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SUPRA-CONSERVATIVE FINITE-VOLUME METHODS FOR THE1

EULER EQUATIONS OF SUBSONIC COMPRESSIBLE FLOW2

ARTHUR E. P. VELDMAN∗3

Abstract. It has been found advantageous for finite-volume discretizations of flow equations4
to possess additional (secondary) invariants, next to the (primary) invariants from the constituting5
conservation laws. The paper presents general (necessary and sufficient) requirements for a method6
to convectively preserve discrete kinetic energy. The key ingredient is a close discrete consistency7
between the convective term in the momentum equation and the terms in the other conservation8
equations (mass, internal energy). As examples, the Euler equations for subsonic (in)compressible9
flow are discretized with such supra-conservative finite-volume methods on structured as well as10
unstructured grids.11

Key words. CFD, conservation laws, finite-volume method, supra-conservative discretization12

AMS subject classifications. 65M08, 65M12, 76G2513

1. Introduction.14

1.1. Background. The equations describing fluid dynamics can be expressed as15

conservation laws in terms of primary variables: mass, momentum and (internal) en-16

ergy. In the absence of dissipative mechanisms, according to Noether’s theorem [5,80],17

they possess a number of invariants induced by the symmetries of the Hamilton-18

ian/Lagrangian structure. Next to the (obvious) primary invariants expressed by the19

explicit conservation laws, other secondary invariants exist [21, 86, 116]. Preserving20

(globally and/or locally) one or more of these analytical invariants in a discrete setting21

has proven quite useful over the years, but is not obvious to realize, e.g. [91]. Gradu-22

ally, experience is built up about which additional discrete invariants are worthwhile23

to preserve, and about the way to achieve this. In this paper, we analyze the steps24

that can lead to simultaneous discrete conservation of several of these (primary and25

secondary) invariants.26

In particular, we consider the Euler equations for subsonic (in)compressible flow.27

These will be formulated as conservation laws in terms of the primary variables mass28

density ρ, momentum per unit mass u, and internal energy per unit mass e:29

∂ρ

∂t
+∇ ·m = 0 ;(1.1a)30

∂ρu

∂t
+∇ · (m⊗ u) = −∇p ;(1.1b)31

∂ρe

∂t
+∇(me) = −p∇ · u .(1.1c)32

33

Here, m ≡ ρu denotes the mass flux and p the pressure. The set of equations is closed34

by an equation of state which relates p, ρ and e (for the limit of incompressible flow,35

see Appendix A).36

The introduction of the mass flux m will help to distinguish between the two37

appearances of u in the momentum equation: one as transporting velocity, the other38

as transported quantity. We will also see that the particular value of m is relevant39

only at two places in the analysis: in the derivation of the pressure Poisson equation40
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2 ARTHUR E. P. VELDMAN

(Sect. 4.2) and in the limit between compressible and incompressible flow (Sect. 5.3).41

All other considerations in this paper hold for any vector field m. Note that the time42

derivative in (1.1b) contains the product of the density ρ and the velocity u (together43

making the momentum per unit volume), and not the mass flux m (which nevertheless44

has the same value). The mathematical reason behind this will become clear in the45

sequel, when studying the evolution of kinetic energy (see also [132, Sect. 7]).46

The equations are solved on a (two- or three-dimensional) domain Ω with ap-47

propriate initial and boundary conditions. For convenience, we will assume either48

homogeneous boundary conditions or periodic ones, such that we do not have to49

bother with terms along the boundaries. Physically, this means that in this paper50

external influences on the flow field are excluded.51

The equations (1.1) have been written in conservation form, immediately revealing52

the primary invariants. As main invariants, next to mass and linear momentum,53

also angular momentum, mean kinetic energy, helicity and circulation (Kelvin) are54

(globally) preserved [72,75,86]. Furthermore, in two dimensions, enstrophy and other55

integrals of the vorticity are invariant. In [2, 21, 25, 116] methods are presented to56

construct even more invariants.57

The convection term in the momentum equation (1.1b) can be written in various58

formulations. For incompressible flow, next to the conservative form ∇(u ⊗ u), one59

has the convective form u · ∇u, the skew-symmetric form 1
2u · ∇u + 1

2∇ · (u ⊗ u),60

the rotational form (∇ × u) × u + 1
2∇(u · u), the closely related velocity-vorticity(-61

helicity) formulations [51,82,83] and the streamfunction-vorticity formulation [3]. For62

compressible flow, with even more freedom in formulating the equations, Coppola et63

al. [27, 28] have analyzed a large family of variants.64

Analytically all formulations are equivalent, because of the equation for mass con-65

servation (1.1a), and they possess the same invariants. But after discretization this66

equivalence is partly lost, and differences appear in the induced discrete invariants.67

Depending upon the desired discrete invariant, e.g. kinetic energy or helicity, a dif-68

ferent analytical formulation can be chosen as a starting point. The present paper69

intends to study how this loss of discrete equivalence can be reduced. In particular it70

is shown how discrete energy can be conserved, as this property directly improves nu-71

merical stability; for incompressible flow stability is even guaranteed. Recently, Edoh72

et al. [34] have shown in detail how other means of achieving numerical stability, such73

as artificial dissipation and solution-filtering, result in (nonphysical) inaccuracies of74

the numerical solution.75

1.2. History - incompressible flow. Around 1960, in long-time numerical76

weather prediction [3,13,67,94,95], the (possibly negative) influence of the discretiza-77

tion of the non-linear convective term on numerical stability (in those days coined78

non-linear instability) was already discussed. In particular, Arakawa [3], working in79

2D, advocated the use of the streamfunction-vorticity formulation of the flow equa-80

tions, which he shows to discretely conserve mean kinetic energy and enstrophy.81

Building on the staggered-grid formulation by Harlow and Welch [50], Piacsek82

and Williams [96] promoted the discretization of the skew-symmetric convective for-83

mulation, as it directly leads to discrete global energy conservation and its numerical84

stability. Several years later, Horiuti [54] and Zang [152] were among the first to sys-85

tematically explore the rotational form of the equations. Later, Perot et al. [90, 153]86

stressed how on unstructured grids using the rotational form, next to global conser-87

vation of kinetic energy and circulation, also local conservation can be achieved.88

This manuscript is for review purposes only.



