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A computational walk to the hidden peaks of protein
performance
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Spiders use them to catch their prey, plants rely on them to fix
carbon and mammals need them for eye vision—proteins.

Proteins play critical roles in nature, and not surprisingly,
synthetic biologists heavily rely on their functional diversity to
build new therapeutics (1), catalysts (2) and materials (3). But
natural proteins are rarely optimal for their envisioned human
uses. They rather need to be engineered to enhance their per-
formance. Recently, researchers introduced a machine-learning
guided paradigm that can predict which mutations in a pro-
tein will enhance function with only 24 functional data sets as
input (4). This paradigm could significantly accelerate the engi-
neering of improved proteins for medicine, food, agriculture and
industrial applications.

The desire to optimize a protein’s function has always been a
centerpiece of synthetic biology, and for decades, protein engi-
neers have innovated the capacities of directed evolution (2) and
rational protein engineering. One prominent bottleneck for the
engineering of proteins is the difficulty in understanding a pro-
tein’s so-called fitness landscape. That means to know, which
mutationwillmake a protein better, while in fact, mostmutations
render a protein dysfunctional.

The function of a protein is dictated by its amino acid
sequence, and protein scientists picture the relationship between
sequence and function of a protein as if it was a rugged landscape
with shallow hills and high peaks, separated by valleys (5). Val-
leys represent sequence variants that are not functional, while
the highest peaks represent the most functional mutations. Pro-
tein engineers now seek to walk through this landscape—each
step being one mutation away from the wild-type sequence—in
order to explore if they can find higher peaks of performance
in sequence space. As the shape of the landscape is mostly
unknown, the walk is random and requires the generation of
many sequences and the evaluation of their function. Generat-
ing this data is often experimentally difficult or expensive. Most
importantly, very distant regions of the landscape, where func-
tional peak performance might hide, are not accessible by this
search.

Recently, researchers have started to perform this walk
through a protein’s sequence space computationally, using deep
learning (6). Although several success stories have been reported,
each case still relies on a large number of experimental input

data. The Church group at Harvard Medical School and the Wyss
Institute for Biologically Inspired Engineering now developed a
way to mitigate the notorious shortage in experimental data
that constrains the engineering of many proteins, by making
use of the vast number of publicly available protein sequence
data (4, 7).

Instead of learning the fitness landscape of an individual pro-
tein from experimental data, they first built a deep learning
algorithm that extracts the fundamental features of all functional
proteins from the >20 million available unlabeled amino-acid
sequences in the UniREF database (7). As such, the algorithm
learns what a functional protein sequence likely looks like,
enabling exclusion of vast dysfunctional sequences from the
search. The search is then fine-tuned when the algorithm learns
features specific to the protein of interest, via sequence data from
homologues proteins.

Eventually—after having learned from all the available data—
the algorithm only requires very few experimental data points to
learn a good representation of the protein of interest’s sequence-
function landscape: 24 or 96 functionally characterized mutants.
The combined algorithm then performs in silico–directed evolu-
tion and suggests protein sequences with various user-defined
mutational loads that are likely better performing than the
wild-type.

The researchers showed with two evolutionary and function-
ally different model proteins—avGFP (eukaryotic fluorescent pro-
tein) and TEM-1 ß-lactamase (prokaryotic enzyme)—that 5–65%
(avGFP) and 2.5–26% (ß-lactamase) of the suggested designs per-
formed better, some up to 10-fold. The hit rate and fold differ-
ence in performance thereby depended on the chosenmutational
load: the more mutations allowed, the lower the hit rate but the
higher the potential gain in performance. Most importantly, those
designs included regions in sequence space that had not been
accessed by experimental exploration.

In summary, the results suggest the feasibility of what the
authors call a ‘24-to-24 design’: in order to get one to two
protein variants (95% confidence) that perform better than the
original protein, a researcher would just need to generate 24
characterized training mutants and synthesize and character-
ize 24 suggested designs. Given the ever-decreasing price for
gene synthesis, this low number of required input data makes
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it likely that the paradigm can be applied to many proteins of
interest, including those which are currently inaccessible for
evolution-based protein engineering as no high-throughput
assays are available.

The resource opens up even further opportunities: the algo-
rithmwas testedwith improving the original function of a protein.
But can it be used to facilitate the engineering of new pro-
tein functions, for example, as recently experimentally achieved
for the direct enzymatic catalysis of a C1–C1 condensation?
(8) Also, exciting fundamental questions could be explored:
is it possible to improve any protein for human uses? The
example of the carbon fixing enzyme RuBisCO suggests that in
some cases nature might have already found functional peak
performance (9, 10).
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