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Krasovskii and Shifted Passivity-Based Control
Yu Kawano , Krishna Chaitanya Kosaraju , and Jacquelien M. A. Scherpen , Senior Member, IEEE

Abstract—In this article, our objective is to develop novel
passivity-based control techniques by introducing a new passivity
concept named Krasovskii passivity. As a preliminary step, we
investigate the properties of Krasovskii passive systems and es-
tablish relations among four relevant passivity concepts including
Krasovskii passivity. Then, we develop novel dynamic controllers
based on Krasovskii passivity and based on shifted passivity.

Index Terms—Contraction analysis, nonlinear systems, passiv-
ity, passivity-based control (PBC).

I. INTRODUCTION

Passivity as a tool enables us to develop various types of passivity-
based control (PBC) techniques, and moreover as a property, it helps
us to understand these techniques in the standard engineering parlance.
The Lyapunov analysis discusses stability with respect to an equilib-
rium. However, notions like differential (or called contraction) analysis
and incremental stability [2]–[8] study the convergence between any
pair of trajectories. These different notions have resulted in diverse
stability definitions, which further resulted in disparate passivity defi-
nitions such as differential passivity and incremental passivity [9]–[12].

There are several papers that describe these relatively new differen-
tial passivity concepts [10], [11]. Apart from the elegance of analysis,
it is not well understood how differential passivity can be used either
as a tool or as a property although there are a few differential PBC
techniques [13]–[16]. This is because, generally, differential passivity
can be interpreted as a property of the variational system and does not
give direct conclusions for the original system itself.

In contrast, incremental passivity has been used as a tool or as a
property via so-called shifted passivity [17]–[19]. If a system has an
equilibrium point, incremental passivity results into shifted passivity
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at the equilibrium point. Shifted passivity can be interpreted as a
generalization of standard passivity for a system whose equilibrium
point is not necessarily the origin and is applied to various situations
(see, e.g., [17]–[19]).

Similarly, for differential passivity it can be of interest to consider
a passivity property at an equilibrium point that can help with analysis
and control design. Motivated by this, we establish a new passivity
concept, which we call Krasovskii passivity. First, we marshal the afore-
mentioned relevant four passivity concepts: 1) differential passivity, 2)
Krasovskii passivity, 3) incremental passivity, and 4) shifted passivity.
Then, we establish a similar connection as the connection between
incremental passivity and shifted passivity, for differential passivity and
Krasovskii passivity. Furthermore, we show that Krasovskii passivity
implies shifted passivity, and differential passivity with respect to a
constant metric implies incremental passivity. Next, we provide novel
dynamic control techniques based on Krasovskii passivity, which also
inspire a new shifted passivity-based dynamic controller. The utility
of the proposed controllers is illustrated by a DC-Zeta converter. It is
worth mentioning that to the best of our knowledge for this converter,
a passivity-based controller has not been designed in literature.

In the preliminary conference version [1], we have pro-
posed Krasovskii passivity, provided sufficient conditions for port-
Hamiltonian and gradient systems to be Krasovskii passive, and gave a
brief introduction of Krasovskii PBC techniques. However, the consid-
ered storage function is restricted into one with a constant metric. Also,
incremental passivity and shifted passivity have not been considered
in the preliminary version. This article contains the following new
contributions.
1) General storage functions are used for analysis and controller

design.
2) A necessary and sufficient condition for Krasovskii passivity is

presented.
3) We establish relations among four types of passivity properties.
4) We show an example of a Krasovskii passive system, which is not

differentially passive with a positive-definite storage function.
5) The proposed Krasovskii passivity-based dynamic controller is

more general than the one in [1].
6) We newly present a shifted passivity-based dynamic controller.

The remainder of this article is organized as follows. In Section II, we
define Krasovskii passivity and establish the connection among the four
passivity concepts. In Section III, we design two novel passivity-based
dynamic controllers on the basis of Krasovskii passivity and shifted
passivity. In Section IV, the two provided controllers are applied to solve
the stabilization problem of a DC-Zeta converter. Finally, Section V
concludes this article.

Notation: The set of real numbers and nonnegative real numbers are
denoted by R and R+, respectively. For symmetric matrices P,Q ∈
Rn×n,P � Q (P � Q) means thatP −Q is positive definite (semidef-
inite). For a vectorx ∈ Rn, define |x|P :=

√
x�Px, whereP ∈ Rn×n.