SUPRA-CONSERVATIVE FINITE-VOLUME METHODS 3

Finite-element methods. In search for more ‘useful’ secondary invariants, in a89

finite-element setting Layton et al. [63] compared several formulations of the equa-90

tions, but they did not include the conservation form (1.1) which is our starting91

point. As a follow-up, Rebholz and colleagues [23, 24, 29] further extended the quest92

for finite-element methods with enhanced conservation properties, again motivated93

by accurate long-time integration [8]. Also, Lehmkuhl et al. [65] advocate the use of94

low-dissipative and conservative finite-element schemes. In general, the geometrical95

flexibility of a finite-element discretization can be combined with the conservation96

properties of a finite-volume formulation. This led to a number of closely-related97

methods [6, 148], like the discontinuous Galerkin method [26], the spectral volume98

method [125,126] and the energy-stable flux reconstruction method [20,55,147,149].99

Mimetic methods. Inspired by the work of Samarskii in the 1970s, the support op-100

erator method was developed in which basic analytical relations between the main op-101

erators of calculus (div, grad and curl) were preserved [111,118]. Later, this approach102

was renamed by Hyman and Shashkov [56] as a mimetic finite-difference method. A103

broad overview of these methods is given by Lipnikov et al. [68]. Links with differen-104

tial geometry and algebraic topology were made in the language of discrete exterior105

calculus, e.g. [11,19,31,35,52]. Note that in the latter language the mass flux m is a106

2-form, whereas the velocity u is a 1-form, again making the distinction between m107

and ρu. Explanations for non-specialists of this, highly mathematical, approach can108

be found in [36,93]. These methods have been applied mainly in diffusion-dominated109

flow problems, see the overview paper by Perot [92], but a few convection-dominated110

studies can be mentioned [30,45,76].111

Finite-difference methods. An extensive overview of finite-difference options for112

the incompressible flow equations has been presented by Morinishi [78]. He discusses113

the discretization of the convective, divergence and skew-symmetric forms on uniform114

grids. A generalization of his approach to non-uniform grids was presented by Vasilyev115

[139] and Ham et al. [49]. As a curvilinear case, the energy-preserving formulation116

in cylindrical coordinates was studied in [40, 79, 87]; a more general approach for117

structured curvilinear staggered grids has been proposed in [138]. Discrete skew-118

symmetry of the convective terms also features in the summation-by-parts (SBP)119

method introduced by Strand [123] and Olsson [84, 85], and generalized in [74, 81,120

127,128]. Next to these approaches to globally preserve discrete energy, also ideas to121

preserve helicity [69,100,116] and angular momentum [44] have been proposed.122

Finite-volume methods. Around the same time, similar considerations for finite-123

volume discretizations were discussed. Starting from the conservation laws behind124

the equations given in Eq. (1.1), conservation of the primary variables is ‘automatic’125

in this approach. In the 1990s, inspired by [143], by means of a symmetry-preserving126

approach Verstappen and Veldman [144] were among the first to combine discrete127

mass, momentum and energy conservation for incompressible flow on non-uniform,128

staggered Cartesian grids. They emphasized the need for, counter-intuitive, geometry-129

independent interpolations for the fluxes. Higher-order finite-volume versions followed130

soon [145, 146, 150]. Early generalizations to unstructured staggered grids have been131

presented by Perot et al. [90, 153]. Later, Trias et al. included collocated grids [60,132

115,133,134].133

1.3. History - compressible flow. Extensions to the equations for compress-134

ible flow have also been presented. Often, but not always, starting from the conserva-135

tive formulation and discretized with a finite-volume approach. Also here, early use136

of skew-symmetric forms can be mentioned, such as the formulations by Feiereisen137
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4 ARTHUR E. P. VELDMAN

et al. [37], Tadmor [130] and Blaisdell et al. [9]. These, non-conservative, analytical138

forms are better combined with a finite-difference discretization, although some of139

them can be recast into a finite-volume discretization [28, 49]. Consistency between140

the individual discrete equations was found beneficial for stability [14, 18, 70, 97, 99].141

Even as early as 1967, Richtmyer and Morton [103, p. 142] in their study of the Burg-142

ers equation already noticed that some discretizations conserve an energy norm “thus143

ensuring stability”.144

The use of entropy variables can be profitable, see e.g. [15, 22, 43, 53, 89, 113,145

129, 151], but often discrete momentum conservation is lost. The latter papers were146

mainly concerned with the numerical treatment of shock wave discontinuities, where147

monotonicity and TVD properties are relevant (e.g. [7, 98]). In contrast, and com-148

plementary, our interest is in the treatment of the relatively smooth (but possibly149

turbulent) part of the flow; hence our restriction to subsonic flow. Yet, due to the150

absence of numerical diffusion, our approach will not interfere with the, necessarily,151

dissipative character of numerical shock treatment.152

In this paper, we would like to retain all primary conservation properties and to153

extend them with additional secondary conservation. Some finite-volume studies in154

this vein can be mentioned already, e.g. those by Ducros et al. [33], Jameson [58],155

Kok [62], Morinishi [77] and Rozema [108]. We will highlight the general principles156

behind these spatial discretization methods.157

Time integration. Finally, after the above summary of spatial discretization de-158

velopments, we should mention the efforts to let the time integration preserve in-159

variants. In particular, symplectic methods [114], like the implicit midpoint rule,160

preserve kinetic energy. Such methods for incompressible flow have been studied,161

e.g., by Sanderse [112] and Capuano et al. [16]; thusfar, only implicit methods with162

these conservation properties have been found. It appears that energy-preserving time163

integration for compressible flow requires the introduction of the square root of the164

density
√
ρ [46, 77, 108, 124]. Following the use of these ‘square-root variables’ in the165

time-integration method, spatial discretization studies were carried out based on the166

same variables; see e.g. Reiss et al. [12, 101, 102], Rozema et al. [105, 107, 110] and167

Cadieux et al. [15]. In particular, Rozema’s square-root formulation can preserve not168

only primary (mass, momentum and internal energy) and secondary (kinetic and to-169

tal energy) invariants through spatial and temporal discretization, but it additionally170

allows for a compressible formulation of regularization turbulence models [108, 109].171

A wider overview of energy-preserving time-integration methods for compressible flow172

can be found in [27].173

Similar ideas in adjacent areas. Next to the above developments in the realm of174

discrete-grid methods, similar energy-preserving ideas have been proposed for other175

discretization paradigms like spectral methods [10, 42, 88] and SPH methods [39].176

