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ARTICLE

CHRONIC LYMPHOCYTIC LEUKEMIA

RPPA-based proteomics recognizes distinct epigenetic
signatures in chronic lymphocytic leukemia with clinical
consequences
Anneke D. van Dijk 1,5✉, Ti’ara L. Griffen 2,5, Yihua H. Qiu3, Fieke W. Hoff1, Endurance Toro3, Kevin Ruiz3, Peter P. Ruvolo4,
James W. LillardJr2, Eveline S. J. M. de Bont1, Jan A. Burger 3, William Wierda 3 and Steven M. Kornblau 3

© The Author(s), under exclusive licence to Springer Nature Limited 2021

The chronic lymphocytic leukemia (CLL) armamentarium has evolved significantly, with novel therapies that inhibit Bruton Tyrosine
Kinase, PI3K delta and/or the BCL2 protein improving outcomes. Still, the clinical course of CLL patients is highly variable and most
previously recognized prognostic features lack the capacity to predict response to modern treatments indicating the need for new
prognostic markers. In this study, we identified four epigenetically distinct proteomic signatures of a large cohort of CLL and related
diseases derived samples (n= 871) using reverse phase protein array technology. These signatures are associated with clinical features
including age, cytogenetic abnormalities [trisomy 12, del(13q) and del(17p)], immunoglobulin heavy-chain locus (IGHV) mutational load,
ZAP-70 status, Binet and Rai staging as well as with the outcome measures of time to treatment and overall survival. Protein signature
membership was identified as predictive marker for overall survival regardless of other clinical features. Among the analyzed epigenetic
proteins, EZH2, HDAC6, and loss of H3K27me3 levels were the most independently associated with poor survival. These findings
demonstrate that proteomic based epigenetic biomarkers can be used to better classify CLL patients and provide therapeutic guidance.

Leukemia; https://doi.org/10.1038/s41375-021-01438-4

INTRODUCTION
Chronic lymphocytic leukemia (CLL), the most common hemato-
logical malignancy, is characterized by the clonal expansion of
B-lymphocytes in the bone marrow, peripheral blood, spleen, and
other lymphoid organs [1]. The time until first treatment (TTFT) is
highly variable, ranging from immediately after diagnosis to
decades later [2]. Traditional prognostic variables and models
have utilized immunoglobulin heavy chain variable region (IGHV)
mutational, cytogenetic aberrations, and protein tyrosine kinase
ZAP-70 expression [3] More favorable prognosis is associated with
IGHV mutation, del[13q], trisomy 12, and/or low ZAP-70 expres-
sion while unmutated IGHV, del[11q], del[17p]/TP53 mutation, and
high ZAP-70 are unfavorable. The international prognosis score for
early-stage CLL (IPS-E) depends on lymphocytosis, nodal involve-
ment, and IGHV status [4]. The development of therapies that
interfere with B-cell receptor signaling via Bruton Tyrosine Kinase
(BTK) and PI3K delta inhibitors (ibrutinib and idelalisib) along with
the addition of BCL2 inhibitors (venetoclax) has significantly
added to the CLL armamentarium, altered therapy patterns, and
improved outcome in CLL. But, as with all modalities, there are
non-responders, and resistance can emerge. Most previously

recognized prognostic features have limited predictive capacity
for modern therapies, so identifying new predictive markers for
these new therapies are needed.
It is hypothesized that altered regulation of epigenetics, either

