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1 Introduction

Non-relativistic (NR) string theory in flat space-time has been proposed a long time ago [1,
2]. The generalization from a flat to special curved backgrounds was considered a few
years later [3]. Closed bosonic NR string theory in general curved backgrounds, on the
other hand, has been constructed only recently. This has been done either by taking
a NR limit [4, 5] or by null reduction [6–8] of the worldsheet action for a relativistic
string in a generic background.1 This work showed that the natural target space geometry
of the NR string theory of [1, 2] in arbitrary backgrounds, is given by a NR Newton-
Cartan-like geometry with co-dimension two foliation that is referred to as String Newton-
Cartan (SNC) geometry [13].2 The NR string then couples to the background fields of
SNC geometry, as well as to a Kalb-Ramond (KR) and dilaton field. All these background
fields must satisfy equations of motion that ensure (one loop) quantum Weyl invariance

1For other recent work on NR strings in a curved background, see [9–12].
2For earlier work on SNC geometry, see [3, 14, 15].
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of the NR string worldsheet action [16, 17].3 The case of a NR open string in a curved
background has been discussed recently in [19, 20].

SNC geometry is a particular case of what can be called ‘p-brane Newton-Cartan
geometry’. The latter term refers to D-dimensional Newton-Cartan-like geometries that
can be written as a co-dimension p+ 1 foliation. These geometries are then equipped with
two degenerate metrics, one of rank D−p−1 on the leaves of the foliation and one of rank
p+1 on the foliation’s co-dimension p+1 part. The directions spanned by the co-dimension
p+ 1 part can be viewed as lying along a NR p-brane worldvolume, while the leaves of the
foliation represent directions that are transversal to this worldvolume.

Such p-brane geometries can be obtained as a ‘p-brane NR limit’ of the Lorentzian
geometry that underlies General Relativity. This limit can be conveniently discussed in
the Vielbein formulation of Lorentzian geometry. To do this, one considers the relativistic
Vielbein Eµ

Â and splits the D-dimensional flat SO(1, D − 1) index Â into a flat ‘world-
volume’ index A = 0, · · · , p and a flat ‘transversal’ index A′ = p + 1, · · · , D. One then
redefines EµÂ as follows:

Eµ
A = cτµ

A + 1
c
mµ

A , Eµ
A′ = eµ

A′ , (1.1)

where c is a contraction parameter. As it stands, this redefinition is not invertible. To make
it invertible one typically introduces (and redefines) a p+1-form gauge field by hand. In the
case of string theory, i.e. p = 1, the role of this 2-form gauge field is played by the KR 2-form
field. The NR limit of a quantity, constructed out of EµÂ, is then obtained by plugging
in this redefinition in the object of interest, expanding the result in powers of c−2 and
formally taking the limit c→∞, by retaining only the leading order in this expansion.4 By
doing this for the Lorentzian metric, one obtains the degenerate metric, with ‘longitudinal
Vielbein’ τµA, on the co-dimension p+ 1 part of a p-brane Newton-Cartan geometry, while
the inverse Lorentzian metric leads to the degenerate metric, with ‘transversal Vielbein’
eµ
A′ on the foliation leaves. The SO(1, D−1) local Lorentz transformations get contracted

in the limit to ‘homogeneous p-brane Galilei symmetries’, consisting of worldvolume Lorentz
transformations, transversal rotations and Galilean-type boosts between transversal and
worldvolume directions. These homogeneous p-brane Galilei symmetries are part of a larger
symmetry group that includes translations. The field mµ

A can then be identified as a gauge
field for a non-central (central in case p = 0) extension of this larger symmetry group.

The NR limit can also be taken for the relativistic spin connection Ωµ
ÂB̂, to obtain

NR spin connections for the above mentioned homogeneous p-brane Galilei symmetries.
Plugging the redefinitions (1.1) in the spin connection components Ωµ

ÂB̂ in the second-
order formulation5 and expanding the result in powers of c−2, one finds that the leading
order terms of this expansion do not transform as NR spin connections for the homogeneous

3See also [18].
4Strictly speaking, when taking the limit that c goes to infinity, we mean that one first redefines c→ λc

and then takes the limit where the dimensionless contraction parameter λ goes to infinity.
5Here, we consider the second-order formulation of General Relativity, in anticipation of the extension

of the results of this paper to NS-NS supergravity, for which no first-order formulation is available in the
literature. The expression for the relativistic dependent spin-connection ΩµÂB̂ can be found in appendix A.2.
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p-brane Galilei symmetries. Instead, it is the subleading order terms of this expansion that
give rise to proper NR spin connections. For this reason, the leading order terms are
considered to be divergent. In order to obtain correct NR spin connections in the NR
limit, one then requires that these divergent terms vanish. This can be done by imposing
the following ‘zero torsion constraint’ on the longitudinal Vielbein τµA:

D[µ(ω)τν]
A = 0 , (1.2)

where the derivative Dµ(ω) is covariantized with respect to longitudinal Lorentz transfor-
mations, using a spin connection ωµAB. Part of this constraint (1.2) is identically satisfied
once the dependent expression for ωµAB in terms of the τµA and their projective inverses
τA

µ,6 is plugged in. However, not all of (1.2) is identically satisfied in this way and (1.2)
thus leads to a genuine constraint on τµ

A and the geometry. In case p = 0 for instance,
this geometric constraint entails that the time-like Vielbein of Newton-Cartan geometry is
closed, implying that the space-time admits an absolute time direction. For the string case
(p = 1), the constraints (5.1) define the torsionless SNC geometry that was considered as
target space-time for the NR string in [4, 5]. Imposing the zero torsion constraint, it was
shown in [21] that the 0-brane limit of the equations of motion of General Relativity leads
to the equations of motion of Newton-Cartan gravity. Similarly, it was shown that the
target space equations of motion for the NR string theory of [4, 5] arise from the 1-brane
limit of the equations of motion of NS-NS gravity, upon imposition of (1.2). Note that
in both cases, the constraint (1.2) was imposed by hand and can not be considered as an
equation of motion that follows from a NR action. For that reason, the limit was in both
cases taken at the level of the equations of motion and not at the level of the action.

When taking the NR limit of supersymmetric theories, imposing the constraint (1.2)
(or similar geometric constraints) by hand can be problematic. Indeed, when imposing
constraints by hand, one also needs to impose their supersymmetry variations as constraints
in order to maintain supersymmetry. This typically leads to a tower of constraints on top
of the equations of motion of the NR theory. There is then a danger that the NR limit does
not lead to the most general possible theory or even leads to an overconstrained theory.
When taking the NR limit of supergravity theories, it would thus be better, if one were
able to take the NR limit of the action or equations of motion, without imposing the zero
torsion constraint as an a priori constraint. Some of the NR equations of motion might
then take the form of differential or algebraic constraints for the components of D[µ(ω)τν]

A.
These, however, do not give rise to a tower of extra constraints on top of the NR equations
of motion, since they correspond to NR equations of motion themselves. If the NR limit is
taken consistently, their supersymmetry variations should thus also give rise to equations
of motion.

In this paper, we will focus exclusively on the p = 1 case of SNC geometry. Motivated
by supersymmetry, we then address the question whether it is possible to take the NR
limit of relativistic gravity, without imposing the zero torsion constraint (1.2) by hand. In
a similar spirit as in the work of [22], we will show that this is possible for the matter-
coupled relativistic gravity theory that corresponds to NS-NS gravity. We will see that in

6For an explicit expression of ωµAB in terms of τµA and its inverse, see appendix B.
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order to achieve this, we not only have to adopt the redefinitions (1.1), but we similarly
have to expand the NS-NS two-form field Bµν as

Bµν = −c2τµ
Aτν

BεAB + bµν , (1.3)

where bµν corresponds to the two-form field of the NR theory that results from taking the
c → ∞ limit. The redefinitions (1.1) and (1.3) are then the same as the ones used to
obtain the NR string worldsheet action as the NR limit of the relativistic string action.
In that case, a fine-tuning between the Vielbein and the NS-NS two-form field leads to a
cancellation of divergences when taking the NR limit of the relativistic string action, so
that a non-trivial NR action is obtained. We will show here that a similar mechanism
takes place when taking the NR limit of NS-NS gravity, so that a non-trivial NR theory is
obtained without imposing any geometric constraints by hand. Since no constraints need
to be imposed in the process, the NR limit can be taken both for the equations of motion
and the action of NS-NS gravity. We then find that both the action and equations of
motion of the resulting NR theory exhibit an emerging local scale invariance, under which
the longitudinal Vielbein τµA scales non-trivially.

The appearance of this emerging local scale symmetry has two consequences. First, it
implies that the NR action leads to one equation of motion less than its relativistic coun-
terpart. It turns out that the missing equation of motion is important, as it corresponds to
the analog of the Poisson equation of NR gravity. We will see that this equation of motion
is recovered by considering the NR limit of the equations of motion of NS-NS gravity, so
that taking the NR limit of the action is not equivalent to taking the NR limit of the equa-
tions of motion. Secondly, since the zero torsion constraint (1.2) is not invariant under
local scale symmetries, it can not arise as one of the NR equations of motion. We will
indeed see that some of the NR equations of motion that we find amount to algebraic and
differential equations for τµA allowing as a solution the following set of constraints that is
weaker than the SNC geometric constraints given in (1.2):7

eA′
µτ{A|

ν∂[µτν]|B} = 0 , and eA′
µeB′

ν∂[µτν]
A = 0 . (1.4)

Here, τAµ, eA′µ are (projective) inverses of τµA, eµA
′ and {AB} indicates the symmetric

traceless part of AB. This set of constraints is invariant under the local scale symmetry of
the NR theory. Compared to the SNC constraints (1.2), we have that

bA′ ≡ eA′µτAν∂[µτν]
A , (1.5)

which acts like the (transverse components of the) gauge field of the local scale symmetry,
is non-zero.8

7The second constraint is sufficient to define a globally well-defined co-dimension two foliation, called
integrable distribution [23].

8We call the geometry defined by (1.2) a String Newton-Cartan (SNC) geometry and (1.4) a Dilatation
invariant String Newton-Cartan (DSNC) geometry. The geometry without constraints will be referred to
as a Torsional String Newton-Cartan (TSNC) geometry. Note that the geometry defined by the second
constraint only in (1.4) is a string version of the Twistless Torsional Newton-Cartan (TTNC) geometry,
found in Lifshitz holography [24].
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This paper is organized as follows. In section 2 we review the NR string worldsheet
action and how it can be obtained from the NR limit to motivate the way we define the NR
limit of NS-NS gravity. In the next section 3, we discuss how the NR limit can be taken for
the NS-NS gravity action and give the equations of motion that stem from the resulting NR
action. In section 4, we discuss the NR limit of the equations of motion of NS-NS gravity
and show how this gives rise to an extra Poisson equation that can not be derived from the
NR action. In section 5, we compare our results to the target space equations of motion
that were obtained by calculating the beta functions of NR string theory in SNC geometry,
with the zero torsion constraint imposed [16, 17]. Finally, we present our conclusions and
discuss several applications and generalizations of our results. There are three appendices.
In appendix A, we give our notation and conventions. Appendix B discusses details of
the NR geometry that appears in our NR action and equations of motion. Appendix C
contains details on how the NR limit of the action and equations of motion of NS-NS
gravity is taken.