Moreover, other application areas can be mentioned where energy conservation and177

similar properties are advantageous, like geophysical fluid dynamics [4, 32, 131] and178

multi-phase flow [41, 57, 135, 140]. The literature shows that preserving these desir-179

able conservation properties usually goes at the expense of mass and/or momentum180

conservation. Also for the shallow-water equations discrete energy conservation is181

actively pursued [119, 121, 136], sometimes in conjunction with one other discrete in-182

variant, e.g. enstrophy [120,122]. Only a few exceptions with more than one discretely183

conserved invariant, viz. mass and momentum, have been presented [137,138].184

1.4. Supra-conservative discretization. The general idea behind many of the185

above methods is that they want to discretely conserve more (secondary) invariants186
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then just the (primary) ones directly featuring in the conservation laws. Therefore,187

these methods are coined supra-conservative [142]. To achieve this property requires188

sufficient compatibility between the discrete operators in the equations of motion:189

not only div, grad and curl, but also composite operators. Below, we will discuss the190

details of such a discrete compatibility for (stretched) structured and unstructured191

computational grids with staggered as well as collocated positioning of the unknowns.192

Most of the above studies have been based on the properties of the analytical193

formulations, which are then ‘hopefully’ retained after discretization. In our discussion194

we will start, as advocated in [141], from the discrete finite-volume formulation of the195

basic equations (1.1), and never return to the analytical formulation. In this way we196

make sure that discrete conservation of the primary invariants is guaranteed from the197

start. Then, at the discrete level, the freedom left in the formulation will be used to198

generate additional properties like secondary invariants.199

Outline. In the paper we focus in particular on the (secondary) conservation of en-200

ergy in finite-volume methods. Necessary and sufficient criteria hereto will be derived.201

We restrict ourselves to subsonic flow (i.e. no shock waves) and stick to the conserva-202

tive formulation in primitive variables. In Sections 2 and 3 the derivation steps are203

discussed that are required to obtain energy conservation, first in the analytic case,204

thereafter mimicked in the discrete setting. Section 4 works out a supra-conservative205

method for incompressible flow discretized on a structured, staggered grid. In Sec-206

tion 5 the approach is generalized to compressible flow on an unstructured, collocated207

grid. Finally, the common line in the approach will be discussed in Section 6, followed208

by a section with conclusions.209

2. Conservation of energy - analytic. The theoretical study of the invariants210

of the Euler flow equations thus far has mainly focused on the incompressible special211

case of the formulation as given in (1.1); here we treat the general case of compressible212

flow. As the flow equations are formulated in conservation form they ‘automatically’213

conserve mass, momentum and internal energy. Analysis shows that, as mentioned214

above, they additionally convectively preserve kinetic energy and total energy. The215

analytic derivation of this property is relevant for the discrete discussion in the sequel.216

We give it here as a starting point and guide line, as we want to mimic it step-by-step217

in the discretization.218

∂

∂t
(ρEtot) = − 1

2
(u · u) ∂

∂t
ρ + u · ∂

∂t
(ρu) +

∂

∂t
(ρe)219

=

mass (1.1a)︷ ︸︸ ︷
1
2
(u · u)∇ ·m − u ·

momentum (1.1b)︷ ︸︸ ︷{
∇ · (m⊗ u) + ∇p

}
−

internal energy (1.1c)︷ ︸︸ ︷{
∇ · (me) + p∇ · u

}
(2.1a)220

= u ·
{

1
2
(∇ ·m)u − ∇ · (m⊗ u)

}
︸ ︷︷ ︸

Property 2.1

− ∇ · (me) −
{

u · ∇p + p∇ · u
}

︸ ︷︷ ︸
Property 2.2

(2.1b)221

= − ∇ · ( 1
2
mu2) − ∇ · (me)︸ ︷︷ ︸
Property 2.3

− ∇ · (pu)(2.1c)222

= − ∇ · (mEtot) − ∇ · (pu) .(2.1d)223
224

225

From the primary conservation laws one can deduce secondary conservation laws226

for kinetic energy ρEkin ≡ 1
2ρu

2 and total energy ρEtot ≡ ρ(Ekin + e). The evolution227
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6 ARTHUR E. P. VELDMAN

of the total energy can be calculated analytically as a weighted combination of the228

primary conservation laws (1.1a), (1.1b) and (1.1c). Equation (2.1) schematically229

shows how the derivation of the energy evolution proceeds. The divergence forms in230

the last two lines (2.1c) and (2.1d) not only induce global energy conservation but231

also local conservation. It is stressed that this derivation holds for any m: its explicit232

value ρu is not used.233

The derivation in (2.1) reveals, by means of a background shading, how terms234

from the separate primary conservation laws have to be combined, requiring a certain235

level of compatibility. Analytically this is not an issue, but in a discrete setting it is236

not straightforward, and this will be the focal point in the presentation to follow.237

In the last two steps, from (2.1b) to (2.1c) and from (2.1c) to (2.1d), three analytic238

properties between the operators are essential (although trivial at first sight). We will239

discuss these steps in detail, making a distinction between the various appearances of240

the ∇-operator. Hereto, hopefully self-explaining, subscripts have been added to the241

operators to indicate in which conservation law they are featuring.242

Property 2.1 ((2.1b)→(2.1c)). The convection operator for momentum conser-243

vation ∇mom conv together with the divergence operator of mass conservation ∇mass244

form a convective divergence expression with operator ∇toten conv. This requires that245

(for any m) the operator246

(2.2) A : u→ ∇mom conv · (m⊗ u)− 1
2 (∇mass div ·m)u is skew symmetric.247

Explanation. First, let the L2-inner product for real-valued functions be defined248

through
((
φ, ψ

))
≡
∫

Ω
φψ dΩ. Then, if an expression φAφ can be rewritten as φAφ ≡249

∇B(φ) for some function B, then (for all real-valued φ)
((
φ,Aφ

))
=
∫

Ω
φAφdΩ =250 ∫

Ω
∇B(φ) dΩ = 0 because of Gauss’ theorem and our assumption that the outer251

boundaries of Ω do not contribute. That means that A is skew-symmetric with respect252

to this L2-inner product. Indeed, we can rewrite (for any m and φ) ∇ · (mφ)− 1
2 (∇ ·253

m)φ ≡ 1
2∇ · (mφ) + 1

2 (m · ∇)φ, which reveals the skew-symmetry as an operator254

acting on φ.255

Property 2.2 ((2.1b)→(2.1c)). The gradient operator ∇mom grad acting on the256

pressure is the negative transpose, with respect to the L2-inner product, of the diver-257

gence operator ∇inten div in the dilatation term of the internal energy equation:258