DNA methylation or histone modification, contributes to the
development, progression, and prognosis of CLL. CLL cells harbor
a similar methylome as other cancers with global hypomethylation
promoting genome instability and local promoter hypermethylation
causing gene silencing [5–7]. However, global DNA methylation
profiles in CLL have been relatively stable over time in both the
indolent and proliferative compartments and pre- and post-therapy,
suggesting that recurrent methylation changes occur early in
leukemogenesis [8]. Indeed, a more recent discovery is that the
putative cellular origin of CLL can be tracked via epigenetic
biomarkers and this appears to be a strong predictor for TTFT
[9, 10]. Queiros et al. defined three epigenetic subgroups based on 5
CpG regions that predicted prognosis more accurately than IGHV
status [10]. Another study revealed that CLL progression depends on
aberrant DNA methylation at CpG sites near the polycomb 2
repressive complex 2 (PRC2) target genes concurrent with an
increase in PRC2 activity [11], and not on genetic clonal evolution.
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Histone modification involves post-translational modifications of
histone proteins that impact chromatin structure and gene
transcription. In CLL, dysregulated histone modification is linked to
polycomb repressor complex 2 (PCR2) with defective overexpression
of subunit EZH2 creating a potential therapeutic target [12–14].
These findings suggest that both DNA methylation and histone
modification alternations are involved in CLL development,
progression, and prognostication. To evaluate whether epigenetic
profiles have prognostic or therapeutic potential, we used proteomic
measurement of histone and chromatin-modifying enzymes (HME)
and histone methylation marks (HMM) to identify epigenetic
signatures in CLL. Previously, we found that high-HME protein
levels predict adverse outcomes in adults [15] and pediatric acute
myeloid leukemia (AML, manuscript submitted), and that loss of
H3K27me3 is an independent poor prognostic factor in AML [16]. In
this study, we show that simultaneous quantitative analysis of 37
epigenetic proteins in 871 CLL and related diseases patient derived
samples by reverse phase protein array (RPPA) revealed four
proteomic signatures with distinct clinical and biological features
and prognostic effects on the outcome.

MATERIAL AND METHODS
Patient Population
Peripheral blood (PB, n= 746) and bone marrow (BM, n= 52) samples were
collected from 798 patients with untreated CLL and 73 PB samples from
patients with CLL related diseases including prolymphocytic leukemia (PLL) B
cell (n= 4) and T-cell (n= 16) and Richter’s transformation (n= 5) or mature
small B-cell lymphomas (MSBL)-like malignancies including hairy cell leukemia
(HCL, n= 12), HCL variant (HCLV, n= 4), large granular lymphocytic leukemia
(LGLT, n= 4), monoclonal B-lymphocytosis (MBL, n= 4), mantle cell
lymphoma (MCL, n= 12), marginal zone lymphoma (MZL, n= 11) and
splenic lymphoma with villous lymphocytes (SLVL, n= 1). All patients were
seen at the University of Texas M.D. Anderson Cancer Center (MDACC)
between 2005 and 2019, and were acquired during routine diagnostic
assessments in accordance with regulations and protocols (Lab 01-473, Lab
03-0893, Lab 04-0678, Lab 08-0431, and Lab 07-0719) approved by the
MDACC Investigational Review Board (IRB). Informed consent was obtained in
accordance with the Declaration of Helsinki.

Sample processing
Fresh (n= 127) samples were placed on ice and processed to yield
mononuclear cells by Ficoll separation within 2 h of collection. Frozen
samples (n= 744) were initially processed similarly but after thawing,
placed in fresh media and Ficoll separated, to isolate viable mononuclear
cells. A total of median 18% of the samples was discarded by the Ficoll
separation including neutrophils, basophils, eosinophils, and red blood
cells. Of the remaining 82%, there was a median of 2% of monocytes and
80% of lymphocytes. Purified samples were then normalized to 10,000
cells/µL and whole cells lysates prepared as described previously [17].