If P is the identity matrix, this is nothing but the Euclidean norm and is
simply denoted by |x|. The open ball of radius r > 0 centered at p ∈ Rn

is denoted by Br(p) := {x ∈ Rn : |x− p| < r}; its dimension (n in
this case) is not stated explicitly because this is clear from the context.
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II. ANALYSIS OF PASSIVITY PROPERTIES

A. Preliminaries

Consider the following input-affine nonlinear system:⎧⎪⎨
⎪⎩

ẋ = f(x, u) := g0(x) +
m∑
i=1

gi(x)ui

y = h(x)

(1)

where x : R+ → Rn, u : R+ → Rm, and y : R+ → Rm denote the
state, input, and output, respectively. Functions g0 : Rn → Rn, g :
Rn → Rn×m and h : Rn → Rm are of class C1, where ui, yi denote
the ith elements of u and y, respectively, and gi denotes the ith column
of g.

In some of our developments, we assume an equilibrium point to
exist, i.e., we use the following assumption.

Assumption 2.1: For system (1), the following set:

E := {(x∗, u∗) ∈ Rn × Rm : f(x∗, u∗) = 0}

is not empty. �
In this article, our objective is to develop new PBC techniques by

investigating different passivity properties from the standard one. To be
self-contained, we first summarize results on standard passivity, which
will be extended to passivity concepts defined in this article.

Definition 2.2: [12], [20] System (1) is said to be passive if there
exists a class C1 function S : Rn → R+, called the storage function,
such that S(0) = 0 and

∂S(x)

∂x
f(x, u) ≤ u�y

for all (x, u) ∈ Rn × Rm. �
The following necessary and sufficient condition is well known for

standard passivity.
Proposition 2.3: [12, Corollary 4.1.5] A system (1) is passive if and

only if there exists a class C1 function S : Rn → R+ such that S(0) =
0 and

∂S(x)

∂x
g0(x) ≤ 0

∂S(x)

∂x
g(x) = h�(x)

for all x ∈ Rn.
Remark 2.4: For passivity analysis,S(0) = 0 is not required in gen-

eral (see, e.g., [12]). However, S(0) = 0, f(0, 0) = 0, and h(0) = 0
are standard assumptions for PBC design. We will impose similar
assumptions for the ease of discussions. �

For a passive system satisfying f(0, 0) = 0 and h(0) = 0, the con-
troller u = −Ky, K � 0 plays an important role. According to [12]
and [20], this controller achieves stabilization of the origin if S(x) is
positive definite, and a passive system (1) is zero-state detectable in the
following sense.

Definition 2.5: Suppose that Assumption 2.1 holds, and h(x∗) = 0.
System (1) is said to be detectable at (x∗, u∗) ∈ E if

u(·) = u∗ and y(·) = 0 ⇒ lim
t→∞

x(t) = x∗.

If f(0, 0) = 0 and h(0) = 0, detectability at (0,0) is called zero-state
detectability [12], [20].

The rest of this section is dedicated to provide four passivity concepts
and investigate their relations. These relations are summarized in Fig. 1.

Fig. 1. Relationships among the proposed passivity concepts and
controllers.

B. Differential Passivity and Krasovskii Passivity

The differential passivity [10] is introduced by using the so-called
prolonged system consisting of the nonlinear system (1) and its varia-
tional system ⎧⎪⎨

⎪⎩
˙δx = F (x, u)δx+

m∑
i=1

gi(x)δui

δy = hd(x)δx

(2)

where δx : R+ → Rn, δu : R+ → Rm, and δy : R+ → Rm denote
the state, input, and output of the variational system, respectively, and

F (x, u) :=
∂g0(x)

∂x
+

m∑
i=1

∂gi(x)

∂x
ui.

The function hd : Rn → Rm×n is continuous. Note that we do not
assume that hd(x) is ∂h(x)/∂x in this article.

Differential passivity is defined as a passivity property of the pro-
longed system.

Definition 2.6: [10] The nonlinear system (1) is said to be differen-
tially passive if there exists a class C1 function SD : Rn × Rn → R+

such that SD(x, 0) = 0 and

∂SD(x, δx)

∂x
f(x, u) +

∂SD(x, δx)

∂δx
(F (x, u)δx+ g(x)δu)

≤ δu�δy (3)

for all (x, u) ∈ Rn × Rm and (δx, δu) ∈ Rn × Rm.
By applying Proposition 2.3 to the prolonged system, its necessary

and sufficient condition is obtained as follows.
Proposition 2.7: A system (1) is differentially passive if and only

if there exists a class C1 matrix-valued function M(x) � 0, x ∈ Rn

such that SD := (δx�M(x)δx)/2 satisfies

∂SD(x, δx)

∂x
f(x, u) +

∂SD(x, δx)

∂δx
F (x, u)δx ≤ 0

∂SD(x, δx)