(2.3)
((
u,∇mom grad p

))
= −

((
∇inten div · u, p

))
for all u and p.259

In short hand, this property can be written as260

(2.4) ∇mom grad = −∇T
inten div (= −∇T

mass) .261

Between parentheses the incompressible limit is given, when the conservation law for262

internal energy degenerates into the continuity equation [47, 61]; see also Appendix263

A.264

Property 2.3 ((2.1c)→(2.1d)). The divergence operator ∇inten conv in the con-265

vective term of the internal energy equation is the same as the divergence operator266

∇mom conv from Property 2.1 in the momentum equation:267

∇inten conv = ∇mom conv (≡ ∇toten conv) .268

This property allows to combine both convective terms into one term describing con-269

vection of total energy.270
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The above properties reveal that there is a close relation between the operators271

from the individual conservation laws. It is our intention to transfer these analytic272

properties towards the discrete setting. This will then give guide lines for the design273

of the supra-conservative discretization schemes.274

3. Conservation of energy - discrete. The discretization will be carried out275

with finite-volume methods. Therefore, first the governing equations are reformulated276

as conservation laws (for an arbitrary control volume Ωh with boundary Γh):277 ∫
Ωh

∂ρ

∂t
dΩh +

∫
Γh

m · n dΓh = 0 ,(3.1a)278 ∫
Ωh

∂ρu

∂t
dΩh +

∫
Γh

(m · n)u dΓh = −
∫

Γh

pn dΓh ,(3.1b)279 ∫
Ωh

∂ρe

∂t
dΩh +

∫
Γh

(m · n)e dΓh = −
∫

Ωh

p∇ · u dΩh .(3.1c)280

281

Note that Ωh is a generic notation for a control volume. For a collocated grid these will282

be the same for each conserved variable, while on a staggered grid for the individual283

variables different control volumes are usually pertinent.284

The discretized versions of (3.1a)-(3.1c) in all grid volumes will be collected in285

matrix-vector notation and abbreviated as286

H
∂ρ

∂t
+ Dmass m = 0 ,(3.2a)287

H
∂ρu

∂t
+ Cm

mom u = −Gmom p ,(3.2b)288

H
∂ρe

∂t
+ Cm

inten e = −p Dinten u .(3.2c)289
290

Here H denotes a diagonal matrix operator containing the sizes of the control volumes291

Ωh. The dependent variables are now discrete (vector) grid functions, but we will292

use the same (lower case) symbols as in the continuous case. The Fraktur-font opera-293

tors denote volume-consistent [18, 71, 142] discrete approximations of the continuous294

differential operators, with subscripts to identify in which equation they are being295

used:296

– Dmass is a discrete divergence matrix operator acting on the mass flux vector m297

in (3.1a). With the grid vector Dmass m, a diagonal grid matrix diag(Dmassm)298

can be formed.299

– Cm
mom is a discrete grid operator, acting on u, for the convective term in the300

momentum equation (3.1b). Its coefficients depend on the mass flux m.301

– Gmom is a discrete gradient operator in (3.1b) acting on the pressure p.302

– Cm
inten is a discrete grid operator, acting on e and dependent on m, for the303

convective term in the conservation law for internal energy (3.1c).304

– Dinten is a discrete divergence operator acting on the velocity u in (3.1c).305

Note that with the above finite-volume scaling, the sizes H of the control volumes are306

included in the operators, i.e. the scaling in (3.2) is volume consistent [18, 71, 142].307

In fact, analytic and discrete operators are related like div ↔ H−1 Dmass. This308

may look a bit awkward, but it fits naturally in the finite-volume setting, and the309

This manuscript is for review purposes only.



8 ARTHUR E. P. VELDMAN

symmetry properties of the discrete differential operators will come out more directly.310

The alternative would have been a scaling of the above operators by H−1, which then311

would fit naturally in a finite-difference setting. Both notation choices have their pros312

and cons; in this paper we opt for the finite-volume related option.313

With the notation from (3.2), and similar to Eq. (2.1), the discrete (finite-volume)314

evolution of total energy can be formulated locally as315

H
∂ρEtotal

∂t
= 1

2
(u · u)Dmassm− u ·

(
Cm
mom u+Gmom p

)
− Cm

intene− pDintenu316

= u ·
(
1
2
diag(Dmass m)− Cm

mom

)
u− (u ·Gmom p+ pDintenu)− Cm

inten e.(3.3)317

The last line in (3.3) corresponds with line (2.1b) in the analytic derivation. From318

here, we would like to make the steps to (2.1c) and (2.1d) in this discrete version too.319

Therefore, let us find out which relations between the discrete operators have to be320

satisfied.321

The evolution of the total amount of energy can be found by summing (3.3) over322

all grid cells (effectuated by multiplying with the grid vector 1T consisting of only323

ones):324

1TH
∂ρEtotal

∂t
= −1Tu ·

(
Cm

mom − 1
2diag(Dmass m)

)
u325

− 1T (u ·Gmom p+ pDintenu)− 1TCm
inten e .(3.4)326

Because of the finite-volume scaling of (3.2), the left-hand side forms a consistent327

approximation of the total amount of energy in the domain: it reflects a midpoint328

quadrature rule. Other formulations are possible, as in the higher-order methods of329

Verstappen and Veldman [145, 146] which are related to Simpson’s quadrature rule.330

This volume-consistent [18,71,142] scaling property motivated us to ‘hide’ the size of331

the control volumes into the definition of the discrete operators.332

The first two summations in the right-hand side of (3.4) can be interpreted as333

inner products in the space of scalar and vector-valued grid functions. The symmetry334

properties that we will discuss below are with respect to these inner products. From335

here the requirements for discrete energy conservation can be derived. We will see in336

the sequel that this requires a certain amount of compatibility between the discrete337

operators.338

Requirement 3.1 (Compare Property 2.1). The first summation in the right-339

hand side of (3.4) should vanish, i.e. the matrix operator between the first pair of340

brackets should satisfy341

(3.5) Cm
mom − 1

2 diag(Dmass m) is skew-symmetric.342

This necessary and sufficient condition for global discrete convective energy conser-343

vation has thus far been mentioned only a few times, e.g. by Kok [62], Morinishi [77],344