RPPA
A custom RPPA was generated as previously described [17–19]. Patient
lysates were printed onto slides along with normalization and expression
controls in five serial dilutions. Protein lysis buffer (Biorad Lamelli buffer) was
the negative control and a mixture of 11 leukemia cell lines were included as
positive controls. Additionally, 5 normal CD19+ samples were printed as
normalization controls. Slides were probed with 384 strictly validated primary
antibodies, then a secondary antibody conjugated to an infrared. Among the
384 antibodies utilized were targeting known histone and chromatin
modification enzymes (HME) including ASH2L, BMI1, BRD4, CBX7, DNMT1,
EZH2, HDAC1, HDAC2, HDAC3, HDAC6, hnRNPK, JMJD6, KAT2A, KDM1A,
KMT2A, KMT2D, MEN1, NCL, NPM1, PAK1, SETD1A, SETD1B, SIRT1, SUZ12,
WDR5, WTAP, and XPO1 along with antibodies recognizing total or post-
translational methylated H3 or marks (HMM): H3K4me1, H3K4me2, H3K4me3,
H3K9me2, H3K27me3, H3K36me3, and the histone variant H2AX phosphory-
lated on serine 139 (H2AX.pSer139) and 140 (H2AX.pSer140) and ubiquiti-
nated histone H2B (HIST1H2B.Ub). Stained slides were analyzed using
Microvigene® software (Version 3.4, Vigene Tech, Carlisle, MA). Protein
expression levels were normalized relative to the mean expression on each
array. To identify recurrent patterns of HME (n= 27) and HMM (n= 10) in

CLL, an optimal number of protein clusters were determined by the Progeny
clustering algorithm [20] coupled with k-means [21]. The measure of cluster
stability was based on a co-occurrence probability matrix capturing true and
false classifications. A cluster was defined as low or high HME/HMM if these
were globally and relatively lower or higher expressed compared to their
expression in normal CD19+, respectively. Samples did not cluster separately
based on source (BM vs. PB).

Statistical analysis
Associations between protein clusters and clinical variables were
calculated using Chi-Square and Fisher’s exact test for categorical variables
and the Kruskal–Wallis test for continuous variables. Survival curves were
generated using the Kaplan–Meier estimator [22].

RESULTS
Characterization of four epigenetic-directed proteomic
signatures in CLL
We analyzed the expression of 37 epigenetic regulating proteins
in 871 samples derived from patients with CLL and related
diseases. After performing the progeny cluster algorithm [20],
patients were classified into four epigenetic proteomic signatures
(ProSig) (Fig. 1A, top annotation). Proteins were clustered into
eight correlated constellations (colored regions y-axis Fig. 1A). All
ProSig shared lower expression of HIST1H2B ubiquitination,
hnRNPK, H3K4me3, HDAC1 (violet constellation) H2AX.pSer140
(light blue constellation), and JMJD6 compared to normal CD19+ B
cells. ProSig1 (pink) is distinguished by lower expression of most
HME (red, yellow, and light green constellations) and by lower
expression of the most HMM (dark green, light and dark blue, and
violet constellations), but relative overexpression of PAK1 (dark
red), EZH2, DNMT1, HDAC6 (orange constellation). The other three
signatures had a relatively uniform expression of most HME
(yellow and light green constellations). ProSig2 (yellow) is
distinguished by lower levels of most HMM (dark green and blue
constellation) and higher levels of PAK1, ASH2L, KAT2A, BRD4,
EZH2, DNMT1, and HDAC6 (dark red, red, and orange constella-
tions). Patients in ProSig3 (green) displayed high expression of
CBX7 and the HMM (light green and dark blue constellations)
compared to the others. ProSig4 (red) had the lowest expression
of several HME: ASH2L, EZH2, DNMT1, HDAC6, KMT2D, WDR5,
BMI1 (orange, light and dark green constellations) and relatively
high-HMM, except for H3K9me2, H2AX.pSer139 and H2AX.
pSer140. Correlations between the 37 proteins are shown in
Fig. 1B by hierarchical clustering.
Most diagnoses were found in all four ProSig with the exception

that 15/16 cases of HCL/HCLV and all cases of LGLT were
exclusively seen in ProSig1. Unsurprisingly, the “pre-CLL” state of
MBL, and the PB samples from Richter’s transformed patients,
likely comprised of circulating non-transformed B-CLL cells, were
seen intermixed with the CLL cases. ProSig1 also had dispropor-
tionally more MCL and T-PLL cases. CLL was the dominant
diagnosis in ProSig2 (45% of all cases, 94% CLL) and ProSig3 (42%
of all cases, 96% CLL), referred to hereafter as “bulk CLL”. These
two clusters were characterized by high HME and low-HMM
(“low”) or high-HMM (“high”) respectively. In contrast, only 9% of
CLL cases were found in ProSig1 (“low-HME; low-HMM”) and only
5% in ProSig4 (“low-HME; high-HMM”) (Table 1).