2 The NR Bosonic string action

The worldsheet action for the NR bosonic string in a generic background was derived
in [4, 5], by taking a NR limit of the relativistic Polyakov string action, coupled to an
arbitrary target space background. This leads to the following NR string action in the
Polyakov form:

SP = −T2

∫
d2σ

[√
−hhαβ∂αxµ∂βxνHµν + εαβ

(
λeατµ + λ̄ēατ̄µ

)
∂βx

µ
]

− T

2

∫
d2σ εαβ∂αx

µ∂βx
νbµν + 1

4π

∫
d2σ
√
−hR(2)(h)

(
φ− 1

4 lnG
)
. (2.1)

Here T is the string tension, σα (α = 0, 1) are the worldsheet coordinates and xµ(σ),
µ = 0, 1, · · · , 9, are the string embedding coordinates. We have denoted the worldsheet
metric, its determinant and its Ricci scalar by hαβ , h and R(2)(h) respectively. We have
furthermore introduced a Zweibein eα

a (a = 0, 1) for hαβ via hαβ = eα
aeβ

bηab (with
ηab = diag(−1, 1)) and denoted its components in a light-cone basis as

eα = eα
0 + eα

1 , ēα = eα
0 − eα1 . (2.2)

The second term in (2.1) includes two extra worldsheet fields λ(σ), λ̄(σ) that appear as
Lagrange multipliers. We refer to [5] for details on how these fields appear in the NR limit.

The NR string couples in the action (2.1) to background fields that we take to be
ten-dimensional ones.9 They are given by

{τµA , eµA
′
,mµ

A , bµν , φ} , A = 0, 1 ; A′ = 2, · · · , 9 , (2.3)

9Strictly speaking, the background fields for the critical NR bosonic string are 26-dimensional. Here how-
ever, we consider ten-dimensional backgrounds, since we have the superstring in mind. We thus view (2.1)
as the bosonic part of a NR superstring action.
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representing the longitudinal Vielbein τµA, the transverse Vielbein eµA
′ and the non-central

charge gauge field mµ
A of SNC geometry, as well as the KR field bµν and the dilaton φ.

The first term in the action (2.1) is the kinetic term and contains the so-called ‘transverse
metric’ Hµν that is given in terms of the SNC background fields by10

Hµν = eµ
A′eν

B′δA′B′ +
(
τµ
Amν

B + τν
Amµ

B
)
ηAB . (2.4)

The fields τµ, τ̄µ in the second term correspond to τµA in a light-cone basis:

τµ = τµ
0 + τµ

1 , τ̄µ = τµ
0 − τµ1 . (2.5)

The third term in the action (2.1) describes the Wess-Zumino coupling of the background
KR field bµν to the string. Furthermore, the object G in the last term of (2.1) was defined
in [5] as the limit of the metric determinant

G = e2 ≡ − lim
c→∞

(c−4 detGµν) , where e = det
(
τA, eA

′) ≡ εµ1···µ10 τµ1
0τµ2

1eµ2
2 · · · eµ10

9 .

(2.6)

One can also derive a NR string action in Nambu-Goto form, by integrating out the La-
grange multipliers λ, λ̄ [4]. The equations of motion of λ, λ̄ correspond to the constraints

εαβeατµ∂βx
µ = 0 , εαβ ēατ̄µ∂βx

µ = 0 . (2.7)

These constraints are solved by
hαβ = α(x)ταβ , (2.8)

where α(x) is an arbitrary proportionality factor and

ταβ ≡ τµAτνBηAB∂αxµ∂βxν . (2.9)

Plugging the solution (2.8) in the NR Polyakov action (2.1), leads to the NR Nambu-Goto
action, given by

SNG = −T2

∫
d2σ

[√
−det(τγδ)ταβ∂αxµ∂βxνHµν + εαβ∂αx

µ∂βx
νbµν

]
+ Sdilaton , (2.10)

where Sdilaton is the last term of (2.1) (with hαβ replaced by the solution (2.8)) and ταβ

is the inverse of ταβ . Ignoring Sdilaton, this action can be obtained from a NR limit of the
relativistic string action in Nambu-Goto form [8]:

Srel−NG = −T
∫

d2σ

√
−det

(
EµÂEνÂ∂αx

µ∂βxν
)
− T

2

∫
d2σ εαβ∂αx

µ∂βx
νBµν , (2.11)

where EµÂ is the relativistic ten-dimensional Vielbein and Bµν the relativistic KR field.
Splitting the index Â in A = 0, 1 and A′ = 2, · · · , 9, the first two terms of (2.10) are then

10Note that this metric is strictly speaking only transverse in the absence of the second term.
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obtained by plugging the following redefinitions (see [1, 2, 5, 8, 25] for early and recent
references)

Eµ
A = cτµ

A + 1
c
mµ

A , Eµ
A′ = eµ

A′ , Bµν = −c2τµ
Aτν

BεAB + bµν ,

(2.12)

in (2.11) and taking the limit c → ∞. The first two terms of (2.10) constitute the terms
at O(c0) in an expansion of (2.11) in powers of c−2 (after the redefinitions (2.12) have
been performed). When expanding, both terms in (2.11) lead to a contribution at O(c2)
that diverges in the c→∞ limit. The divergent contribution that comes from the second,
Wess-Zumino term, of (2.11) however exactly cancels the contribution coming from the
first, kinetic term, so that the c→∞ limit is well-defined.

The actions (2.1), (2.10) are invariant under an abelian two-form symmetry, with
parameters θµ, of the KR field

δbµν = 2∂[µθν] , (2.13)

as well as under local transformations of the background fields that we will refer to as
‘String Galilei symmetries’ in this paper.11 These consist of longitudinal SO(1, 1) Lorentz
transformations with parameter λM , transversal SO(8) rotations with parameters λA′B′

and Galilean boosts with parameters λAA′ and their non-trivial transformation rules are
given by

δτµ
A = λM ε

A
Bτµ

B , δeµ
A′ = λA

′
B′eµ

B′ − λAA
′
τµ
A ,

δmµ
A = λM ε

A
Bmµ

B + λAA′eµ
A′ . (2.14)

Note that Hµν is invariant under these symmetries, so that the String Galilei invariance of
the actions (2.1), (2.10) is manifestly realized.

The actions (2.1), (2.10) are furthermore also invariant under the following Stueckel-
berg symmetry with parameters cµA, given by

δbµν = ( cµAτBν − cνAτµB ) εAB , δmµ
A = −cµA . (2.15)

This symmetry is a direct consequence of the fact that we have introduced more non-
relativistic than relativistic fields in (2.12). This over-parametrization leads to the emer-
gence of the shift symmetry. Note that invariance under (2.15) is not manifest: it is only
due to a non-trivial cancellation of the symmetry variation of the kinetic term with that of
the Wess-Zumino term. The Stueckelberg symmetry (2.15) is a reducible symmetry in the
sense that the transformation rule of bµν and the transformation rule of Hµν , as induced
by δmµ

A = −cµA, are formally invariant under a gauge symmetry, with singlet parameter
c, given by

δcµ
A = εABτµB c . (2.16)

The Stueckelberg symmetry is thus parametrized by only 19 independent parameters.
11Invariance of (2.1) under String Galilei symmetries requires that one also assigns a non-trivial SO(1, 1)-

transformation rule to the Lagrange multipliers λ, λ̄. Similar remarks hold for the Stueckelberg invariance.
We refer to [5] for the details.
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One can rewrite the action (2.10) in a manifestly Stueckelberg invariant way, by moving
the mµ

A terms, that are part of the definition of Hµν , from the kinetic term of (2.10) to
the Wess-Zumino term, where they form a Stueckelberg-invariant combination,

bµν + (mµ
AτBν −mν

Aτµ
B ) εAB . (2.17)

Equivalently, one can also fix the Stueckelberg symmetry by imposing the gauge-fixing
condition

mµ
A = 0 , (2.18)

after which the string action (2.10) reads as follows:

SNGf = −T2

∫
d2σ

[√
−det(τγδ)ταβeαA

′
eβ
B′δA′B′ + εαβ∂αx

µ∂βx
νbµν

]
+ Sdilaton . (2.19)

Note that in contrast to the actions (2.1) and (2.10), the Stueckelberg gauge-fixed ac-
tion (2.19) exhibits the Galilean boost symmetry in a non-manifest way that involves the
KR field in a non-trivial manner. Indeed, the price one pays for fixing the Stueckelberg
symmetry is that the KR field transforms under compensating Galilean boosts. In the
action (2.19), bµν thus transforms under Galilean boosts as follows:

δbµν = −2 εABλAA′τ[µ
B eν]

A′ . (2.20)

Checking boost invariance of (2.19) then requires cancelling a contribution from the boost
variation of eµA

′ (given in (2.14)) in the first term of (2.19) against a contribution from
the variation (2.20) of bµν in the second term.

It is worth pointing out that ordinarily, the longitudinal components of mµ
A capture

the information of NR gravity that is contained in the Newton potential [13]. The effect of
fixing the Stueckelberg symmetry, as in (2.18), is that the Newton potential is contained
in the longitudinal component12 bAB of the KR field. This can be seen from the fact
that the gauge-fixing (2.18) is equivalent to replacing bµν by the Stueckelberg invariant
combination (2.17) that contains the field mµ

A. In the following sections of this paper, we
will work with this Stueckelberg gauge-fixed formulation. We will therefore also refer to
bAB as ‘the Newton potential’.

A final non-trivial property of the string action (2.1) is that it has an emerging local
dilatation symmetry, with parameter λD, given by13

δτµ
A = λDτµ

A , δφ = λD . (2.21)

This symmetry was not present in the relativistic case. It arises due to the fact that the
background fields couple to a string and not, for instance, to a membrane. It will play an
important role in the remainder of this paper.

12We refer to appendix A.3 for details on how curved indices are turned into flat ones in the different
sections of this paper.