Van ’t Hof et al. [137,138], and implicitly by Chandrashekar [22, Sect. 3]. It provides a345

relation between the diagonal of Cm
mom and discrete mass conservation Dmass m. The346

examples in Sect. 4 and 5 indicate that when starting from a finite-volume discretiza-347

tion one also has local energy conservation. It would be interesting to investigate348

which conditions govern local secondary conservation in the general case [27,28,90].349

Requirement 3.2 (Compare Property 2.2). In order for the second sum in350

the right-hand side of (3.4) to vanish, the (pressure) gradient and the dilatational351

divergence should be each other’s negative transpose:352

(3.6) Gmom = −DT
inten (= −DT

mass) .353
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This is a necessary and sufficient condition to ensure that the pressure does not354

contribute to the global total energy. In this way, the two operators Dinten and355

Gmom combine into a meaningful discrete divergence expression for ∇(pu) in the356

virtual evolution of total energy. Alternatively, if we would have started in (1.1c)357

with a conservation law for total energy, then to achieve a physically meaningful358

exchange between internal and kinetic energy a similar consistency condition between359

the pressure gradient and the latter divergence would be required.360

In (3.6), the right-hand side between parentheses corresponds with the incom-361

pressible limit, in which the equation for internal energy degenerates into the conti-362

nuity equation [47, 61]. Also, it leads to a symmetric negative-definite Laplacian in363

the often used pressure Poisson equation.364

The final requirements concern the discretization of the equation for internal en-365

ergy. First of all, for discrete energy conservation it is necessary that it is conservative.366

As an additional property, for low Mach numbers [47,61] we would like the discretiza-367

tion for compressible flow to approach a discretization for incompressible flow. This368

requires further consistency between the discrete operators; see Appendix A.369

Requirement 3.3 (Compare Property 2.3).370

A: Vanishing of the last sum in the right-hand side (3.4) requires371

(3.7) Cm
inten is telescoping (like a finite-volume operator).372

B: To combine the momentum and internal-energy equations into a unified equation373

for total energy, the respective discrete convective operators should be the same:374

(3.8) Cm
inten = Cm

mom .375

C: A smooth discrete transition from compressible flow to incompressible flow requires376

that the divergence operators in (3.1c) are consistent (in the incompressible limit) with377

the divergence operator in (3.1a):378

(3.9) Dinten = Dmass ∨ Cm
inten → ρ0Dmassu379

(ρ0 is the incompressible density).380

While being sufficient, it is noted that these conditions are not strictly necessary to381

achieve global conservation of total energy. Also note that in view of the relations382

(3.8) and (3.5), the conditions in (3.9) will usually be satisfied.383

The above requirements suggest to introduce the following definition of symme-384

try-preserving operators for (in)compressible flow:385

Definition 3.4 (symmetry-preserving). The triple of discrete finite-volume op-386

erators for the incompressible Euler equations {Cm
mom, Dmass,Gmom}, where Cm

mom387

is a discrete convection operator, Dmass a discrete divergence and Gmom a discrete388

gradient, is called symmetry-preserving when Requirements 3.1 and 3.2 hold. For389

compressible flow, a convection operator Cm
inten and a dilatation operator Dinten for390

the internal-energy equation should be added, for which Requirement 3.3 holds.391

With this definition, we can summarize our main result as:392

Theorem 3.5. A (volume-consistent) finite-volume discretization of the Euler393

equations (1.1) for (in)compressible flow is supra-conservative with respect to global394

discrete energy if it is symmetry-preserving in the sense of Definition 3.4. Hereto395

Requirements 3.1 and 3.2 are not only sufficient but also necessary.396
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10 ARTHUR E. P. VELDMAN

The above requirements guide the way to construct finite-volume triples/quartets397

which all additionally conserve discrete kinetic energy. These triples/quartets cannot398

be chosen freely. In particular, the choice for the discretization of the convective term399

Cm
mom induces all other discretizations:400

1. Through Requirement 3.1 the discretization of the conservation of mass Dmass401

is determined.402

2. Requirement 3.2 then determines the discrete pressure gradient Gmom in the403

conservation of momentum, and the dilatational divergence Dinten in the conser-404

vation of internal energy.405

3. Finally, Requirement 3.3 determines the discrete convective term Cm
inten in the406

conservation of internal energy.407

On staggered grids, where the individual unknowns are located at different positions,408

the above requirements may involve some form of interpolation; we will come back409

to this later. In the next sections we will work out the above requirements for some410

specific situations involving a finite-volume discretization.411

It is remarked that the above requirements have been derived starting from the412

symbolic discrete formulation in (3.2). The finite-volume origin led in a natural way to413

a scaling for which the summation in the left-hand side of (3.4) represents an approx-414

imate volume integral, i.e. the scaling is volume consistent. But no other properties415

of a finite-volume method have been used. As a consequence, all requirements for416

discrete energy conservation hold for any discretization that can be written in the417

volume-consistent form (3.2); its analytical ‘provenance’ is less relevant [132].418

Finally, a diffusive term can be added, i.e. the extension to the Navier–Stokes419

equations can be made, independently of the above discretizations. Of course, one420

would want the discretization of the viscous stresses to lead to a consistent, symmetric421

negative-definite operator. But no further requirements have to be imposed as far as422

we are concerned here, as in this way diffusion will not interfere with the physics of423

convection. Perot [92] gives guide lines on how to achieve this on arbitrary grids.424

4. Incompressible flow - staggered grid. As a first example, we will work425

out the above requirements when discretizing the equations (1.1) in the special case of426

incompressible flow on a staggered grid, as shown in Figure 1. The case of collocated427

grids will be discussed later on, when applied to the equations for compressible flow.428

Fig. 1. A staggered control volume
for the conservation of x-momentum (shaded
area), covering half of two adjacent control
volumes (grid cells) for mass conservation.

4.1. Conservation of mass. On a staggered grid, the velocity components are429

defined on the edges/faces of the computational cells. Also the momentum equation430

(3.1b) is discretized in those locations; see the shaded momentum control volume in431

Figure 1. The continuity equation (3.1a) is discretized in cell centers, with the grid432

cells as control volumes.433

This manuscript is for review purposes only.