Patient characteristics differ based on the proteomic
epigenetic classification
ProSig1 was enriched (44.7%) for non-CLL MSBL variant diagnoses,
including almost all HCL(V) and LGLT and a non-proportional
number of cases of the MZL, and T-cell PLL cases (Table 1). CLL
(n= 798) patient characteristics were compared between the
proteomic signatures. Demographically, ProSig did not differ in
age, gender or race. Almost half of ProSig1 patients had more
advanced Binet stage C and Rai stage III-IV (high-risk) disease at
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diagnosis; significantly higher than the overall study population
(Binet 28% and Rai 30%) or the other clusters (both p= 0.01).
Furthermore, ProSig1 had the lowest PB absolute lymphocyte
count, BM lymphocytes percentage, and lower cell surface
expression of CD19, CD23, and CD38, but higher CD22 (Table 1).
This cluster contains more trisomy 12 cases (25%, p < 0.001) and
chromosome nine abnormalities (8%, p= 0.01).
The ProSig4 patients (low-HME, high-HMM) had the highest

number of circulating lymphocytes at presentation and 71% were
classified as Binet stage A. The bulk CLL signatures ProSig2 and
ProSig3 differed with respect to ZAP-70 positivity at 64% vs. 40%,
respectively. In contrast, ProSig3 patients were more likely to have
mutated IGHV (59%) compared to ProSig2 (42%).

CLL patients with MBSL-like signature have poor outcomes
Among the MSBL, HCL, and HCLV, LGLT are prognostically better
and PLL and MCL prognostically worse than CLL (Supplementary
Fig. 1A and as described earlier [1, 23]). Therefore, to ascertain the
effect of HME/HMM on outcome in CLL, outcome analysis was
performed with CLL patients only. Although there was no
difference in the percentage of CLL patients that eventually
received first or second treatment, patients in ProSig1 had a
significantly shorter mean TTFT of 3 years compared to 4.2, 6, and
5 years in ProSig2, 3, and 4, respectively (Table 1) as well as the
shortest TTST (2.5 years vs 3.8 (ProSig2), 5 (ProSig3) and 3.5
(ProSig4) years) and mean overall survival (OS, 4.7 years vs 6.4
(ProSig2), 8.5 (ProSig3), and 6.4 (ProSig4) years). Median survival
was not reached for patients in ProSig4, but was 12.5 years, 20.3
years, and 35.1 years for ProSig 1, 2, and 3, respectively (Fig. 2A,
p < 0.0001). Also, TTFT was significantly shorter for patients within
ProSig1 (median 5.5 years) compared to ProSig2 (median 6.7
years), 3 (median 9.7 years) or 4 (median 9.4 years) (Fig. 2B, p=
0.007). Outcome comparison between the two bulk CLL clusters
revealed adverse outcome for those in ProSig2 which has lower
HMM. Within ProSig1, as expected the PLL and MCL diagnoses
had the worst OS compared to CLL, HCL(V), or other MSBL
diagnoses (p < 0.001, Supplementary Fig. 1B).