13In order to show invariance one also needs the transformation rule for the Stueckelberg field δmµ
A =

−λDmµ
A, and the Lagrange multipliers δλ = −λDλ, δλ̄ = −λDλ̄. All the other fields in (2.1) have zero

charge under local dilatations.
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Let us finish this section by comparing the above discussion of SNC geometry as a
NR limit with the one, given in previous work [5]. In [5], the elements of SNC geometry
were derived from a NR limit of General Relativity that closely reproduces a formulation
of SNC geometry that is obtained from gaugings of underlying ‘String Bargmann or String
Newton-Cartan’ space-time symmetry algebras [13]. These symmetry algebras contain a
non-central extension ZA, whose corresponding gauge field is given by mµ

A. This ZA
symmetry was then argued to be a symmetry of the NR string action, in case the target
space SNC geometry obeys the zero torsion constraint (1.2) [5]. In this paper, we view
SNC geometry as the target space geometry that arises when taking the NR limit of the
bosonic string actions, as explained in this section. When keeping the mµ

A field, the
NR limit of the string action leads to the Stueckelberg symmetries (2.15) that can not
be interpreted as symmetries of the String Bargmann or String Newton-Cartan algebras.
When fixing mµ

A = 0, the bµν field, that can not be viewed as a gauge field of String
Bargmann or String Newton-Cartan symmetries, transforms non-trivially under Galilean
boosts and becomes part of the fields of SNC geometry. Since in either case, the resulting
geometry can not be interpreted as a gauging of the String Bargmann or String Newton-
Cartan algebra, there is no longer a reason to require the presence of the ZA symmetry.
This ZA symmetry can be regained by imposing the zero torsion constraint (1.2), in which
case it can be viewed as a special case of the Stuckelberg symmetries [8]. In this paper,
we do not wish to impose the zero torsion constraint and we will thus not necessarily have
the ZA symmetry.

3 The NR limit of the NS-NS gravity action

In the previous section, we reviewed how the NR limit, defined in eqs. (2.12), can be used
to obtain the NR string worldsheet action (2.10). Here, we will show that this limit can
also be applied in a well-defined way to the NS-NS gravity action to yield an action for all
target space background fields of NR string theory. We will first discuss this NR limit in
more detail and, in particular, show that it reproduces the correct transformation rules of
the NR background fields under, e.g., String Galilei symmetries. After having recalled the
relativistic NS-NS gravity action, we will then take its NR limit and discuss the resulting
action.

3.1 Preliminaries

The field content of ten-dimensional relativistic NS-NS gravity is given by the dilaton Φ,
the KR two-form field Bµν and the metric Gµν that we will describe in terms of the Vielbein
Eµ

Â. To define the NR limit, we first redefine these fields, using a parameter c, as follows:

Eµ
A = c τµ

A , Eµ
A′ = eµ

A′ , Bµν = −c2 εAB τµ
Aτν

B + bµν , Φ = φ+ ln c .
(3.1)

This corresponds to the redefinitions (2.12), where we have however adopted the con-
dition (2.18) that fixes the Stueckelberg symmetries (2.15) of the NR string worldsheet
action. As shown by the use of these redefinitions in deriving the NR string worldsheet
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action (2.10), the fields τµA, eµA
′ , bµν and φ correspond to the background fields of NR

string theory, once the limit c→∞ has been taken.
Let us first discuss how eqs. (3.1) can be used to derive the transformation rules of

τµ
A, eµA

′ , bµν and φ under String Galilei symmetries from the transformations of EµÂ,
Bµν and Φ under SO(1, 9) Lorentz transformations. To do this, we use the fact that the
redefinitions (3.1) are invertible with inverse given by

τµ
A = c−1Eµ

A , eµ
A′ = Eµ

A′ , bµν = Bµν + εAB Eµ
AEν

B , φ = Φ − ln c .
(3.2)

We can also introduce inverse Vielbeine τAµ = cEA
µ and eA′µ = EA′

µ that satisfy

τA
µτµ

B = δBA , eA′
µeµ

B′ = δB
′

A′ ,

τA
µeµ

A′ = 0 , eA′
µτµ

A = 0 , (3.3)

τA
µτν

A + eA′
µeν

A′ = δµν .

The transformation rules of EµÂ, Bµν and Φ under SO(1, 9) Lorentz transformations and
the abelian two-form gauge symmetry of the KR field are given by

δEµ
A = ΛM εABEµB + ΛAA′EµA

′
, δEµ

A′ = −ΛAA
′
Eµ

A + ΛA′B′EµB
′
,

δBµν = 2 ∂[µΘν] , δΦ = 0 , (3.4)

where Θµ is the parameter of the two-form gauge symmetry and we have split SO(1, 9)
into SO(1, 1) (with parameter ΛAB = ΛM εAB), SO(8) (with parameters ΛA′B′) and the re-
maining boost transformations (with parameters ΛAA′). Using the field redefinitions (3.1),
their inverses (3.2) and the following redefinitions of the symmetry parameters

ΛM = λM , ΛAA′= −ΛA′A = 1
c
λAA

′
, ΛA′B′ = λA

′B′ Θµ = θµ , (3.5)

we derive the following non-relativistic transformation rules after taking the c→∞ limit

δτµ
A = λM ε

A
Bτµ

B , δeµ
A′ = −λAA

′
τµ
A + λA

′
B′eµ

B′ ,

δbµν = 2∂[µθν] − 2 εABλAA′ τ[µ
Beν]

A′ , δφ = 0 , (3.6)

where λM , λA′B′ , λAA′ and θµ are now interpreted as parameters of the longitudinal
SO(1, 1), transversal SO(8), Galilean boosts and abelian two-form symmetry of the non-
relativistic theory. In order to obtain these formulae, it was important that the redefini-
tions (3.1) are invertible. Note that this limit indeed reproduces the correct transformation
rule (2.20) of the NR Kalb-Ramond field bµν under Galilean boosts that was necessary to
ensure boost invariance of the string worldsheet action (2.19). In a similar way, one finds
that the projective inverse Vielbeine transform as

δτA
µ = λM εA

BτB
µ + λA

A′eA′
µ , δeA′

µ = λA′
B′eB′

µ . (3.7)

The NR limit can similarly be performed on other quantities that are expressed in terms
of the fields of relativistic NS-NS gravity. To do this, one plugs the redefinitions (3.1) in
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the quantity of interest, expands the result in powers of c−2 and retains only the terms
that appear at leading order. In the next subsection, we will apply this procedure to
the relativistic NS-NS gravity action. The NR limit of the equations of motion of NS-NS
gravity will be considered in section 4.

3.2 Taking the NR limit of the NS-NS gravity action

The dynamics of the fields of relativistic NS-NS gravity is governed by the following action
(in the string frame):

SNS−NS = 1
2κ2

∫
d10xE e−2Φ

(
R+ 4 ∂µΦ∂µΦ− 1

2H
2
)
. (3.8)

Here, κ is the gravitational coupling constant, E = det(EµÂ), R is the Ricci scalar of
Gµν and

H2 = 1
3!HµνρH

µνρ , with Hµνρ = 3 ∂[µBνρ] . (3.9)

We refer to appendix A.2 for our conventions on Lorentzian geometry.
To take the NR limit of the relativistic NS-NS gravity action (3.8), we plug the redef-

initions (3.1) in (3.8) and expand the result in powers of c−2. The leading order term of
the resulting expansion then appears a priori at order c2:

SNS−NS = c2
(2)
S + c0

(0)
S + c−2

(−2)
S + · · · . (3.10)

Here, the explicit expression for
(2)
S is proportional to

(2)
S ∝

∫
d10x e e−2φ

(
(2)
R− 1

4
(2)
HAA′B′

(2)
HAA′B′

)
, (3.11)

where e = det(τµA, eµA
′),

(2)
R is the term at order c2 in the expansion of the Ricci scalar R

and
(2)
Hµνρ is the term at order c2 in the expansion of Hµνρ.14 Both terms in

(2)
S are separately

non-zero. Using the explicit expressions (see also appendix C)
(2)
R = −ηABτA′B′AτA

′B′B ,
(2)
HAA′B′ = 2 εABτA′B′B (with τA′B′A = eA′

µeB′
ν∂[µτν]

A) ,
(3.12)

one however sees that the contributions of the two terms in
(2)
S exactly cancel. This is a

non-trivial cancellation between the Ricci scalar and the kinetic term of the KR field, that
mirrors the cancellation, mentioned under (2.12), in the string worldsheet action.

The upshot of this cancellation is that the actual leading order term in the expan-
sion (3.10) is

(0)
S, appearing at order c0. This term can be written in terms of geometric

quantities, that characterize a non-Lorentzian geometry that we call ‘torsional string New-
ton Cartan geometry’ (TSNC). In TSNC geometry, we define spin connections ωµ, ωµA

′B′ ,

14Note that the expression
(2)
HAA′B′ is not the term at order c2 in the expansion of HAA′B′ . Rather, it

denotes the contraction with non-relativistic Vielbeine τAµeA′
νeB′

ρ
(2)
Hµνρ. See appendices A.1 and C for

more details.
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ωµ
AA′ for SO(1, 1), SO(8) and Galilean boosts as well as a field bµ that we will call ‘the

dilatation connection’. These connections are defined in terms of τµA, eµA
′ , bµν and φ as

follows:

bµ = eµ
A′eA′

ντA
ρ∂[ντρ]

A + τµ
AτA

ν∂νφ , (3.13a)

ωµ =
(
τAν∂[µτν]

B − 1
2τµ

CτAντBρ∂[ντρ]C

)
εAB − εABτµAτBν∂νφ , (3.13b)

ωµ
AA′ = −τAν∂[µeν]

A′ + eµB′τ
AνeA

′ρ∂[νeρ]
B′ + 3

2ε
ABτB

νeA
′ρ∂[µbνρ] + τµBW

ABA′ ,

(3.13c)

ωµ
A′B′ = −2e[A′|ν|∂[µeν]

B′] + eµC′e
A′νeB

′ρ∂[νeρ]
C′ − 3

2τµ
AεABτ

BνeA
′ρeB

′σ∂[νbρσ] , (3.13d)

Here, WABA′ is a tensor that is symmetric traceless in the AB indices, but is otherwise
arbitrary.15 We refer to appendix B for more information on the definitions of these and
related TSNC geometric quantities. Using these connections, the leading order term

(0)
S can

then be written as
(0)
S = 1

2κ2

∫
d10x e e−2φ

(
R(J) + 4 ∂A′φ∂A

′
φ− 1

12 hA
′B′C′h

A′B′C′

− 4DA′bA
′ − 4 bA′bA

′ − 4 τA′{AB}τA
′{AB}

)
. (3.14)

Here, τµνA = ∂[µτν]
A, hµνρ = 3∂[µbνρ] and we have turned curved indices into flat ones

using τµA, eµA
′ , τAµ, eA′µ, as detailed in appendix A.3. The curvature scalar R(J) and

derivative DµbA
′ are explicitly given by

R(J) = −2 eA′µeB′ν
(
∂[µων]

A′B′ + ω[µ
A′C′ων]

B′
C′

)
−4ωA′BB′τA′B′B , (3.15a)

DµbA
′ = ∂µb

A′ − ωµA
′B′bB′ − ωµAB

′
τA′B′A . (3.15b)

Note that Dµ is covariant with respect to SO(1, 1)× SO(8) and Galilean boosts. We refer
to appendix C for details on how (3.14) is obtained.