∂δx
g(x) = (hd(x)δx)

� (4)

for all (x, u) ∈ Rn × Rm and δx ∈ Rn.
Proof: According to [10, Proposition 4.2], the system is differen-

tially passive if and only if there exists a class C1 function SD :
Rn × Rn → R+ such that the above two conditions hold. Next, the
variational system is linear with respect to (δx, δu, δy), and it is known
that for passive linear systems, the storage function is a quadratic
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function [21, Th. 14.2]. Therefore, if the system is differentially pas-
sive, the storage function can be described as SD = (δx�M(x)δx)/2
with M(x) � 0. �

It is worth mentioning that for differentially passive systems, a
control design methodology has not been well explored yet. A bottle
neck is that if one simply applies PBC techniques, then a controller is
designed for the variational system, but not for the original system. It is
not obvious how to design a controller for the original system from one
designed for the variational system. To address this issue, we provide a
new passivity concept, which we call Krasovskii passivity; the reason
for picking this name is explained in Remark 2.10 below. In fact, we
will show that every differentially passive system is Krasovskii passive.
This fact is helpful when one considers stabilizing controller design for
differentially passive systems.

The main idea of defining Krasovskii passivity comes from the
fact that the pair (f(x, u), u̇) satisfies the equation of the variational
system (2), namely

df(x, u)

dt
= F (x, u)f(x, u) + g(x)u̇. (5)

Therefore, it is expected that if a system is differentially passive with
the input and output port variables, δu and δy, then it is passive for u̇
and hd(x)f(x, u). To obtain this conclusion formally, we introduce the
so-called extended system [22]

⎧⎨
⎩

ẋ = f(x, u)
u̇ = uK

yK = hK(x, u)

(6)

where (x, u) : R+ → Rn × Rm, uK : R+ → Rm, and yK : R+ →
Rm are the state, input, and output of the extended system, respectively,
and hK : Rn × Rm → Rm is continuous.

We now define Krasovskii passivity as follows.
Definition 2.8: Suppose that Assumption 2.1 holds. Then, system (1)

is said to be Krasovskii passive at (x∗, u∗) ∈ E if there exists a class C1

function SK : Rn × Rm → R+ such that SK(x∗, u∗) = 0 and

∂SK(x, u)

∂x
f(x, u) +

∂SK(x, u)

∂u
uK ≤ u�

KyK (7)

for all (x, u) ∈ Rn × Rm and uK ∈ Rm. �
As expected, differential passivity implies Krasovskii passivity.

However, the converse is not always true for positive-definite storage
functions as shown in Example 2.11.

Theorem 2.9: Under Assumption 2.1, if a system (1) is differentially
passive, then it is Krasovskii passive at any (x∗, u∗) ∈ E forhK(x, u) =
hd(x)f(x, u).

Proof: By direct computation, it is possible to show thatSK(x, u) =
SD(x, f(x, u)) is a storage function for Krasovskii passivity if
SD(x, δx) is a storage function for differential passivity. �

Remark 2.10: In the proof of Theorem 2.9, we obtain the storage
functionSK(x, u) by replacing δx by f(x, u) inSD(x, δx). In fact, for
stability analysis, the Lyapunov function constructed by Krasovskii’s
method is obtained similarly from the differential Lyapunov function of
contraction analysis [4]. Because of this analogy, we name the proposed
passivity concept Krasovskii passivity.

Example 2.11: In this example, we show that Krasovskii passivity
does not imply differential passivity with respect to a positive-definite

storage function. Consider the following system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
ẋ1

ẋ2

]
= g(x)u, g(x) :=

[
x
1/3
1

−x
1/3
2

]

y = h(x) := x
4/3
1 − x

4/3
2

yK = ẏ =
∂h(x)

∂x
g(x)u

where

E = {(x∗, u∗) ∈ R2 × R : x∗ = 0}
∪ {(x∗, u∗) ∈ R2 × R : u∗ = 0}.

First, we show that this system is Krasovskii passive with respect to the
following storage function:

SK(x, u) = (1/2)|g(x)u|2 = (x
2/3
1 + x

2/3
2 )u2/2

whereSK(·, ·) ≥ 0 andSK(x∗, u∗) = 0 for any (x∗, u∗) ∈ E . Compute

∂SK(x, u)

∂x
g(x)u = 0

∂SK(x, u)

∂u
= (x

2/3
1 + x

2/3
2 )u =

∂h(x)

∂x
g(x)u.

Therefore, Proposition 2.12 implies that the system is Krasovskii pas-
sive at any (x∗, u∗) ∈ E .