Protein cluster membership associates with survival and
second treatment probability per treatment regime
Most CLL patients are initially managed using a watch and wait
(WAW) approach, receiving therapy upon progression. Standard

CLL therapy has been rapidly evolving since the introduction of
Bruton’s tyrosine kinase inhibitors (BTKi) and more recently the
availability of Bcl-2 blockade with venetoclax. Previously, the
standard was chemoimmunotherapy with fludarabine, cyclopho-
sphamide, and rituximab (FCR) [24]. To examine whether the
epigenetic proteomic signatures were prognostic for both old and
new treatment regimes, we analyzed outcomes based on
treatment: chemotherapy-, BTKi- and antibody/targeted-based. A
total of 322 of the 798 CLL patients received treatment (40%), 175
received FCR or other chemotherapeutics (“Chemo”), 110 had
BTKi-based (Ibrutinib ± venetoclax or ± Rituximab/Nivolumab,
“BTKi”) and 46 patients were treated with an antibody/targeted-
based treatment plan (“Antibody”). Eighteen patients were
classified in both the “Chemo” and “BTKi” groups as they received
ibrutinib, fludarabine, cyclophosphamide, and Obinutuzumab
(iFCG) and nine patients were excluded as other therapeutics
were given (e.g. anti-cancer vaccines or CAR-T). We analyzed OS
after the first treatment (OS-post-Tx) and TTST per treatment
regime stratified by ProSig membership. Although the case
numbers are small, we observed that patients in ProSig1 had
the shortest OS-post-Tx after BTKi treatment (median 2 years vs.
not reached, p < 0.0001, Fig. 3B). Notably, the ProSig1 OS-post-Tx
was longer with chemotherapy-based treatments (median 8.9
years) than after BTKi, but was still shorter than other clusters
(median 11.4 years in ProSig2, 17.4 years in ProSig3 and not
reached in ProSig4, Fig. 3A). Patients in ProSig4 with low-HME and
high HME all needed second therapy relatively shortly after
antibody/targeted therapy (median TTST of 3.3 years, Fig. 3F).
Overall, bulk CLL ProSig2 with lower HMM had worse OS and TTFT
(yellow curve) compared to ProSig3 with higher expressed HMM
(green curve) (Fig. 2). ProSig2 had shorter OS-post-Tx compared to
ProSig3 after chemo, but did equally well after BTKi (Fig. 3A, B),
ProSig2 OS-post-Tx and TTST were slightly inferior to ProSig3 for
antibody-based therapy as well, but numbers are very small. Thus,
lower HMM is linked to poor prognosis after chemotherapy-based
treatment but not after BTK inhibitors. Previously, studies have
shown that ibrutinib-treated patients with del[11q] had a
significantly longer progression-free survival (PFS) than ibrutinib-
treated patients without del[11q] and that chlorambucil-treated
patients with del[11q] had a significantly shorter PFS than
chlorambucil-treated patients without del[11q] [25, 26]. Therefore,
we compared OS-post-Tx in chemotherapy and BTKi treated

Fig. 1 HME and HMM are expressed in proteomic signatures in CLL. A RPPA-based heatmap showing expression of the 37 HME and HMM
(vertical) from low (blue) to high (dark red) in 871 patients with CLL or MSBL-like malignancy (horizontal) relatively to CD19+ cells. Patients
were clustered in four clusters by the progeny clustering algorithm (pink, yellow and green, red). The same color scheme for Protein Signature
membership is maintained throughout all subsequent figures. The proteins were clustered into nine constellations as shown by the colored
boxes along the left y-axis (Dark red top, violet at bottom). B Correlation between the 37 HME and HMM by hierarchical clustering. Dot color
represents Pearson’s correlation coefficient and dot size was linked to p-value. Smaller p-value correlated with bigger dot and vice versa. Red
coloration denotes positive correlation, blue negative correlation.
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Table 1. Patient characteristics stratified by cluster membership.