Like the Stueckelberg gauge-fixed string worldsheet action (2.19), this action (3.14) is
invariant under String Galilei symmetries and dilatations that act as

δτµ
A = λM εABτµ

B + λDτµ
A , δeµ

A′ = λA
′
B′eµ

B′ − λAA
′
τµ
A ,

δbµν = −2 εABλAA′ τ[µ
Beν]

A′ , δφ = λD , (3.16)

where λM , λA′B′ , λAA′ , λD are the parameters of SO(1, 1), SO(8), Galilean boosts and
dilatations resp. Note that the fields ωµ, ωµA

′B′ and ωµAA
′ , defined in (3.13), then indeed

transform as connections for SO(1, 1), SO(8) and Galilean boosts resp., while bµ transforms
as a gauge field under dilatations, as anticipated by calling it ‘dilatation connection’.

15As explained in appendix B, the connections (3.13) are found as solutions of conventional constraints.
The presence of the arbitrary tensor WABA′

then indicates that the imposed conventional constraints do
not suffice to determine all boost connection components uniquely. It should be noted that the presence of
this term is irrelevant for what follows, as it drops out of the NR action and equations of motion.
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The invariance under String Galilei symmetries is not surprising, since (3.14) appears
as the leading order term in an expansion in powers of c−2. As such, it is guaranteed to be
invariant under the NR limit of SO(1, 9) local Lorentz symmetries, i.e., under the String
Galilei symmetries. The invariance under dilatations is more surprising. Like in the NR
limit of the string worldsheet action, it appears here as an emergent symmetry.

One can however rewrite (3.14) in a way that is manifestly dilatation invariant. This
rewriting is achieved by partially integrating the e e−2φDA′bA

′ term, using (B.15a). Doing
this, one finds that (3.14) is equivalent to

SNR[τµA, eµA
′
, bµν , φ] = 1

2κ2

∫
d10x e e−2φ

(
R(J) + 4∇A′φ∇A

′
φ− 1

12 hA
′B′C′h

A′B′C′

− 4 τA′{AB}τA
′{AB}+4ωA′BB′τA′B′B

)
,

(3.17)

up to a boundary term −4∂µ
(
e e−2φeA′

µbA
′
)
. Manifest dilatation invariance is then

achieved by virtue of the fact that the dependent field bµ corresponds to a gauge field
for dilatations (see (B.10)) and that ∇µφ = ∂µφ − bµ is thus dilatation invariant. The
occurrence of an explicit boost spin connection in eq. (3.17) is indicative of the fact that
the Lagrangian is boost invariant only up to a total derivative. This is also clear from the
form of the boundary term. To summarize, we present two physically equivalent ways of
writing the NR action — one, (3.14), in which boost symmetry is manifest and dilatation
symmetry is not, and one, (3.17), where dilatation symmetry is manifest but boost sym-
metry is not. In order to distinguish the two, we will continue to use

(0)
S for (3.14) and SNR

for (3.17), even though they give rise to the same equations of motion.
The non-relativistic action (3.17) contains the background fields of non-relativistic

string theory. This should be contrasted to the situation that would occur, had the two
contributions in

(2)
S not cancelled. In that case, one would have ended up with a non-

relativistic action (namely
(2)
S) that only contains τµA.

Let us now look at the equations of motion that are derived from (3.17). We denote
the equations of motion of τµA, eµA

′ , bµν and φ by 〈τ〉Aµ, 〈e〉A′µ, 〈b〉µν and 〈φ〉 and define
them via the following variation:

δ SNR = 1
2κ2

∫
d10x e e−2φ

(
〈τ〉AµδτµA + 〈e〉A′µδeµA

′ − 8 〈φ〉δφ+ 1
2 〈b〉

µνδbµν

)
. (3.18)

Here, the pre-factors have been chosen for later convenience. In total, the equations of
motion 〈τ〉Aµ, 〈e〉A′µ, 〈b〉µν and 〈φ〉 consist of 20 + 80 + 45 + 1 = 146 components. Not
all of these components are independent however. Indeed, the invariance of the action (3.17)
under String Galilei symmetries and dilatations implies the following algebraic relations
(Noether identities):

〈τ〉[AB] = 0 , 〈e〉[A′B′] = 0 , 〈e〉A′µτµA + εA
B 〈b〉BA′ = 0 , 〈τ〉AµτµA = 8 〈φ〉 .

(3.19)
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The first three relations are the Noether identities for the SO(1, 1), SO(8) and Galilean
boost symmetries, while the last one corresponds to the Noether identity of dilatations.
In total, we have 1 + 28 + 16 + 1 = 46 such algebraic relations. Subtracting this number
from the total number of 146 of equations, contained in 〈τ〉Aµ, 〈e〉A′µ, 〈b〉µν , 〈φ〉, we are
left with 100 equations.

In order to give the equations of motion 〈τ〉Aµ, 〈e〉A′µ, 〈b〉µν , 〈φ〉 explicitly, we turn the
curved indices into flat (A or A′) ones, and decompose the resulting tensors into irreducible
representations of SO(1, 1) × SO(8). Strictly speaking, this is not necessary at this point
but turns out to be convenient when comparing with the equations of motion in the next
section, and the beta functions in section 5. We rename the representations as follows:

〈S−〉εAB ≡ 2 〈b〉AB , 〈G〉{AB} ≡ −
1
2〈τ〉{AB} ,

〈V−〉AA′ ≡ −
1
2〈τ〉AA

′ , 〈G〉A′B′ ≡ 2 δA′B′ 〈φ〉 −
1
2〈e〉(A

′B′) ,

〈V+〉AA′ ≡ −〈e〉A′A = εA
B〈b〉BA′ , 〈Φ〉 ≡ 〈φ〉 = 1

8η
AB〈τ〉AB ,

〈B〉A′B′ ≡ 〈b〉A′B′ . (3.20)

In terms of these irreducible representations, 〈τ〉Aµ, 〈e〉A′µ and 〈b〉µν are decomposed as
follows:

〈τ〉Aµ = 4 τAµ 〈Φ〉 − 2 τBµ 〈G〉{AB} − 2 eA′µ 〈V−〉AA′ , (3.21a)

〈e〉A′µ = 4 eA′µ 〈Φ〉 − 2 eB′µ〈G〉A′B′ − τAµ〈V+〉AA′ , (3.21b)

〈b〉µν = 1
2 ε

ABτA
µτB

ν 〈S−〉+ eA′
µeB′

ν 〈B〉A′B′ + 2 τA[µe|A
′|ν]εAB 〈V+〉BA′ . (3.21c)

Note that we have taken the redundancy due to the Noether identities (3.19) into account
in (3.20) and (3.21). The 100 independent equations of motion, derived from (3.17) are
thus given by

〈S−〉 = 0 , 〈V±〉AA′ = 0 , 〈G〉{AB} = 0 ,
〈Φ〉 = 0 , 〈G〉A′B′ = 0 , 〈B〉A′B′ = 0 . (3.22)

These are then explicitly found to be

〈Φ〉 = ∇A′∇A′φ− (∇A′φ)2 + 1
4 R(J)− 1

48 hA
′B′C′h

A′B′C′ − τA′{AB}τA
′{AB} ,

(3.23a)

〈G〉{AB} = −2 (∇B′ − 2 (∇B′φ)) τB′{AB} , (3.23b)

〈V−〉AA′ = RC′A(J)A′C
′ + 2∇A∇A′φ+ 2∇BτA′{AB} , (3.23c)

〈G〉A′B′ = RC′(A′(J)B′)C
′ + 2∇(A′∇B′)φ−

1
4 hA

′C′D′hB′
C′D′ − 4 τA′{AB}τB′{AB} ,

(3.23d)
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〈V+〉AA′ = −2 (∇B′ − 2 (∇B′φ)) τB′A′A − 4 τB′{AB}τB′A′B − εAB hA′B′C′τB
′C′B , (3.23e)

〈S−〉 = 4 τA′B′CτA
′B′C , (3.23f)

〈B〉A′B′ = (∇C′ − 2 (∇C′φ))hC′A′B′ + 2 εAB∇AτA′B′B , (3.23g)

where the derivative ∇µ is covariantized with respect to dilatations, SO(1, 1)× SO(8) and
Galilean boosts. The curvature Rµν(J)A′B′ is defined in eqs. (B.16). One can show that
none of these equations depends on the undetermined symmetric traceless part of the boost
spin connection (3.13c) Wµ

AA′ .
Note that none of the above equations (3.23) contains a term of the form ∂A′∂

A′b01
at the linearized level. Since b01 can be identified with the Newton potential (in the
Stueckelberg gauge fixed formalism with mµ

A = 0 that we are working in), this means that
none of the equations (3.23) can be interpreted as a covariant version of a Poisson-type
equation of NR gravity. In the next section, we will consider how to take the NR limit of
the equations of motion of relativistic NS-NS gravity directly. As we will see, this limit
can be defined such that it not only reproduces the equations (3.23), but also leads to an
extra Poisson-type equation.

4 The NR limit of the NS-NS gravity equations of motion

In this section, we will discuss the results of applying the NR limit (3.1) to the equations
of motion of relativistic NS-NS gravity. We will first discuss how these equations of motion
can be reorganized, such that their NR limit can be taken in an appropriate manner.
Next, we will discuss the NR equations that result from the limit and compare them to the
equations of motion (3.23) that are derived from the NR action (3.17).

We will denote the equations of motion for the fields Gµν , Bµν and Φ of relativistic
NS-NS gravity by [G]µν , [B]µν and [Φ] resp. They are derived from the action (3.8) and
are given by16

[G]µν ≡ Rµν + 2∇µ∂νΦ− 1
4HµρσHν

ρσ = 0 , (4.1a)

[B]µν ≡ ∇ρHρµν − 2 (∂ρΦ)Hρµν = 0 , (4.1b)

[Φ] ≡ ∇µ∂µΦ + 1
4R− ∂

µΦ∂µΦ− 1
48 HµνρH

µνρ = 0 . (4.1c)

Note that these constitute 55 + 45 + 1 = 101 relativistic equations of motion.
In string theory, these equations (4.1) also ensure that scale invariance of the string

worldsheet action is maintained at the quantum mechanical level. Indeed, in the Polyakov
action for the relativistic string, Gµν , Bµν and Φ can be viewed as coupling constants.
Quantum scale invariance of the string action, then requires that the beta functions βGµν ,
βBµν and βΦ of Gµν , Bµν and Φ vanish.