Next, we show that the system does not admit a storage function
for differential passivity in the form of SD(x, δx) = (δx�M(x)δx)/2
with positive definite M(·) � 0. This can be done by showing nonex-
istence of such a storage function satisfying (4), i.e.,

u

2
δx�

(
∂M(x)

∂x1

x
1/3
1 − ∂M(x)

∂x2

x
1/3
2

)
δx

+
u

3
δx�M(x)

[
x
−2/3
1 0

0 −x
−2/3
2

]
δx ≤ 0.

Note that this needs to hold for all u ∈ R. If we choose δx = [1, 0]�,
then the following is required to hold for all x ∈ R2:

∂M1,1(x)

∂x1

− x
1/3
2

x
1/3
1

∂M1,1(x)

∂x2

= − 2

3x1

M1,1(x).

We solve this partial differential equation by using the method of
characteristics. Consider the following set of differential equations:

dx2

dx1

= −x
1/3
2

x
1/3
1

,
dM1,1

dx1

= − 2

3x1

M1,1.

The solution to the first and second equations is x
2/3
1 + x

2/3
2 = c1,

i.e., x2 = ±(c1 − x
2/3
1 )3/2 and M1,1 = c2x

−2/3
1 , respectively, with

integration constants c1, c2 ∈ R. Therefore, we have

M1,1

(
x1,±

(
c1 − x

2/3
1

)3/2
)

= c2x
−2/3
1 .

This is not defined at x1 = 0 unless c2 = 0. If c2 = 0, then M(x) is
not positive definite at x2 = ±(c1 − x

2/3
1 )3/2. Therefore, the system

is not differentially passive with respect to a positive-definite storage
function for any choice of the output function. �

One notices that Krasovskii passivity can be viewed as the stan-
dard passivity for the extended system (6) at a shifted equilibrium
point (x∗, u∗) ∈ E . Therefore, it is possible to develop control method-
ologies for the extended system based on Krasovskii passivity, which
is investigated in Section III based on the following necessary and
sufficient condition for Krasovskii passivity.
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Proposition 2.12: Suppose that Assumption 2.1 holds. System (1) is
Krasovskii passive at (x∗, u∗) ∈ E if and only if there exists a class C1

function SK : Rn × Rm → R+ such that SK(x∗, u∗) = 0 and

∂SK(x, u)

∂x
f(x, u) ≤ 0 (8)

∂SK(x, u)

∂u
= h�

K(x, u) (9)

for all (x, u) ∈ Rn×m. �
Proof: The proof can be shown in a similar manner as that of

Proposition 2.3. �

C. Generalized Incremental Passivity and Shifted Passivity

In contraction analysis, differential properties have strong connec-
tions with the corresponding incremental properties such as stabil-
ity [4]–[7]. Motivated by this analysis, we also consider incremental
passivity, which is defined by using the following auxiliary system:⎧⎨

⎩
ẋ = f(x, u)
ẋ′ = f(x′, u′)
yI = hI(x, x

′)
(10)

where x′ : R+ → Rn, u′ : R+ → Rm, yI : R+ → Rm, and hI :
Rn × Rn → Rm is continuous and satisfies hI(x, x) = 0 for all x ∈
Rn.

Incremental passivity is defined as a property of the auxiliary system
by restricting hI(x, x

′) into an incremental function h(x)− h(x′) of
some function h : Rn → Rm [9], [19]. By releasing this restriction, we
generalize the concept of incremental passivity

Definition 2.13: System (1) is said to be generalized incrementally
passive if there exists a class C1 function SI : Rn × Rn → R+ such
that SI(x, x) = 0 and

∂SI(x, x
′)

∂x
f(x, u) +

∂SI(x, x
′)

∂x′ f(x′, u′)

≤ (u− u′)�hI(x, x
′) (11)

for all (x, u) ∈ Rn × Rm and (x′, u′)× Rn × Rm. �
As shown in the previous section, differential passivity implies

Krasovskii passivity. As a counterpart, we have a similar relation
between incremental and shifted passivity, where shifted passivity is
introduced by substituting (x∗, u∗) ∈ E into (x′, u′) of Definition 2.13
for incremental passivity.