SUPRA-CONSERVATIVE FINITE-VOLUME METHODS 11

In the right-hand cell in Figure 1 (around the location e), the incompressible form434

of the conservative continuity equation (3.1a) can be discretized as435

0 =

∮
Γe

m · n dΓ =

∫
ΓE

mx dΓE +

∫
ΓNE

my dΓNE − ......436

≡ m̃x
E + m̃y

NE − m̃
x
C − m̃

y
SE ≡ Dmass m|e .(4.1)437

Here, m̃ denotes a mass flux integrated over an (infinitesimal) edge dΓ of the con-438

trol volume, e.g. (but not necessarily) by a midpoint integration rule (like m̃x
E ≡439

mx
E |dΓE |). Note that (4.1) puts no further restrictions on the choice of m̃.440

4.2. Conservation of momentum. Next, the discretization of the convective441

term and the pressure gradient on a staggered grid will be shown.442

Convection. In the u-component of the momentum equation (3.1b), the discrete443

convective contribution from the shaded control volume in Figure 1 reads approxi-444

mately445 ∫
Γh

(m · n)u dΓh ≈ ue
∫

Γe

m · n dΓe + un

∫
Γn

m · n dΓn + . . .446

= m̃x
e ue + m̃y

n un − m̃x
w uw − m̃y

s us ≡ Cm
mom u|C ,(4.2)447

which defines the convection operator Cm
mom from (3.2b). To achieve symmetry in448

the coefficient matrix, it is necessary that the u-fluxes are chosen according to an449

equal-weighted ( 1
2 - 1

2 ) interpolation between the faces of the continuity cells, even if450

the faces of the momentum control volume are not located in the cell centers:451

(4.3) ue = 1
2 (uE + uC), un = 1

2 (uN + uC), etc.452

Then substitution of (4.3) into (4.2) yields453

Cm
mom u|C = 1

2 [m̃x
e (uE + uC) + m̃y

n(uN + uC)− m̃x
w(uW + uC)− m̃y

s(uS + uC)]454

= 1
2 [m̃x

euE − m̃x
wuW + m̃y

nuN − m̃y
suS ] + 1

2 [m̃x
e − m̃x

w + m̃y
n − m̃y

s ]uC .455

It is clear that the coefficients of the neighboring grid points are skew symmetric due456

to the equal-weighted interpolation in (4.3). Whether the central coefficient (of uC)457

vanishes is as yet unclear, and will be examined next.458

In the diagonal coefficient diag(Cm
mom)|C ≡ 1

2 [m̃x
e − m̃x

w + m̃y
n − m̃y

s ] we recognize459

a discrete divergence operator over a momentum control volume, but not yet imme-460

diately the one from the discrete continuity equation given in (4.1). Skew symmetry461

(3.5) requires diag(Cu
mom) − 1

2 Dmass m = 0 . This is now a requirement for the con-462

struction of Dmass, which herewith becomes related to the diagonal entries given by463

diag(Cm
mom) (though it will require some interpolations between the staggered grid464

positions). The requirement can be satisfied by interpolating the mass fluxes m̃ with465

equal weights, similar to the velocity components, i.e. we define466

(4.4) m̃x
e = 1

2 (m̃x
E + m̃x

C), m̃y
n = 1

2 (m̃y
NE + m̃y

NW ), etc.467

For this choice of the mass fluxes, the central coefficient becomes468

diag(Cm
mom)|C = 1

4 [m̃x
E − m̃x

W + m̃y
NE + m̃y

NW − m̃
y
SE − m̃

y
SW ] ,469
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12 ARTHUR E. P. VELDMAN

which equals 1
4×[mass conservation of right- + left-hand cell]. As a result470

(4.5) diag(Cm
mom)|C = 1

4 (Dmassm|e + Dmassm|w) = 0 ,471

i.e. the diagonal of the convective operator vanishes. Thus, we have achieved our goal472

Requirement 3.1 of skew symmetry. It is remarked that the choice (4.4) is not unique,473

as demonstrated in [137, Sect. 3.1].474

The above guarantees global conservation of kinetic energy. Substitution of Cm
mom475

in (3.3) shows that energy is also conserved locally, with energy fluxes given by476
1
2m̃

x
euCuE , etc.477

Pressure gradient. Finally, we have to consider the contribution of the pressure478

to the evolution of kinetic energy. The pressure is defined in cell centers, e.g. the points479

w and e in Figure 1. The contribution to the x-momentum equation (3.1b) can be480

approximated as (with ex denoting the unit vector in x-direction)481

(4.6)

∮
Γh

pn dΓ ≈
∫
e

peex dΓe −
∫
w

pwex dΓw ≡ Gmomx p ,482

which defines the x-component of the discrete pressure gradient Gmom. Its coefficients483

are equal to the size of the corresponding faces, similar to the discrete approximation484

of the continuity equation in (4.1), with coefficients equal to the local size of the face485

dΓ. Noting that the grid is rectangular, it follows that the discrete pressure gradient486

and the discrete divergence satisfy Requirement 3.2.487

The pressure can be computed by requiring that the solution of the discrete488

momentum equation (3.2b) satisfies the discrete constraint (3.2a). I.e., there must489

hold490

(4.7) 0 =
∂

∂t
Dmass m

(∗)
= Dmass

∂ρu

∂t
= −Dmass H

−1 (Cm
mom u + Gmom p) ,491

which defines the Poisson equation for the pressure. Note that the discrete Poisson492

operator is symmetric negative definite, due to Requirement 3.2. Also, note that the493

step (*) in (4.7) is one of only two places in this paper where the equality between m494

and ρu is needed.495

5. Compressible flow - collocated grid. On a structured collocated grid, as496

used commonly for compressible flow, all flow variables are defined in ‘cell centers’497

with a liberal interpretation of the meaning of ‘center’ (centroid, circumcenter, ...);498

see Figure 2 (left). E.g., positioning the faces halfway the locations where the flow499

variables are defined (known as a Voronoi grid) is a valid option, as in Figure 2 (right)500

of an unstructured grid. No choice between the ‘center-options’ will be made in this501

paper; we merely focus on the symmetry properties of the discrete operators.502

5.1. Conservation of mass. With reference to Figure 2, it is natural to choose503

the finite-volume form of the divergence term in the equation for mass conservation504

(3.2a) as505

(5.1) Dmass m|C ≡ m̃x
e + m̃y

n − m̃x
w − m̃y

s =
∑

f∈FC

m̃f · nf .506

The right-hand side is formulated in a general notation for arbitrarily-shaped con-507

trol volumes. The summation is over the faces f of the volume around C, together508

constituting the set FC , and nf is an outward-pointing normal.509
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Fig. 2. Control volumes for collocated grids: (left) structured with u-locations halfway faces (=
cell-centered); and (right) unstructured with faces halfway u-locations (= face- or vertex-centered).