16To be precise, the equations of motion, derived from the action (3.8), are equivalent to the equations,
given in (4.1). The action (3.8) leads to [B]µν = 0 and [Φ] = 0 as equations of motion for Bµν and Φ, while
it gives [G]µν − 2Gµν [Φ] = 0 as equation of motion for Gµν .
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We can then take the NR limit of the equations of motion (4.1), by plugging (3.1)
in (4.1), expanding the resulting equations in powers of c−2 and retaining only the terms
at leading order as NR equations of motion. If one does this for the 101 equations of
motion, as they are given in (4.1), one finds that some of them give rise to the same NR
equation. In particular, one finds that the leading order terms in the expansion of [G]AA′
and εAB[B]BA′ are proportional to each other.17 Remarkably, for ηAB[G]AB and εAB[B]AB,
both the terms at leading and at subleading order are proportional to each other. To avoid
this redundancy, one can instead consider the following 101 equations

[S±] ≡ ηAB[G]AB ±
1
2 ε

AB[B]AB = 0 , [V±]AA′ ≡ [G]AA′ ±
1
2 εA

B [B]BA′ = 0 ,

[G]{AB} = 0 , [G]A′B′ = 0 , [Φ] = 0 , [B]A′B′ = 0 . (4.2)

Plugging in the redefinitions (3.1) into (4.2) and expanding the resulting equations in
powers of c−2, we then find that leading order terms for different equations occur at different
powers of c. We will use the following notation

[X] = cn〈X〉+O(cn−2) , (4.3)

to denote the expansion of the relativistic equations [X] as in (4.2), and the terms at
leading order n as 〈X〉. For example, one can show that [S−] has n = +2, whereas [S+] has
n = −2. The fact that the singlet equations [S±] have leading orders separated by a factor
c4 is remarkable and has important consequences for the structure of the non-relativistic
theory.18

For future reference, we indicate here how all components of the above equations of
motion transform into each other under the boosts (with parameters ΛAA′) of SO(1, 9):

δ[Φ] = 0 , δ[S±] = 2 ΛAA′ [V∓]AA′ , δ[G]{AB} = Λ{AA
′ [V+]B}A′ + Λ{AA

′ [V−]B}A′ ,

δ[V+]AA′ = ΛAB
′ [G]A′B′ −

1
2 εA

BΛBB
′ [B]A′B′ −ΛBA′ [G]{AB}−

1
2 ΛAA′ [S−] ,

δ[V−]AA′ = ΛAB
′ [G]A′B′ +

1
2 εA

BΛBB
′ [B]A′B′ −ΛBA′ [G]{AB}−

1
2 ΛAA′ [S+] ,

δ[G]A′B′ = −ΛA(A′
(
[V+]|A|B′) + [V−]|A|B′)

)
, δ[B]A′B′ = −2 ΛA[A′ε|A

B
(
[V+]B|B′]− [V−]B|B′]

)
.

(4.4)

The NR limit is then obtained by retaining only the leading order terms 〈X〉 in
eqs. (4.2). In this way, we obtain 101 NR equations as the NR limit of the relativistic
NS-NS gravity equations of motion. These 101 NR equations are given by the 100 equa-
tions given in eqs. (3.22), (3.23), as well as the extra equation:

〈S+〉 ≡ −τAµeA′νRµν(G)AA′ − εABτAµτBνRµν(M) = 0 , (4.5)

using the notation introduced in eq. (4.3). Rµν(G)AA′ and Rµν(M) are defined in (B.16).
17Here, we have turned curved indices on components of (4.1) into flat indices using the relativistic

(inverse) Vielbeine EAµ, EA′
µ. For example [G]AA′ = EA

µEA′
ν [G]µν . For more details, see appendix A.3.

18Similar observations have been made in the context of non-relativistic expansions of General Relativ-
ity [26].
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〈X〉 〈Φ〉 〈S−〉 〈S+〉 〈G〉{AB} 〈V−〉AA′ 〈V+〉AA′ 〈G〉A′B′ 〈B〉A′B′

n 0 2 −2 0 −1 +1 0 0

Table 1. Dilatation weights of the equations of motion δD〈X〉 = nλD〈X〉.

We have seen that the non-relativistic action (3.17) is invariant under dilatations. Con-
sequently, the equations of motion also transform covariantly under transformations (2.21).
It turns out that the leading order n at which the equations occur in the expansion (4.3)
is the dilatation weight of the corresponding non-relativistic equation of motion, i.e.,
δD〈X〉 = nλD〈X〉. We summarize all the dilatation weights in table 1.

Note that the NR action (3.17) gives rise to one equation of motion less than the
relativistic NS-NS gravity action (3.8). This discrepancy is consistent with the fact that
the NR action (3.17) enjoys this extra dilatation symmetry, that emerges after taking
the limit. The additional equation (4.5) that is not obtained from the NR action (3.17)
corresponds to (a covariant version of) the Poisson equation of the NR gravity theory that
is described by NR string theory. Indeed, the expression 〈S+〉 contains a term ∂A′∂

A′ b01,
where b01 corresponds to the Newton potential, in the formulation with mµ

A = 0 that we
are currently using.

The emergence of a dilatation symmetry explains the discrepancy in the number of
equations of motion. However, it does not explain which equation is lost when restricting
to the limit at the level of the NS-NS action. The relevant equation has to be an SO(1, 1)×
SO(8) singlet — leaving eqs. (3.23f), (3.23a), and (4.5) as options. Let us now see why it is
the Poisson equation 〈S+〉 that does not — and cannot — follow from (3.17). Recall that
the action has dilatation weight zero. Hence every equation of motion corresponds to a
field component of opposite dilatation weight. The non-linear equation 〈S−〉, for example,
has n = +2 and follows as the field equation of εABbAB which has weight n = −2. Using
this argument and the fact that the Poisson equation has n = −2, we see that it should
correspond to an SO(1, 1) × SO(8) singlet field of dilatation weight n = +2. However,
no such field component exists in our theory. Hence, with the field content at hand, it is
impossible to derive 〈S+〉 from a variational principle compatible with dilatations.

Since the 100 NR equations of motion (3.22) can be obtained from varying a String
Galilei invariant action, one finds that they form a representation of the String Galilei
symmetries. They transform under SO(1, 1)× SO(8) as indicated by their index structure
and their transformation rules under Galilean boosts can be inferred from (4.4):

δ〈Φ〉 = 0 , δ〈S−〉 = 0 ,

δ〈G〉{AB} = λ{A
A′〈V+〉B}A′ , δ〈V+〉AA′ = −1

2 λAA
′〈S−〉 , (4.6)

δ〈V−〉AA′ = λA
B′〈G〉A′B′ + 1

2 εA
BλB

B′〈b〉A′B′ − λBA′〈G〉{AB} ,

δ〈G〉A′B′ = −λA(A′〈V+〉|A|B′) , δ〈b〉A′B′ = −2λA[A′〈V+〉|A|B′] .

Since, 〈S+〉 transforms under Galilean boosts and dilatations as

δ 〈S+〉 = −2λD 〈S+〉+ 2λAA′〈V−〉AA′ , (4.7)
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n = −2 〈S+〉

n = −1 〈V−〉AA′

n = 0 〈G〉A′B′ 〈B〉A′B′ 〈G〉{AB} 〈Φ〉

n = +1 〈V+〉AA′

n = +2 〈S−〉

Figure 1. This diagram summarizes how the equations of motion transform under String Galilei
and dilatation symmetries. The index structure indicates the SO(1, 1)× SO(8) representations and
the layers denote the dilatation weights δD〈X〉 = nλD〈X〉. Under Galilean boosts, the equations of
motion form a reducible, but indecomposable representation. This is indicated by the red arrows.

we see that adding (4.5) to the set of 100 equations of motion obtained from the ac-
tion (3.17), gives a consistent set of 101 equations of motion that transform as a repre-
sentation of String Galilei and dilatation symmetries, according to (4.6) and (4.7). The
dilaton equation is a singlet under all the symmetries. The remaining set of 100 equations
forms a reducible, but indecomposable representation. Reducible means that the equations
of motion contain smaller sets of equations that are closed under the symmetries of the
theory. Indecomposable, on the other hand, means that the subrepresentations cannot
be truncated consistently. For example, the nonlinear singlet equation 〈S−〉 is inert un-
der Galilean boosts — yet cannot be omitted since δ〈V+〉 = −1/2λAA′〈S−〉. This also
demonstrates the special status of the Poisson equation (4.5) as it requires all the other
equations (3.23) to form a closed set under Galilei boosts. In other words, one could
start from the Poisson equation 〈S+〉, vary it under Galilean boost, and thereby generate
the full set of non-relativistic equations. The general structure of the reducibility is in
correspondence with the dilatation weights. This allows for a schematic summary of the
representation theory of the equations of motion, given in figure 1.

5 Comparison with the beta functions of NR string theory

Let us finally comment on the relation between the NR limit of NS-NS gravity, discussed
above, and the beta functions of NR bosonic string theory. The latter were calculated
in [16, 17] for the NR string moving in a SNC geometry with zero torsion, i.e., subject to
the constraints:

τA′(AB) = 0 , and τA′B′
A = 0 . (5.1)

In [5], it was then shown that these ‘zero torsion beta functions’ are reproduced by a
NR limit of the beta functions of the relativistic bosonic string, i.e. of the equations of
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motion of NS-NS gravity. The limit of [5] is similar to the limit discussed in this paper.
However, there is an important difference. The limit of [5] was taken in the first-order
formalism, in which the relativistic spin connection Ωµ

ÂB̂ is treated as an independent
field. To perform this first-order limit, the redefinitions (2.12) were supplemented with
rescalings of the components of Ωµ

ÂB̂ with powers of c, not allowing them to be divergent
in the limit c→∞. The zero torsion constraint (5.1) is then reproduced by the NR limit
of the conventional constraints. One could also consider the limit of [5] in the second-
order formalism. This would lead to the same outcome if one requires the expansion of
spin connections to be finite after taking the NR limit. However, in this paper, we took
a NR limit of the NS-NS gravity action and the equations of motion in the second-order
formalism and arranged things, by canceling divergences when expanding the action or
combining equations when expanding the equations of motion, such that the leading order
terms are always of the order c0 before taking the NR limit and we could extract the
maximum number of NR equations of motion. We showed that one can take the limit
by adopting the redefinitions (3.1) and expanding the Kalb-Ramond field strength Hµνρ
and the second-order Ωµ

ÂB̂ accordingly. The leading order terms of Ωµ
AA′ and Ωµ

A′B′ in
these expansions appear at one c2-order higher than the order dictated by the rescalings of
Ωµ

AA′ and Ωµ
A′B′ in the first-order limit. Naively, this leads to terms that would diverge

in the c → ∞ limit (compared to the first-order limit). However, we noticed that such
a divergence is absent, due to a fine-tuned cancellation between the kinetic terms of the
metric and of the KR field.

In contrast to the first-order limit, the second-order NR limit of this paper did not
lead to the zero torsion conditions (5.1). Indeed, like the NR string worldsheet actions of
section 2, the NR limits of both the action and equations of motion of NS-NS gravity are
invariant under the emergent dilatation symmetry (2.21). The constraints (5.1) break this
dilatation symmetry and can thus not result from the NR limit considered here. It is worth
mentioning that the constraints (5.1) can be relaxed to a dilatation invariant set of torsion
constraints. The maximal such set, which defines what we call Dilatation invariant SNC
(DSNC) geometry, is given by

τA′{AB} = 0 , and τA′B′
A = 0 . (5.2)

Compared to the SNC constraints (5.1), we have that

bA′ ≡ τA′AA , (5.3)

which acts like the (transverse components of the) gauge field of local dilatations, is
non-zero.

