvidovic, “Identifying

architectural bad smells,” in Proc.

13th Eur. Conf. Softw. Maintenance

Reeng., 2009, pp. 255–258, doi:

10.1109/CSMR.2009.59.

6.	S. R. Lippert, Refactoring in Large

Software Projects: Performing Com-

plex Restructurings Successfully.

Hoboken, NJ: Wiley, 2006.

7.	F. Arcelli Fontana, F. Locatelli, I.

Pigazzini, and P. Mereghetti, “An

architectural smell evaluation in an

industrial context,” in Proc. Int. Conf.

Softw. Eng. Adv., 2020, vol. 78.

8.	U. Azadi, F. A. Fontana, and D.

Taibi, “Architectural smells detected

by tools: A catalogue proposal,” in

Proc. Int. Conf. Tech. Debt (Tech-

Debt 2019), 2019, pp. 88–97. doi:

10.1109/TechDebt.2019.00027.

9.	R. C. Martin, Clean Architecture:

A Craftsman’s Guide to Software

Structure and Design. Englewood

Cliffs, NJ: Prentice-Hall.

10.	M. Fowler, “Technical Debt Quadrant,”

2009. Accessed: Apr. 4, 2021. [Online].

Available: http://martinfowler.com/bliki/

TechnicalDebtQuadrant.html

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MS.2021.3115640

Authorized licensed use limited to: University of Groningen. Downloaded on January 13,2022 at 10:45:55 UTC from IEEE Xplore. Restrictions apply.