5.2. Conservation of momentum.510

Convection. With similar notation, the discrete convective contribution to the511

momentum equation reads512

(5.2) Cm
mom u|C ≡ m̃x

eue + m̃y
nun − m̃x

wuw − m̃y
sus =

∑
f∈FC

(m̃f · nf )uf .513

To compute the fluxes at the cell edges, again an equal-weighted ( 1
2 - 1

2 ) interpolation514

for the velocity component u should be applied:515

(5.3) uf = 1
2 (uC + unb(f)) ,516

where nb(f) denotes the neighboring grid cell sharing the face f . As a direct conse-517

quence, the coefficients in the convective contribution are skew-symmetric outside the518

diagonal. The 1
2 - 1

2 interpolation is essential here, even when the faces are not half-way519

between the cell centers. Jameson, in the early 1980s [59], interprets the values in the520

cell ‘centers’ as averages over the cells, after which a 1
2 - 1

2 averaging at the separating521

face is natural. The ‘reward’ is discrete energy conservation [58], whereas the location522

of the cell center turns out to be not very critical. Jameson’s approach has become523

one of the most widely used CFD methods in the aircraft industry [1].524

The interesting part is the coefficient on the diagonal of Cm
mom. With the above525

interpolation (5.3), the central coefficient in the convection operator (5.2) becomes526

diag(Cm
mom) = 1

2

∑
f∈FC

(m̃f · nf )
(5.1)
= 1

2Dmassm .527

Hence the vector diag(Cm
mom) − 1

2Dmassm vanishes. In fact, the latter requirement528

determines the choice of Dmass. The ‘freedom’ we felt while choosing the discrete529

divergence operator for mass conservation as in (5.1) is just an illusion: if one in-530

sists on energy conservation, given (5.2) and (5.3), there is no other choice possible!531

Anyhow, the above discretization, (5.1)+(5.2) with interpolation (5.3), satisfies the532

main Requirement 3.1 for global energy conservation: Cm
mom− 1

2diag(Dmass m) is skew533

symmetric, for all choices of the mass fluxes m̃. Also, we have local conservation with534

a kinetic energy flux given by 1
2 (m̃f · nf )(uC · unb(f)).535

Some freedom is left in the choice for the mass fluxes [110]). E.g., there is room536

to use geometry information to interpolate from the values of m in the cell centers537

to the values of m̃ at the faces. It would be interesting to explore this interpolation538

freedom on (highly) irregular grids.539
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Pressure gradient. A natural choice for the finite-volume form of the pressure540

gradient is541

Gmom p|C ≡ (p̃e − p̃w)ex + (p̃n − p̃s)ey =
∑

f∈FC

p̃fnf .542

Once more using equal-weighted interpolation, as in (4.3), we define the pressure543

‘fluxes’ as544

p̃f = 1
2 (pC + pnb(f)) |dΓf | .545

The gradient operator can now be rewritten as546

(5.4) Gmom p|C =
∑

f∈FC

1
2 |dΓf |nf pnb(f) ,547

where the (central) coefficient of pC vanishes because
∑

f∈FC
|dΓf |nf = 0.548

Remark. For collocated grids, in the incompressible limit the stencil of the pres-549

sure Poisson equation (4.7) is prone to odd-even decoupling due to Requirement 3.2,550

which is needed to maintain perfect discrete energy conservation. To resolve this is-551

sue, provided all details are filled in correctly, the corresponding checkerboard mode552

can be filtered out, as done, e.g., by Ham et al. [48] and Shashank et al. [117].553

5.3. Conservation of internal energy. Similar to the definition of Dmass in554

(5.1), the discrete divergence operator Dinten in the dilatation term of the energy555

equation is defined as556

Dinten u|C ≡ ũxe + ũyn − ũxw − ũys =
∑

f∈FC

ũf · nf .557

Again, equal-weighted ( 1
2 - 1

2 ) interpolation is used to define the face fluxes:558

ũf = 1
2 (uC + unb(f)) |dΓf | .559

The divergence operator can now be rewritten as560

(5.5) Dinten u|C =
∑

f∈FC

1
2 |dΓf |nf · unb(f) ,561

where the (central) coefficient of uC has vanished as in (5.4).562

Looking at the evaluation of (5.5) in the neighboring cell, the coefficient of uC563

in the neighboring divergence operator is 1
2 |dΓf |nnb(f), with nnb(f) pointing from564

the neighboring cell towards C. This generates a minus sign when compared to the565

coefficient of pnb(f) in the gradient operator (5.4) in C. Thus, Dmass = Dinten and566

Gmom are each other’s negative transpose, as imposed by Requirement 3.2.567

The convective term in the equation for internal energy reads568

(5.6) Cm
inten e|C ≡ m̃x

eee + m̃y
nen − m̃x

wew − m̃y
ses =

∑
f∈FC

(m̃f · nf )ef .569

Substitution of (5.4), (5.5) and (5.6) in (3.3) shows that, next to global energy con-570

servation, we also have local energy conservation, with a thermodynamic flux given571

by [ 1
2 (pnb(f)uC + pCunb(f)) + m̃fef ] · nf .572
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In Appendix A, see also [47,61], it is shown that in the limit of compressible flow573

the internal energy e becomes a constant, say e0. Also the density ρ approaches a574

constant ρ0. Then the convective term from (5.6) becomes575

Cm
inten e|C ≈ ρ0e0

∑
f∈FC

(ũf · nf ) ,576

where we used, for the second (and last) time in this paper, that m = ρu. The above577

relation shows that in the incompressible limit the divergence operator in the con-578

vective term approaches the divergence Dmass = Dinten from the continuity equation.579