Definition 2.14: Suppose that Assumption 2.1 holds. Then, sys-
tem (1) is said to be shifted passive at (x∗, u∗) ∈ E if there exists a
class C1 function Ss : Rn → R+ such that Ss(x

∗) = 0 and

∂Ss(x)

∂x
f(x, u) ≤ (u− u∗)�(h(x)− h(x∗))

for all (x, u) ∈ Rn × Rm.
From their definitions, incremental passivity implies shifted passiv-

ity.
Proposition 2.15: Under Assumption 2.1, if a system (1) is general-

ized incrementally passive, then it is shifted passive at any (x∗, u∗) ∈ E
for h(x) = hI(x, x

∗). �
Proof: This can be shown by substituting (x′, u′) = (x∗, u∗)

into (11), where hI(x
∗, x∗) = 0 is used. �

Standard passivity is nothing but shifted passivity at (0,0)
when h(0) = 0. That is, shifted passivity is defined by shifting an
equilibrium point from (0,0) to an arbitrary (x∗, u∗) ∈ E . Therefore,
its necessary and sufficient condition can readily be obtained by the
slight modification of Proposition 2.3. Due to limitations of space, we
refer to a similar result in [17, Prop. 1].

D. Krasovskii Passivity and Shifted Passivity

In Section II-B, we show that differential passivity implies
Krasovskii passivity. Then, in Section II-C, we related in a similar way
generalized incremental passivity and shifted passivity. In this section,
we add one additional relation, i.e., we show that Krasovskii passivity
implies shifted passivity.

Theorem 2.16: Under Assumption 2.1, if the system (1) is
Krasovskii passive at (x∗, u∗) ∈ E , then it is shifted passive at (x∗, u∗)
for

h(x) =

(
∂SK(x, u∗)

∂x
g(x)

)�
. (12)

Proof: By using Proposition 2.12, we show that SS(x) =
SK(x, u∗) is a storage function for shifted passivity. First, SS(x

∗) =
SK(x∗, u∗) = 0. Next, from (1) and (8), it follows that

∂SS(x)

∂x
f(x, u)

=
∂SK(x, u∗)

∂x
f(x, u)

=
∂SK(x, u∗)

∂x
f(x, u∗) +

∂SK(x, u∗)
∂x

g(x)(u− u∗)

≤ (u− u∗)�
(
∂SK(x, u∗)

∂x
g(x)

)�
.

Note thatSK(x∗, u∗) = 0 andSK(x, u) ≥ 0 for all (x, u) ∈ Rn × Rm

imply that SK takes the minimum value at (x∗, u∗), and consequently

∂S(x∗, u∗)
∂(x, u)

= 0 ⇒ h(x∗) =
(
∂SK(x∗, u∗)

∂x
g(x∗)

)�
= 0.

Therefore, the system is shifted passive for h(x) in (12). �
As mentioned in Section II-B, we will develop a PBC

technique on the basis of Krasovskii passivity in Section III.
Theorem 2.16 suggests that the developed technique can be modified
for shifted passivity. We will also investigate this in this article.

E. Differential Passivity and Incremental Passivity

To complete the relations between the various passivity concepts as
in Fig. 1, in this section we investigate a connection between differential
passivity and incremental passivity.

Theorem 2.17: If a system (1) is differentially passive with a storage
function SD(x, δx) = (δx�Mδx)/2 for constant M � 0, then it is
generalized incrementally passive for

hI(x, x
′) =

∫ 1

0

g�(sx+ (1− s)x′)M(x− x′)ds. (13)

Proof: Let denote γ(s) := sx+ (1− s)x′ and μ(s) := su+ (1−
s)u′, for s ∈ [0, 1]. Compute

f(x, u)− f(x′, u′)

=

∫ 1

0

df(γ(s), μ(s))

ds
ds

=

∫ 1

0

(
F (γ(s), μ(s))

dγ(s)

ds
+ g(γ(s))

dμ(s)

ds

)
ds

where dγ(s)/ds = x− x′ and dμ(s)/ds = u− u′.
By using this, we show that

SI(x, x
′) = SD

(
x,

dγ(s)

ds

)
=

1

2
(x− x′)�M(x− x′)
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is a storage function for generalized incremental passivity. Since M is
constant, ∂SD(x, δx)/∂x = 0. From (4) with ∂SD(x, δx)/∂x = 0, it
follows that:

∂SI(x, x
′)

∂x
f(x, u) +

∂SI(x, x
′)

∂x′ f(x′, u′)

= (x− x′)�M(f(x, u)− f(x′, u′))

=

∫ 1

0

∂SD

∂δx

(
F (γ(s), μ(s))

dγ(s)

ds
+ g(γ(s))

dμ(s)

ds

)
ds

≤
∫ 1

0

∂SD

∂δx
g(γ(s))

dμ(s)

ds
ds

≤ (u− u′)�
∫ 1

0

g�(γ(s))M(x− x′)ds

where the arguments of SD are (x, dγ(s)/ds). Therefore, the sys-
tem is generalized incrementally passive for hI(x, x

′) in (13),
where hI(x, x) = 0 for all x ∈ Rn. �

In the proof of the above theorem, we consider the straight line as a
path connecting x and x′ or u and u′. One can however use an arbitrary
class C1 path. The integral in (13) depends on the considered path in
general.