Variable All pts, n= 871 C1, n= 75 C2, n= 390 C3, n= 362 C4, n= 44 P-value

100% 8.6% 44.8% 41.6% 5.1%

Diagnosis CLL 798 41 368 351 38 2.2E-16

Richters 5 2 1 2 0

B-PLL 4 0 2 1 1

T-PLL 16 5 6 1 4

HCL 12 11 1 0 0

HCLV 4 4 0 0 0

MCL 12 3 6 2 1

MZL 11 5 3 3 0

LGLT 4 4 0 0 0

MBL 4 0 3 1 0

SLVL 1 0 0 1 0

Variable CLL pts, n=
798

C1, n= 41 C2, n= 368 C3, n= 351 C4, n= 38 P-value

100% 5.1% 46.1% 44.0% 4.8%

Age (mean ± SD years) 64.7 ± 10.2 62.4 ± 10.6 64.4 ± 10.1 65.5 ± 10.2 62.8 ± 11.4 0.10

Gender Female 310/798 (39%) 23/41 (56%) 138/
368 (38%)

133/
351 (38%)

16/38 (42%) 0.13

Male 488/798 (61%) 18/51 (44%) 230/
368 (63%)

218/
351 (62%)

22/38 (58%)

Race White 713/775 (92%) 35/40 (88%) 330/
357 (92%)

315/
343 (92%)

33/35 (94%) 0.74

Black 33/775 (4%) 3/40 (8%) 16/357 (4%) 14/343 (4%) 0/35 (0%)

Hispanic 22/775 (3%) 1/40 (3%) 3/357 (1%) 10/343 (3%) 2/35 (6%)

Asian 7/775 (1%) 1/40 (3%) 2 (1%) 4/343 (1%) 0/35 (0%)

Binet stage A 489/784 (62%) 17/37 (46%) 213/
363 (59%)

232/
346 (67%)

27/38 (71%) 0.01

B 75/784 (10%) 2/37 (5%) 42/363 (12%) 30/346 (9%) 1/38 (3%)

C 220/784 (28%) 18/37 (49%) 108/
363 (30%)

84/346 (24%) 10/38 (26%)

Rai stage 0 268/784 (34%) 9/37 (24%) 106/
363 (29%)

136/
346 (39%)

17/38 (45%) 0.01

I-II 281/784 (36%) 10/37 (27%) 137/
363 (38%)

123/
346 (36%)

11/38 (29%)

III-IV 235/784 (30%) 18/37 (49%) 120/
363 (33%)

87/346 (25%) 10/38 (26%)

Lymphocytes (x 103/uL) 75.8 ± 17.7 63 ± 19.9 75.4 ± 18 77.5 ± 17 78.2 ± 12.7 9.1E-06

Hemoglobin () 13.5 ± 1.8 13.7 ± 1.8 13.3 ± 1.7 13.6 ± 1.8 13.4 ± 2 0.24

Platelets (x 109/L) 191 ± 72 227 ± 118 181 ± 70 197 ± 66 204 ± 72 1.1E-04

LDH 483 ± 292 550 ± 263 484 ± 378 471 ± 182 499 ± 163 0.42

BM lymphocytes (%) 61 ± 23 49 ± 25 66 ± 21 58 ± 23 59 ± 21 4.9E-05

Chromosomal
abnormality

None 165/714 (23%) 9/39 (23%) 60/331 (18%) 90/308 (29%) 6/36 (17%) 8.0E-03

Del[11q] 100/714 (14%) 3/39 (8%) 46/331 (14%) 46/308 (15%) 5/36 (14%) 0.73

Trisomy 12 110/714 (15%) 10/39 (25%) 72/331 (22%) 23/308 (7%) 5/36 (14%) 9.7E-07

Del[13q] 274/714 (38%) 13/39 (33%) 113/
331 (34%)

133/
308 (43%)

15/36 (42%) 0.11

Del[17p] 69/714 (10%) 4/39 (10%) 43/331 (13%) 17/308 (6%) 5/36 (14%) 0.01

Chromosome 9 16/714 (2%) 3/39 (8%) 10/331 (3%) 2/308 (1%) 1/36 (3%) 0.01

IGHV status Mutated 297/579 (51%) 15/24 (63%) 115/
273 (42%)

149/
253 (59%)

18/29 (62%) 4.9E-04

SF3B1 Mutated 35/212 (17%) 3/13 (23%) 23/127 (18%) 7/63 (11%) 2/9 (22%) 0.46

ZAP-70 Positive 191/378 (51%) 12/26 (46%) 106/
166 (64%)

66/166 (40%) 7/20 (35%) 6.4E-05
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patients between those with and those without del[11q] and
observed a similar trend (Supplementary Fig. 2A, B). Additionally,
we performed the survival analysis with ProSig stratification per
treatment for patients with and without del[11q] separately.
Similar outcome trends were observed based on signatures in
both chemotherapy and BTKi treated patients regardless of del
[11q] (Supplementary Fig. 2B–F).