Appendix A shows that this allows for a smooth transition from the compressible to580

the incompressible discretization.581

6. Discussion. In the previous sections we have unraveled a strategy to de-582

rive supra-conservative finite-volume (semi-)discretizations for compressible Euler flow583

that possess additional discrete conservation properties as secondary invariants (like584

kinetic energy), assuming exact time integration. This paper focusses on the dis-585

crete conservation of energy, but, as mentioned in the Introduction, other secondary586

invariants could have been selected. More research is worthwhile to find out which in-587

variants are best chosen for a given physical application; see e.g. [17]. Also, the subtle588

difference between global and local conservation deserves more attention [27,28,90].589

Mimicking the analytic derivation, the key ingredient of energy-preserving dis-590

cretizations is a close consistency between the discrete momentum equation and the591

discrete mass equation (Requirement 3.1). In particular, the diagonal of the discrete592

convection operator directly determines the discrete divergence in the mass equation593

and in the dilatation term of the internal energy equation (Requirement 3.3). Also,594

it determines the discrete pressure gradient (Requirement 3.2).595

It is once more stressed, as Bryan [13] already did in 1966, that equal-weighted596

interpolations (for the velocity u and the mass flux m) from cell centers to cell faces597

are essential to achieve the required compatibility, irrespective of any stretching of598

the grid! Note that the volume-consistent scaling does contain info about the cell599

sizes and hence the stretching, and also the mass fluxes provide some freedom to600

incorporate geometry information.601

In our examples, the cell faces are located halfway the positions where m is602

defined for which an equal-weighted interpolation is natural. But also in other ge-603

ometrical configurations the same interpolation has to be used, even when a linear604

unequal-weighted interpolation would seem more logical from an approximation point605

of view. We already noted that Jameson’s [59] interpretation of this interpolation also606

points towards an equal weighting. The resulting skew-symmetry of the convective607

discretization turns out more important than local interpolation accuracy and the pre-608

cise location of cell ‘centers’. And, as Ham et al. [49] point out explicitly, on smooth609

grids (with a bounded ratio between the largest and the smallest grid cells) the re-610

spective truncation errors are all second order as usual. See Manteuffel and White [73]611

for a theoretical justification, and Felten and Lund [38] for practical experiences.612

One ‘reward’ for this consistency in the discretization is the numerical stability of613

the semi-discretized equations without needing any numerical dissipation. This can614

be proven under the restriction that the density has a positive lower bound, as in the615

incompressible case. No rigorous proof has been found yet for the general compressible616

case, but in practice this appears to be mainly a theoretical issue. Another ‘reward’617

is that subtleties in (eddy-viscosity) turbulence models are not masked by excessive618

numerical dissipation. Neither will emerging instabilities, like the transition from619
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laminar to turbulent flow, be suppressed by an overdose of numerical artifacts [107].620

In this non-interfering way, an energy-preserving discretization forms an excellent621

basis to combine with low-dissipation turbulence models [106,110].622

Usually, this is the place to demonstrate the performance of such methods by623

showing results for a number of test cases. However, we think it is more convincing624

to point the reader to the original papers that are successfully using these methods.625

Many of these energy-preserving methods have been mentioned in the Introduction.626

Here, in Table 1, we restrict ourselves to a short overview of supra-conservative finite-627

volume methods for the Euler and/or Navier–Stokes equations. The table has been628

sorted according to the grid used (structured or unstructured) and the positioning of629

the unknowns (staggered or collocated). Also, higher-order (> 2) variants have been630

indicated, including the dispersion-relation preserving method by Kok [62].631

Table 1
A sorted selection of supra-conservative finite-volume methods for the Euler/Navier–Stokes

equations. The references marked [·]∗ use higher-order methods.

flow grid staggered collocated

incompressible structured
[137],
[138,144–146,150]∗

[38]

unstructured [60,64,90,153] [60,66,104,115,133]

compressible structured [77]
[28,33,58,124],
[62, 107,108]∗

7. Conclusion. The paper describes general, necessary and sufficient, require-632

ments for a (semi-)discretization method to conserve secondary invariants, in particu-633

lar kinetic energy. The essential ingredient is a close consistency between the discrete634

convection term in the momentum equation, the discrete pressure gradient and the635

discrete divergences in the conservation laws for mass and for internal energy. When636

the discrete convection is chosen, the discretization of all other terms is fixed (with637

freedom left for the mass flux only).638

As a general message, it is demonstrated how finite-volume methods can be de-639

signed such that, next to the primary invariants, they also conserve one or more640

secondary invariants, i.e., they can be called supra-conservative. The bottom-line is641

that the steps in the analytical derivations should be mirrored in the discrete setting.642

It is expected that this philosophy will be useful independent of the selected secondary643

invariants, and will lead to requirements, like the above, on the discretization scheme.644

The specific requirements to realize discrete energy conservation hold for any645

discretization which can be put in the form (3.2) studied here. It is left to the readers646

to figure out whether or not their favorite discretization approach can be made to647

satisfy these requirements.648

Appendix A. The incompressible limit.649

One may also wish for a smooth transition of a discretization scheme between650

compressible and incompressible flow. We will pursue this limit following the scaling651

by Klein [61] and Guillard and Viozat [47]. These authors consider the following652

expansions for the flow variables in the incompressible limit c∗ → ∞ (ρ∗, u∗ and c∗653

This manuscript is for review purposes only.



SUPRA-CONSERVATIVE FINITE-VOLUME METHODS 17

are characteristic values for density, velocity and speed of sound, respectively):654

u/u∗ = u0 +O(1/c∗) , ρ/ρ∗ = ρ0 +O(1/c∗) ,655

p/ρ∗c∗2 = p0 +O(1/c∗) , e/c∗2 = e0 +O(1/c∗) .656

Substitution of these expansions in the equation for internal energy (1.1c) yields for657

the leading term of order c∗2:658

(A.1)
∂ρ0e0

∂t
+∇ · (ρ0e0u0) = −p0∇ · u0 .659

It can be shown that ρ0, p0 and e0 are constant in space and time. Then this equation660

degenerates into661

(ρ0e0 + p0)∇ · u0 = 0 .662

We recognize the continuity equation for incompressible flow. But we also see that663

this equation stems from both the convective term as well as the dilatation term in664

the equation for internal energy.665

Therefore, if one would like the discrete version of the equations for compressible666

flow to smoothly approach the discrete equations for incompressible flow, then both667

discrete divergence operators in (A.1) must be the same, and equal to the divergence668

that describes conservation of mass. This is expressed in Requirement 3.3C.669
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