As well known from [23] if g�i (x)Mdx, i = 1, . . . ,m is an exact
differential one-form, i.e., there exists a function hi : Rn → R such
that

g�i (x)M =
∂hi(x)

∂x
(14)

then the path integral does not depend on the choice of a path. In the
exact case, hI becomes

hI(x, x
′) =

[
h1(x)− h1(x

′) · · · hm(x)− hm(x′)
]�

and our incremental passivity matches the incremental passivity in the
literature [9].

Moreover, hi(x) is a linear function. The partial derivatives of both
sides of (14) with respect to x yield

∂2hi(x)

∂x2
=

∂�gi(x)
∂x

M =
1

2

(
∂�gi(x)

∂x
M +M

∂gi(x)

∂x

)

where we use the fact that ∂2hi(x)/∂x
2 is symmetric. Inequality (4)

with SD(x, δx) = (δx�Mδx)/2 implies ∂2hi(x)/∂x
2 = 0. There-

fore, hi(x) can be described as c�i x with ci ∈ Rn. Furthermore, one
notices that gi(x), i = 1, . . . ,m is also constant if M � 0. Indeed,
from (14), it follows that g�i = c�i M

−1.

III. PASSIVITY-BASED DYNAMIC CONTROLLER DESIGNS

A. Krasovskii Passivity-Based Controllers

As mentioned, differential passivity does not provide a controller de-
sign method. However, we have proved in Section II-B that differential
passivity implies Krasovskii passivity. In this section, we illustrate the
utility of Krasovskii passivity for controller design.

For a Krasovskii passive system, we provide the following dynamic
controller.

Theorem 3.1: Suppose that Assumption 2.1 holds, and the extended
system (6) is Krasovskii passive at (x∗, u∗) ∈ E with respect to a storage
function SK(x, u). Consider the following dynamic controller for the
extended system:

K1u̇K = ν1 −K2uK −K3(u− u∗)− yK (15)

where ν1 : R → Rm, and K1 � 0 and K2,K3 � 0 are free tuning
parameters. Then, the following three statements hold.

(a) The closed-loop system consisting of (6) and (15) is passive with
respect to the supply rate ν�

1 uK .
(b) Let ν1 = 0. Define⎧⎨

⎩ y1 :=
∂SK(x, u)

∂x
f(x, u)

y2 := K3(u− u∗) + yK .
(16)

Suppose that there exists r > 0 such that

SK(x, u) + |u− u∗|2K3
/2 > 0

for all (x, u) ∈ Br(x
∗, u∗) \ {(x∗, u∗)}, where Br is an open ball

as defined in the notation part. Then, there exists r̄ > 0 such that
any solution to the closed-loop system starting from Br̄(x

∗, u∗, 0)
converges to the largest invariant set contained in

{(x, u, uK) ∈ Br̄(x
∗, u∗, 0) : y1 = 0,K2uK = 0}. (17)

(c) Moreover, if K2 � 0 and the extended system with the out-
puts (y1, y2) is detectable at ((x∗, u∗), 0), then (x∗, u∗) is asymp-
totically stable.

Proof: Consider the following storage function:

S1(x, u, uK) := SK(x, u) +
1

2
|u− u∗|2K3

+
1

2
|uK |2K1

(18)

which is positive semidefinite at (x∗, u∗, 0). By using (6), (9), and (15),
the Lie derivative ofS1 along the vector field of the closed-loop system,
simply denoted by dS1/dt, is computed as

dS1

dt
=

∂SK(x, u)

∂x
f(x, u)

+ u�
K

(
∂�SK(x, u)

∂u
+K1u̇K +K3(u− u∗)

)

=
∂SK(x, u)

∂x
f(x, u) + u�

K(ν1 −K2uK).

Therefore, (a) follows from (8).
Next, we show (b). From the assumption, S1(x, u, uK) is positive

definite at (x∗, u∗, 0) in Br(x
∗, u∗)× Rm. Therefore, the statement

follows from LaSalle’s invariance principle, where recall (16). Finally,
one can show (c) in a similar manner as [12, Corollary 4.2.2], where y2
comes from (15) with uK(·) = 0. �

The controller can be interpreted in terms of the transfer function.
If K1s

2 +K2s+K3 is invertible, the Laplace transformation of the
controller dynamics (15) can be computed as

U(s) = (K1s
2 +K2s+K3)

−1(V1(s)− YK(s)) (19)

where U(s), YK(s), V1(s) denote the Laplace transformations of u−
u∗, yK , and ν1, respectively. Therefore, the controller can be viewed
as a second-order output feedback controller.