Let us now see in how far the equations of motion (3.23)/(4.5) obtained here are in
agreement with the results from beta function calculations [16, 17]. We want to stress
that our starting point is different from the one taken in the above references. Here, we
have made no a priori assumptions on torsion components — i.e., we work with TSNC
geometry. The string sigma model in [16, 17], however, is defined on an SNC geometry
with the geometric constraints (5.1). Since the starting point is different, we can not
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compare the results directly. In particular, we find three additional equations that are
absent in the beta function analysis

〈S−〉 = 0 , 〈G〉{AB} = 0 , 〈V+〉AA′ = 0 . (5.4)

These impose constraints only on the torsion components and are thus identically satisfied
when working with SNC geometry. Here, however, we consider SNC as a solution of
eqs. (5.4) rather than an a priori constraint. There are more general solutions of (5.4), of
which DSNC geometry (5.2) is an example. For the moment, however, let us impose the
zero torsion constraints (5.1) in order to compare with the beta function calculations. The
remaining non-trivial equations

〈S+〉 = 0 , 〈V−〉AA′ = 0 , 〈G〉A′B′ = 0 , 〈b〉A′B′ = 0 , 〈Φ〉 = 0 , (5.5)

impose constraints on SNC geometry, the dilaton, and the KR field. We find that these
equations are in agreement with the results of [16, 17]. In other words, the 101 equa-
tions (3.23)/(4.5) encompass the beta functions upon restricting to SNC geometry.

Observe that the Poisson equation 〈S+〉 = 0 was found as a beta function of the SNC
NR string. It thus does not suffice to take the NR limit of the NS-NS gravity action to
retrieve the correct background dynamics of NR string theory. It shows that the full set
of beta functions of non-relativistic string theory does not follow from an action principle.
This is different from the analogous situation in relativistic string theory, where all the
beta function constraints follow from a low-energy effective action.

The emerging dilatation invariance that is present in the NR string worldsheet actions
and that we have shown to be preserved in the NR limit of NS-NS gravity, hints that DSNC
geometry is a natural target space geometry of NR string theory. In this regard, it is highly
suggestive that the zero torsion beta function calculation of [16, 17] can be generalized to
worldsheet actions for strings in DSNC backgrounds.19 It would be interesting to calculate
these beta functions and compare them with the NR limit of the equations of motion of
NS-NS gravity, obtained in this paper.

6 Conclusions

In this paper we showed that a NR limit of the NS-NS gravity action can be defined
which is based upon a crucial cancellation of the quadratic divergences originating from
the spin-connection squared terms in the Einstein-Hilbert term with those arising from the

19In this regard, it is useful to mention that, upon quantization, a term proportional to λλ̄ is generically
generated in the string worldsheet action (2.1). This term turns the string sigma model into a relativistic
one. In [16, 17], the appearance of this term was prevented by restricting to zero torsion. Since this
condition is tied to the existence of the ZA symmetry, mentioned at the end of section 2, one can then
argue that requiring preservation of this symmetry in the quantum theory protects one from changing the
theory to a relativistic one. Since here we do not require zero torsion, we also do not require the presence
of the ZA symmetry. As a consequence, the quantum theory will then contain a λλ̄ term. However, it
was pointed out to us by Ziqi Yan that the coefficient of this term vanishes upon imposing the non-linear
constraint 〈S−〉 = 0, so that the quantum theory can still be regarded as a non-relativistic one. We thank
Ziqi Yan for discussions on this point.
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kinetic term of the KR 2-form field. These cancellations are the target space version of
a similar collaboration of divergences that takes place when defining the NR limit of the
relativistic string sigma model. They enable us to define a finite NR NS-NS gravity action
without imposing any geometric constraint such as the zero torsion constraint which we
imposed in our earlier work. Both the NR string sigma model and the NR NS-NS gravity
action exhibit an emergent local dilatation symmetry.20 This emergent symmetry has the
effect that taking the limit of the relativistic NS-NS gravity action produces a NR action
that leads to one equation of motion less than the ones that one obtains by taking the
NR limit of the relativistic NS-NS gravity equations of motion. This missing equation of
motion is precisely the Poisson equation of the Newton potential. This is consistent with
the fact that it is not known how to obtain an action for NC gravity including the Poisson
equation by taking a limit of General Relativity. In this paper we only consider NR limits.
If one would consider expansions (without taking the limit that c goes to infinity) and/or
more symmetries than (a string extension of) the Bargmann algebra with more fields than
the standard formulation of NC gravity, there are other ways to construct actions for
non-relativistic gravity, see, e.g., [26, 28–30]. Our results imply that the NR equations of
motion form a reducible, indecomposable representation of the String Galilei symmetries: it
is consistent to delete the Poisson equation and obtain the same representation of equations
of motion as the one that follows from varying the NR NS-NS gravity action.

In our approach, no geometric constraints are imposed by hand, but instead, the al-
lowed geometry follows by solving the equations of motion. One natural geometry that
in particular solves the nonlinear constraint equation (3.23f) is given by a dilatation-
invariant extension of the zero torsion constraint (5.1) which we called Dilatation invariant
String Newton-Cartan (DSNC) geometry. The constraints defining this geometry are given
in eq. (5.2).

It would be interesting to see whether the same equations of motion that we obtained
in this work by taking a NR limit can be obtained by redoing the beta function calculations
of [16, 17] in the absence of the zero torsion constraint, which breaks the local dilatation
invariance. We compared our NR equations of motion with the beta function calculations
of [16, 17] for zero torsion and found a one-to-one correspondence except that we have
one equation more that does not correspond to any beta function. It is given by the
nonlinear constraint (3.23f). Remarkably, this constraint occurs as the coefficient in front
a λλ̄ operator that is generated by quantum corrections in the sigma model effective action.
Such a term would deform the theory towards relativistic string theory as shown in [17].
Equation (3.23f) thus provides an ad-hoc obstruction to generating such a term in the
quantum effective action. It would be interesting to understand these constraints from
symmetry arguments.21

It is of interest to also compare our results with the beta function calculations of [18].
The starting point of [18] is the relativistic Polyakov sigma model in a background geometry
with a null isometry direction. The beta function calculations were performed by first

20This scale invariance only works in the directions longitudinal to the string. This is reminiscent of the
reduced conformal symmetry recently discussed in [27].

21Z. Yan, private communication.
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rewriting the string sigma model in terms of NC variables in one dimension lower. In the
light of this paper, it seems plausible that the beta functions calculated in [18], except
for the Poisson equation, can be identified with the equations that follow from the null
reduction of the relativistic NS-NS gravity action. Usually, this null reduction is only
performed at the level of the equations of motion with the argument that otherwise one
misses the equation of motion that follows from varying the Kaluza-Klein scalar, which by
the null isometry direction is set to zero. But this is precisely the Poisson equation, which,
as we discussed in this paper, is not expected to follow from an action but does follow from
a null reduction of the relativistic equations of motion. The picture that arises is that the
double dimensional reduction of the NR NS-NS gravity action we constructed in this paper
is precisely the same action that one obtains from a null reduction of the relativistic NS-NS
gravity action.22 Neither action gives rise to the Poisson equation of the Newton potential
but for different reasons: local dilatation symmetry versus null isometry. For more details
about this picture from a target space point of view, see [31].

In the context of string theory, it is well-known that there exists a so-called dual
formulation of the relativistic NS-NS action where the 2-form KR field has been replaced,
via an on-shell duality relation, by a 6-form potential that couples to an NS-NS 5-brane.
The dual action requires a different limit, which is characterized by a 5-brane foliation
instead of the string foliation we used in this work. Whereas the string limit leads to a
decoupling of all states that are not critically charged under the KR field, the 5-brane limit
leads to a different decoupling where all states that are not critically charged with respect
to the 6-form potential are decoupled [1]. We can consider a 5-brane limit of the relativistic
NS-NS gravity action in the same way that we took the string limit of the same action
in this paper. We checked that the same crucial cancellation of infinities as in the case
of the string limit takes place but now between the spin-connection squared term and the
kinetic term for the 6-form potential. It would be interesting to see whether one could map
the string and 5-brane actions into each other thereby establishing a NR duality relation
that maps a solution of the NR string action to a dual solution of the NR 5-brane action,
possibly via dimensional reduction to six dimensions.

The expression for the NR NS-NS gravity action that we derived in this work by taking
a NR limit seems identical to the action recently derived in [32] from a Double Field Theory
(DFT) point of view. Also there, the Poisson equation takes a special status. In fact, this
is a general phenomenon as discussed in [33]. This relation between DFT and NR string
theory was already advocated some time ago [34, 35].23 It is based upon the observation
that in DFT it is natural to use a degenerate geometry with a null isometry. What is
intriguing and what we learned in this work is that imposing a null isometry from one
point of view is the same as taking a NR limit from a T-dual point of view. It suggests
that one should perhaps also be able to understand the results of this paper by defining a
proper NR limit of DFT itself.

22Note that one can also perform a direct dimensional reduction of the NR NS-NS gravity action along
a transversal spatial direction leading to a sector of NR string theory that does not follow from a null
reduction of the relativistic NS-NS gravity action.

23For other recent work on the NR string theory in DFT, see [36, 37].
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The present work grew out of an effort to define the NR limit of heterotic supergravity.
Now a proper understanding of the bosonic case has been obtained we hope to tackle the
supersymmetric case soon. One additional complication in the supersymmetric case is
that the spin-connection now not only gives rise to a quadratic divergence in the action
but also to a linear divergence in the supersymmetry rules. The quadratic divergence in
the action could be cancelled by a similar quadratic divergence due to the kinetic term of
the KR 2-form field. However, the linear divergence in the supersymmetry rule due to the
spin-connection cannot be cancelled by a similar linear divergence due to the KR curvature
because the two fields have opposite parity with respect to worldsheet reflections. What
can happen and what actually does happen is that in the relativistic case the two fields
occur in the combination of a torsionful spin-connection

Ωµ
ÂB̂(E,H) = Ωµ

ÂB̂(E) +HµÂB̂ , (6.1)

which leads to a linear divergence that is proportional to a self-dual projection of the torsion
components that define the DSNC geometry given in eq. (5.2). In order to obtain finite
supersymmetry rules, we have to set these self-dual projections to zero by hand:

τA′+
− = τA′B′

− = 0 . (6.2)

This leads to a so-called self-dual DSNC geometry that seems to play a role in the supersym-
metric case. One attractive feature of the self-dual DSNC geometric constraints (6.2), not
shared by the full DSNC geometric constraints (5.2), is that the constraint equations (6.2)
are invariant under supersymmetry. We hope to give more details about this interesting
case soon.