In the above theorem, K1 is chosen to be positive definite. However,
even if K1 = 0, by assuming positive definiteness of K2 instead, it is
possible to construct a first-order controller. The following corollary is a
generalization of a controller for boost converters in dc microgrids [13],
[15] to general nonlinear systems. The proof is similar to the proof that
can be found in [1] and is omitted.

Corollary 3.2: Suppose that the assumptions in Theorem 3.1 hold.
Consider the extended system (6) with the following controller:

K2uK = ν1 −K3(u− u∗)− yK (20)

where ν1 : R → Rm, and K2 � 0 and K3 � 0 are free tuning param-
eters. Then, the following three statements hold.

(a) The closed-loop system consisting of (6) and (20) is passive with
respect to the supply rate ν�

1 uK .
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(b) Let ν1 = 0. Suppose that there exists r > 0 such that

SK(x, u) + |u− u∗|2K3
/2 > 0

for all (x, u) ∈ Br(x
∗, u∗) \ {(x∗, u∗)}. Then, there exists r̄ >

0 such that any solution to the closed-loop system starting
from Br̄(x

∗, u∗) converges to the largest invariant set contained
in

{(x, u) ∈ Br̄(x
∗, u∗) : y1 = 0, y2 = 0}

for (y1, y2) in (16).
(c) Moreover, if the extended system with the outputs (y1, y2) is

detectable at ((x∗, u∗), 0), then (x∗, u∗) is asymptotically stable.

B. Shifted Passivity-Based Controllers

Theorem 2.16 shows that Krasovskii passivity implies shifted passiv-
ity. Inspired by this fact and Krasovskii PBCs proposed in the previous
section, we provide a shifted passivity-based controller for the original
system (1) instead of its extended system.

Theorem 3.3: Suppose that the assumptions in Theorem 3.1 hold.
For the original system (1) with the output function in (12), consider
the following dynamic feedback controller:{

u = u∗ −K5y +K6v

K4v̇ = ν2 −K6y −K7v
(21)

where ν2 : R → Rm, andK4 � 0 andK5,K6,K7 � 0 are free tuning
parameters. Then, the following three statements hold.

(a) The closed-loop system consisting of (1) and (21) is passive with
respect to the supply rate ν�

2 v.
(b) Let ν2 = 0. Define

y3 :=
∂SK(x, u∗)

∂x
f(x, u∗). (22)

Suppose that there exists r > 0 such that SK(x, u∗) > 0 for
all x ∈ Br(x

∗) \ {x∗}. Then, there exists r̄ > 0 such that any
solution to the closed-loop system starting from Br̄(x

∗, 0) con-
verges to the largest invariant set contained in

{(x, v) ∈ Br̄(x
∗, 0) : K5y = 0, y3 = 0,K7v = 0}. (23)

(c) Moreover, ifK5,K7 � 0 and the system with the outputs (y, y3)
is detectable at (x∗, u∗), then (x∗, u∗) is asymptotically stable.

Proof: Consider the following storage function:

S2(x, v) := SK(x, u∗) +
1

2
|v|2K4

(24)

which is positive semidefinite at (x∗, 0). In a similar manner as the
proof of Theorem 2.16, by using (12) and (21), the Lie derivative of S2

along the vector field of the closed-loop system, simply denoted by
dS2/dt, is computed as follows:

dS2

dt
=

∂SK(x, u∗)
∂x

f(x, u∗) +
∂SK(x, u∗)

∂x
g(x)(u− u∗)

+ v�K4v̇

= v�ν2 +
∂SK(x, u∗)

∂x
f(x, u∗)− v�K7v − y�K5y.

From (8), we obtain (a). Also, one can show (b) and (c) from (22) in
similar manners as the proof of Theorem 3.1.

Remark 3.4: Similar conclusions as Theorem 3.3 hold if Assump-
tion 2.1 holds, and the original system (1) is shifted passive with respect
to a storage function SS(x).

We again interpret the proposed controller in terms of the transfer
function. If K4s+K7 is invertible, the Laplace transformation of the

Fig. 2. Electrical scheme of the Zeta converter.

controller dynamics (21) can be computed as

U(s) = −K5Y (s) +K6(K4s+K7)
−1(V2(s)−K6Y (s))

where U(s), Y (s), V2(s) denote the Laplace transformations of u−
u∗, y, and ν2, respectively. Therefore, the controller can be viewed
as a proper output feedback controller and is different from (19). If
K5 = 0, one has a structure of the low pass filter. If K6 = 0, one has a
standard-type PBC. If K7 = 0, one has a PI feedback controller, which
is an extension of the one presented in [17].

IV. EXAMPLE

In this example, we consider the average model of a DC-Zeta con-
verter. It has the capability of both buck and boost converters, i.e., it can
amplify and reduce the supply voltage while maintaining the polarity.
The schematic of the Zeta converter is given in Fig. 2. As shown, it
contains four energy storage elements, namely two inductors L1, L2

and two capacitors C1, C2, an ideal switching element u, and an ideal
diode. Further, Vs and G denote the constant supply voltage and the
load, respectively. The objective of the converter is to maintain a desired
voltage v∗ across the load G. After some changes of state and time
variables, one obtains the following normalized model for the converter;
for more details about changes of variables (see [24, Ch. 2.8]):

ẋ =

⎡
⎢⎢⎢⎣

−x2

x1

−x4/α1

(x3 − x4/α3)/α2

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

1 + x2

−(x1 + x3)

(1 + x2)/α1

0

⎤
⎥⎥⎥⎦u (25)

where α1, α2, and α3 are positive constants depending on the system
parameters. It is worth pointing out that a (standard) PBC has not
been provided for this class of systems because it is difficult to find
a storage function. However, we demonstrate that our proposed two
PBC techniques are useful for controller design.

For this system, the set E is obtained as

Ev =

{
(x∗, u∗) ∈ R4 × R :

x∗ =
(
(v∗)2

α3

, v∗,
v∗

α3

, v∗
)
, u∗ =

v∗

v∗ + 1
,

}
, v∗ ∈ R+.

One notices that Ev has a unique element for any v∗ ∈ R+. The
parameters are chosen as a1 = a2 = a3 = 1 and v∗ = 1/3, which
determines x∗ = [1/9, 1/3, 1/3, 1/3] and u∗ = 1/4.

First, we illustrate the Krasovskii PBC (15) in Theorem 3.1. One can
confirm that the DC-Zeta converter (25) satisfies (4) for

SK(x, u) = |f(x, u)|M/2, M = diag{1, 1, α1, α2} (26)

and the following holds:

hK(x, u) =
∂SK(x, u)

∂u

=
[
1 + x2 −(x1 + x3) 1 + x2 0

]
ẋ.
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Fig. 3. Closed-loop trajectories when controlled by the Krasovskii
PBC.

Fig. 4. Closed-loop trajectories when controlled by the shifted PBC.

Ifx and ẋ are measured, controller (15) does not require the information
of parameters α1, α2, α3 for the DC-Zeta converter.

It is possible to show that the storage function S1(x, u, uK) in (18)
is radially unbounded, and the largest invariant set contained in the
set (17) is nothing but Ev . Therefore, for any v∗ ∈ R+, any trajectory of
the closed-loop system converges to Ev . Fig. 3 shows the trajectories of
the closed-loop system starting from several initial states, where ν1 = 0
and K1 = K2 = K3 = 1.

Second, we illustrate the shifted PBC (21) in Theorem 3.3, where

h(x) =

(
∂SK(x, u∗)

∂x
g(x)

)�

=
1

2

⎡
⎢⎢⎢⎣

(1− u∗)(x1 + x2)

(1− u∗ + u∗/α1)(1 + x2)

−u∗(x1 + x2)

(1/α1)(1 + x2)

⎤
⎥⎥⎥⎦

�

f(x, u∗).

Again, it is possible to show that the storage function S2(x, v) in (24)
is radially unbounded, and the largest invariant set contained in the
set (23) is nothing but Ev . Therefore, for any v∗ ∈ R+, any trajectory of
the closed-loop system converges to Ev . Fig. 4 shows the trajectories of
the closed-loop system starting from several initial states, where ν2 = 0
and K4 = K5 = K6 = K7 = 1.

Finally, simulation results indicate that the Krasovskii PBC achieves
convergence to Ev with less oscillations than the shifted PBC, whereas
the shifted PBC converges with relatively lower amplitudes of the
oscillations than the Krasovskii PBC case.

V. CONCLUSION

In this article, we have introduced the concept of Krasovskii passivity
for addressing the difficulty of differential passivity-based controller
design. First, we have established relations among the relevant four
passivity concepts: 1) differential passivity, 2) Krasovskii passivity, 3)

generalized incremental passivity, and 4) shifted passivity. Next, we
have proposed Krasovskii/shifted passivity-based dynamic controllers.
The utility of the proposed controllers has been illustrated by the DC-
Zeta converter. Future work includes studying control methodologies
for networked Krasovskii passive systems as done for shifted passivity-
short systems [25].
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