The results of this paper can be used as a starting point for exploring many general-
izations of NR string theory. For instance, one could investigate whether one can give a
meaning to the NR limit of IIA and IIB supergravity and even M-theory. Having supersym-
metry under control one could investigate the presence of half-supersymmetric fundamental
string and other brane solutions to the equations of motion [31]. Last but not least, one
could consider taking a Carroll limit of NS-NS gravity and investigate whether an action
for Carroll NS-NS gravity can be defined. We hope to come back to this and many other
extensions, generalizations and applications in the nearby future.
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A Conventions

A.1 Index conventions

In this paper, ten-dimensional curved indices are denoted by lowercase Greek letters. Ten-
dimensional flat indices are denoted by Â, where Â = 0, · · · , 9. The index Â is split into a
‘longitudinal’ index A, where A = 0, 1, and a ‘transversal’ index A′, where A′ = 2, · · · , 9.
We adopt the ‘mostly plus’ convention for the ten-dimensional Minkowski metric ηÂB̂, i.e.,
ηÂB̂ = diag(−1, 1, · · · , 1). Longitudinal indices A are freely raised and lowered with ηAB,
while transversal indices A′ are raised and lowered with a Kronecker delta δA′B′ . The
ten-dimensional epsilon symbols εÂ0···Â9

and εÂ0···Â9 are normalized as ε01···9 = +1 and
ε01···9 = −1. We also use longitudinal epsilon symbols εAB and εAB that are normalized as
ε01 = +1 and ε01 = −1. We then have the following useful identities:

εACεBD = −ηABηCD + ηADηBC , εA
CεCB = ηAB . (A.1)

Symmetrization and antisymmetrization is defined with weight one, e.g.,

A[µν] = 1
2 (Aµν −Aνµ) , A(µν) = 1

2 (Aµν +Aνµ) . (A.2)

We furthermore use curly parentheses to denote traceless symmetric parts, e.g.,

S{AB} = S(AB) −
1
2ηABSC

C with SCC = ηCDSCD . (A.3)

A.2 Lorentzian geometry conventions

We denote the Vielbein of ten-dimensional Lorentzian geometry by Eµ
Â and its inverse

by EÂ
µ:

Eµ
ÂEB̂

µ = δÂB̂ , Eµ
ÂEÂ

ν = δνµ . (A.4)

The fields EµÂ and EÂ
µ transform as a one-form, resp. vector under general coordinate

transformations and as follows under local SO(1, 9) Lorentz transformations with parameter
ΛÂB̂ = −ΛB̂Â:

δEµ
Â = ΛÂB̂Eµ

B̂ , δEÂ
µ = ΛÂ

B̂EB̂
µ . (A.5)

Upon splitting the ten-dimensional frame indices into a longitudinal and a transversal part,
we find that

δ Eµ
A = ΛABEµB + ΛAA′EµA

′
, δ Eµ

A′ = ΛA′B′EµB
′ − ΛAA

′
Eµ

A , (A.6)

and similarly for the inverse Vielbein.
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We denote the torsionless spin connection of Lorentzian geometry by Ωµ
ÂB̂. In this

paper, we work in the second-order formalism and define Ωµ
ÂB̂ as the solution of the

following zero torsion constraint:

Rµν(P Â) = 2 ∂[µEν]
Â − 2 Ω[µ

ÂB̂Eν]B̂ = 0 . (A.7)

Explicitly, one has

Ωµ
ÂB̂ = EµĈE

ÂB̂Ĉ − 2Eµ[ÂB̂] , where Eµν
Â = ∂[µEν]

Â . (A.8)

The spin connection then transforms under local Lorentz transformations as an SO(1, 9)
connection:

δΩµ
ÂB̂ = ∂µΛÂB̂ − 2 Ωµ

Ĉ[ÂΛB̂]
Ĉ . (A.9)

The covariant curvature 2-form, associated to Ωµ
ÂB̂ is defined by:

RµνÂB̂ = 2 ∂[µΩν]
ÂB̂ + 2 Ω[µ

ÂĈΩν]
B̂
Ĉ . (A.10)

These quantities are related to the Christoffel connection Γµνρ and the Riemann tensor
Rµνρσ as follows

Γµνρ = EÂ
ρ
(
∂(µEν)

Â − Ω(µ
ÂB̂Eν)B̂

)
and Rρσµν = −EρÂEσB̂Rµν

ÂB̂ . (A.11)

The Ricci tensor and scalar are then expressed in terms of the curvature 2-form RµνÂB̂ as:

Rµν = Rρµρν = −EρÂRρµ
ÂB̂EνB̂ and R = −EµÂE

ν
B̂Rµν

ÂB̂ . (A.12)

A.3 Conversion of curved to flat indices

The curved indices on a tensor Xµ1···µr
µr+1···µp in the relativistic theory are turned into flat

ones, using the relativistic (inverse) Vielbein EµÂ (EÂ
µ) in the usual fashion

XÂ1···Âr
Âr+1···Âp = Eµ1

Â1 · · ·Eµr ÂrEÂr+1
µr+1 · · ·EÂp

µpXµ1···µr
µr+1···µp . (A.13)

Note that the Â index will often be split into a longitudinal index A and a transversal
index A′. As an example, if Xµν is a tensor in the relativistic theory, the quantities XAB,
XAB′ , XA′B and XA′B′ are to be understood as

XAB = EA
µEB

νXµν , XAB′ = EA
µEB′

νXµν , XA′B = EA′
µEB

νXµν ,

XA′B′ = EA′
µEB′

νXµν . (A.14)

The curved indices on tensors in the non-relativistic theory are turned into flat ones,
using the longitudinal and transverse Vielbeine τµA, eµA

′ . For example, if Y µ
ν is a tensor

in the non-relativistic theory, the objects Y A
B, Y A

A′ , Y A′
A and Y A′

B′ are defined as

Y A
B = τµ

AτB
νY µ

ν , Y A
A′ = τµ

AeA′
νY µ

ν , Y A′
A = eµ

A′τA
νY µ

ν ,

Y A′
B′ = eµ

A′eB′
νY µ

ν . (A.15)
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B Torsional string Newton Cartan geometry

In this section, we give details on the non-Lorentzian geometry that appears in the NR
limit of NS-NS gravity, discussed in this paper. We refer to this geometry as ‘torsional
string Newton Cartan geometry’ (TSNC). The basic geometric fields are the longitudinal
Vielbein τµA (A = 0, 1), the transverse Vielbein eµA

′ (A′ = 2, · · · , 9), the KR field bµν and
the dilaton φ. These fields transform under local String Galilei symmetries (longitudinal
SO(1, 1) Lorentz transformations, transverse SO(8) rotations and Galilean boosts) and
local dilatations, according to:

δτµ
A = λM εABτµ

B + λDτµ
A , δeµ

A′ = λA
′
B′eµ

B′ − λAA
′
τµ
A ,

δbµν = −2 εABλAA′ τ[µ
Beν]

A′ , δφ = λD , (B.1)

where λM , λA′B′ , λAA′ , λD are the parameters of SO(1, 1), SO(8), Galilean boosts and
dilatations resp. The KR field is also subjected to an abelian two-form symmetry:

δbµν = 2 ∂[µθν] . (B.2)

Projective inverses τAµ and eA′µ are introduced via (3.3). They transform as

δτA
µ = λM εA

BτB
µ + λA

A′eA′
µ − λDτAµ , δeA′

µ = λA′
B′eB′

µ . (B.3)

Note that the KR field transforms non-trivially to the longitudinal and transverse Vielbeine
under Galilean boosts, while the dilaton acquires a shift under dilatations. For this reason,
we treat bµν and φ as part of the geometric data. This should be contrasted with relativistic
string theory/NS-NS gravity, in which the KR field and dilaton are treated as matter fields,
instead of geometric fields.

In the following, we will discuss how these fields can be used to define connections and
curvatures for local SO(1, 1)× SO(8) transformations, Galilean boosts and dilatations. In
appendix C we will then describe how the geometric structures, described here, appear in
the limit of the action and equations of motion of NS-NS gravity.

B.1 String Galilei and dilatation connections

Here, we introduce String Galilei spin connections ωµ, ωµAA
′ and ωµ

A′B′ for SO(1, 1)
Lorentz transformations, SO(8) rotations and Galilean boosts resp., as well as a dilata-
tion connection bµ. In analogy to the spin connection Ωµ

ÂB̂ of Lorentzian geometry, we
will define these connections as expressions that depend on the geometric data τµA, eµA

′ ,
bµν and φ, with correct transformation properties. In particular, we seek to define ωµ,
ωµ

AA′ , ωµA
′B′ and bµ as dependent expressions that transform under String Galilei trans-

formations and dilatations as

δbµ = ∂µλD + · · · , δωµ = ∂µλM + · · · , (B.4a)

δωµ
AA′ = ∂µλ

AA′ + · · · , δωµ
A′B′ = ∂µλ

A′B′ + · · · , (B.4b)
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where the ellipses denote terms that do not involve derivatives of a parameter. To do this,
we consider the following ‘covariant’ quantities

∇µφ ≡ ∂µφ− bµ , (B.5a)

Rµν(HA) ≡ 2 τµνA − 2
(
εAB ω[µ + δAB b[µ

)
τν]

B , (B.5b)

Rµν(PA′) ≡ 2 eµνA
′ − 2ω[µ

A′B′ eν]B′ + 2ω[µ
AA′ τν]A , (B.5c)

Hµνρ ≡ hµνρ + 6 εAB ω[µ
AB′τν

B eρ]B′ . (B.5d)

where we have defined

τµν
A = ∂[µτν]

A , eµν
A′ = ∂[µeν]

A′ , hµνρ = 3 ∂[µbνρ] . (B.6)

The quantities defined in (B.5) are covariant in the sense that they transform without
derivatives of a parameter, if the transformation rules (B.4) hold.

Similarly to how one defines the relativistic spin connection (A.8), we can then try to
express the String Galilei spin connections and the dilatation connection as dependent fields
that solve conventional constraints,24 that are obtained by putting certain components of
the covariant quantities (B.5) equal to zero. Note that we should only constrain those parts
of (B.5) that contain components of ωµ, ωµAA

′ , ωµA
′B′ and bµ. In particular, the following

components of (B.5)

RA′B′(HC) = 2 τA′B′C , RA′{A(HB}) = 2 τA′{AB} , HA′B′C′ = hA′B′C′ , (B.7)

are independent of the String Galilei spin connections and bµ and are not set to zero as
conventional constraints. Note that RA′B′(HC) and RA′{A(HB}) contain information about
the intrinsic torsion of the geometry [38]. For the remaining components of (B.5), we then
adopt the following constraints

∇Aφ = 0 , ηABRA′A(HB) = 0 , (B.8a)
εAB RA′A(HB) = 0 , εABRAB(HC) = 0 , (B.8b)

Rµν(PA′) = 0 , (B.8c)
HAA′B′ = 0 , HABA′ = 0 . (B.8d)

These can be viewed as 444 algebraic equations for the 460 components of bµ, ωµ, ωµAA
′ ,

ωµ
A′B′ . These equations are thus not able to determine all components of the String Galilei

spin connections and dilatation field.25 The 16 undetermined components reside in ω{AB}A
′

and will in the following be denoted by WµA
A′ = τµ

Bω{AB}
A′ . We can then express the

24By conventional constraints we mean constraints that reduce the number of independent fields in a
theory, i.e., constraints that contain certain fields algebraically and that can be used to solve those fields
in terms of other fields.

25A similar phenomenon has been encountered in [5].
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most general solution of the conventional constraints (B.8) by

bµ = eµ
A′ τA′A

A + τµ
A∂Aφ , (B.9a)

ωµ =
(
τµ
AB − 1

2 τµ
CτABC

)
εAB − τµA εAB∂Bφ , (B.9b)

ωµ
AA′ = −eµAA

′ + eµB′e
AA′B′ + 1

2 ε
A
B hµ

BA′ +Wµ
AA′ , (B.9c)

ωµ
A′B′ = −2 eµ[A′B′] + eµC′e

A′B′C′ − 1
2 τµ

A εAB h
BA′B′ . (B.9d)

The transformation rules of (B.9) under String Galilei symmetries and dilatations can be
obtained by requiring that the set of constraints (B.8) does not transform under these
symmetries. Writing down these requirements, using (B.1), one obtains equations for δbµ,
δωµ, δωµAA

′ and δωµA
′B′ that can be solved to give26

δ bµ = ∂µλD , δ ωµ = ∂µλM , (B.10a)

δ ωµ
A′B′ = ∂µλ

A′B′ − 2ωµC
′[A′λB

′]
C′ , (B.10b)

δ ωµ
AA′ = λM εAB ωµ

BA′ + λA
′
B′ωµ

AB′ − λD ωµAA
′
, (B.10c)

for the transformations under SO(1, 1)× SO(8) and dilatations and

δ bµ = eµ
A′ τA′B′Bλ

BB′ + τµ
AλAA′∇A

′
φ , (B.11a)

δ ωµ = −eµA
′
εABτA′B′AλB

B′ − 2 τµA
(
εBCλB

B′τB′{AC} + 1
2εABλ

BB′∇B′φ
)
, (B.11b)

δ ωµ
AA′ = ∇µλAA

′ + 2 eµB
′
(
λBB′τ

A′{AB} + 1
4 ε

ABλBC′ h
A′B′C′

)
, (B.11c)

δ ωµ
A′B′ = 4 τµA

(
λB[A′τB

′]
{AB} −

1
8 εABλ

B
C′ h

A′B′C′
)

− eµC
′ (
λCC′τ

A′B′C − 2λC [A′τB
′]C′C

)
, (B.11d)

under Galilean boosts, where we have defined

∇µλAA
′ = ∂µλ

AA′ − ωµ εABλBA
′ − ωµA

′B′λAB′ + bµ λ
AA′ . (B.12)

B.2 Affine connection

Using the String Galilei spin connections and dilatation connection, we can then also
introduce an affine, metric compatible connection Γρµν , by imposing the following Vielbein
postulates

∇µτνA = ∂µτν
A − ωµ εABτνB − bµ τνA − ΓρµντρA = 0 , (B.13a)

∇µeνA
′ = ∂µeν

A′ − ωµA
′B′eνB′ + ωµ

AA′τνA − ΓρµνeρA
′ = 0 . (B.13b)

26The undetermined components in the boost spin connection transform as follows

δWµ
AA′

= τµB

(
∇{AλB}A

′
− ωB

′A′{AλB}B′

)
+ λM εABWµ

BA′
+ λA

′
B′Wµ

AB′
− λDWµ

AA′
.
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This connection has intrinsic torsion

T ρµν = 2 Γρ[µν] = Rµν(HA)τAρ . (B.14)

As a corollary of (B.13), we derive the following identities:

∂µ (e eA′µ) = e eB′
µωµA′

B′ + 2 e bA′ , (B.15a)

∂µ (e τAµ) = e τB
µ
(
εA

B ωµ + δA
B bµ

)
+ e eA′

µωµA
A′ , (B.15b)

which are used to derive the action (3.17) and the equations of motion (3.23).

B.3 Curvatures

Using the transformation rules for the spin connections (B.10) and (B.11) we can define
covariant curvature 2-forms

Rµν(D) = 2 ∂[µbν]+2 e[µ
A′ων]

BB′ τA′B′B + 2 τ[µ
A ων]A

A′ ∇A′φ , (B.16a)

Rµν(M) = 2 ∂[µων] + 2 εAB e[µ
A′ων]

AB′ τA′B′
B

− 4 τ[µ
Aων]

BB′ εB
CτB′{AC} + 2 εAB τ[µ

Aων]
BB′ ∇B′φ , (B.16b)

Rµν(G)AA′ = 2 ∂[µων]
AA′ − 2 εAB ω[µων]

BA′ − 2ω[µ
A′B′ων]

A
B′ + 2 b[µων]

AA′

− 4 e[µ
B′
(
ων]B

[A′τB
′]{AB} − 1

4 ε
AB ων]BC′ h

A′B′C′
)
, (B.16c)

Rµν(J)A′B′ = 2 ∂[µων]
A′B′ + 2ω[µ

A′C′ων]
B′
C′

+ 2 e[µ
C′
(
2ων]

C[A′τB
′]
C′C−ων]CC′τ

A′B′C
)

+ 8 τ[µ
A
(
ων]

B[A′τB
′]
{AB} −

1
8 εA

B ων]BC′h
A′B′C′

)
. (B.16d)

The Ricci scalar built from the curvature of transverse rotations reads

R(J) = −RA′B′(J)A′B′

= −2 eA′µeB′ν
(
∂[µων]

A′B′ + ω[µ
A′C′ων]

B′
C′

)
(eA, eB′)−4ωA′BB′τA

′B′B. (B.17)

Substituting the conventional constraints (B.8) into the Bianchi identities, one can derive
the following relations:

R[B′C′(J)A′D′] = 0 −→ RC′[A′(J)B′]C
′ = 0 , (B.18a)

2 R[B′
A(J)A′C′] = −RB′C′(G)AA′ −→ RC′A(J)A′C

′ = RC′A′(G)AC
′
, (B.18b)

∇A τA′B′A = −RA′B′(D) −→ ∇A τA′B′A = 2∇[A′∇B′]φ . (B.18c)

C Details on the NR limit of NS-NS gravity

Here, we provide details on how the NR limit of NS-NS gravity is taken in section 4. In
particular, we give the results of expanding the geometric objects of Lorentzian geometry
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of A.2 in powers of c−2, after applying the redefinitions (3.1). We also show how these
results can be rewritten in terms of geometric quantities of TSNC geometry, discussed in
the previous appendix B. We refer to appendices A and B for the notation used in this
section.

Let us start by applying the redefinitions (3.1) to the relativistic spin connection (A.8)
and expanding the result into leading and subleading orders of powers of c−2. This leads to

Ωµ = (0)
ωµ + 1

c2
(−2)
ωµ , (C.1a)

Ωµ
AB′ = c

(1)
ωµ

AB′ + 1
c

(−1)
ωµ

AB′= −Ωµ
B′A , (C.1b)

Ωµ
A′B′ = c2 (2)

ωµ
A′B′ + (0)

ωµ
A′B′ , (C.1c)

where we have set Ωµ
AB = Ωµ ε

AB and we explicitly have

(0)
ωµ = εAB

(
eµC′τ

C′AB − τµCτABC
)
,

(−2)
ωµ = −1

2 εABeµC
′eABC

′
, (C.2a)

(1)
ωµ

AA′ = eµB′τ
B′A′A − 2 τµBτA

′(BA) ,
(−1)
ωµ

AA′ = 2 eµB′eA(A′B′) − τµBeBAA
′
, (C.2b)

(2)
ωµ

A′B′ = τµCτ
A′B′C ,

(0)
ωµ

A′B′ = eµC′e
A′B′C′ − 2 eµ[A′B′] . (C.2c)

It is useful to note that
(1)
ωABA

′ = −2 τA′(AB) ,
(1)
ωC

CC′ = −2 bC′ ,
(1)
ωB
′AA′ = τB

′A′A ,
(1)
ωA′

AA′ = 0 , (C.3)
(2)
ωAB

′C′ = τB
′C′A ,

(2)
ωA
′B′C′ = 0 .

None of the expressions in (C.2) correspond to String Galilei spin connections as they
stand; rather (0)

ωµ,
(−1)
ωµ

AA′ and (0)
ωµ

A′B′ are related to the String Galilei spin connections ωµ,
ωµ

AA′ and ωµA
′B′ via

(0)
ωµ = ωµ + τµ

AεAB∂
Bφ , (C.4a)

(−1)
ωµ

AA′ = ωµ
AA′ − 1

2 ε
A
B hµ

BA′ −Wµ
AA′ , (C.4b)

(0)
ωµ

A′B′ = ωµ
A′B′ + 1

2 τµ
A εAB h

BA′B′ . (C.4c)

Expanding Hµνρ = 3 ∂[µBνρ] in powers of c−2, using (3.1), we have

Hµνρ = c2
(2)
Hµνρ +

(0)
Hµνρ , (C.5)

with
(2)
Hµνρ = 6 εABτ[µ

Aτνρ]
B ,

(0)
Hµνρ = hµνρ = 3 ∂[µbνρ] ,

(2)
HAA′B′ = 2 εABτA′B′B ,

(2)
HABC′ = −2 εABbC′ ,

(2)
HA′B′C′ = 0 , and

(2)
HABC = 0 .
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Similarly, we can also expand the Ricci scalar (A.12) as

R = c2
(2)
R+

(0)
R+O(c−2) , (C.6)

where :
(2)
R = −ηABτA′B′AτA

′B′B , (C.7)
(0)
R = −

(0)
RA′B′

A′B′ − 4 eA′µ
(
∂µb

A′ − (0)
ωµ

A′B′bB′ + 3
2 bµb

A′
)
− 4 τA′{AB}τA

′{AB} ,

(C.8)

where
(0)
RA′B′

A′B′ = 2 eA′µeB′ν(∂[µ
(0)
ων]

A′B′ + (0)
ω[µ

C′A′(0)
ων]

B′
C′) .

The quantity
(0)
R can be expressed in terms of TSNC geometric variables, using the

relations (C.4)
(0)
R = R(J)− 4DA′bA

′ − 6 bA′bA
′+2ωA′BB′τA

′B′B − 4 τA′{AB}τA
′{AB} , (C.9)

where the derivative Dµ is defined in (3.15b).
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