Cluster membership independently predicts overall survival
and time to treatment
The four HME and HMM derived ProSig behave biologically and
prognostically different. To query whether ProSig membership is
an independent predictor for outcome in CLL, we performed Cox
regression analysis for OS and TTFT. In univariate analysis, gender,
IGHV mutational status, ZAP-70 status, chromosomal abnormal-
ities, Rai staging, and ProSig were predictive but Binet staging,
SF3B1, del[13q], chromosomal 9 abnormality were not. In the
multivariate model, for the 277 cases with all variables available,
ProSig1 membership was the only independent predictor of
survival (Table 2). Proteomic signature did not predict in uni- or
multivariable analysis of TTFT.

Identification of an individual protein that are clinical
predictors of outcome in CLL
We next looked for epigenetics markers differentially expressed
between ProSig. First, we focused on individual protein expressions
that were differentially expressed relatively to CD19+ among the
signatures. ProSig1 was for example represented by low MEN1,
KMT2A, and SETD1A, but high HDAC6 and EZH2 (Fig. 4A–E). ProSig4
was the only cluster that had relatively low ASH2L and DNMT1
relative to CD19+ normalization. ProSig1 and 4 an had opposite
prognostic impact and we, therefore, sought to explain what biology
might underlie these signatures. ProSig1 and 4 were mostly
discriminated by HMM expression (Fig. 1, dark green constellation)
of H3K4me1-2, H3K27me3, and H3K36me3 (Fig. 4I–K) suggesting
potential importance. Across all four ProSig, both HMM expression
and prognosis increased sequentially from ProSig 1 to 2, 3, and 4
(Fig. 4I–K), with the exception of H3K9me2, which was lowest in
ProSig4 (Fig. 4L). To identify which proteins have significant
predictive value in the whole CLL cohort based on their continuous
expression, we created a Cox proportional hazard model (Supple-
mentary Table 1). Among these, not H3K9me2, but H3K36me3, and

H3K27me3 emerged as predictors for OS, TTFT, and TTST. Recently
we observed that loss of H3K27me3 independently predicts inferior
OS in adult AML patients [27] we, therefore, looked for a similar
prognostic effect in CLL. Overall, H3K27me3 predicted shorter OS
(HR= 0.33, 95% CI= 0.22–0.48, p < 0.001), TTFT (HR= 0.62, 95%
CI= 0.49–0.78, p < 0.001) and TTST (HR= 0.35, 95% CI= 0.23–0.56,
p < 0.001) (Supplementary Table 1). We then correlated H3K27me3
levels with clinical features, finding no association with age, gender,
race, del[11q], normal cytogenetics, chromosome 9 abnormalities
(data not shown), but did find that levels were lower in the
traditionally adverse features of unmutated IGHV (p= 0.0042),
positive ZAP-70 (p= 0.0019), del[17p] (p= 0.031), trisomy 12 (p=
0.0023), and higher in del[13q] (p= 0.0054) (Supplementary Fig. 3).
On multivariate analysis, the impact of H3K27me3 (low/high based
on median H3K27me3 expression [~ 1.37]) on TTFT was significant
when accounting for gender, cytogenetic abnormalities (none, del
[11q] and trisomy 12), IGHV, and ZAP-70 status and Rai risk group
(p t= 0.004) and on TTST when accounting for IGHV and Rai risk
group (p= 0.002) (Supplementary Table 2).

Characterizing functionally dysregulated protein networks by
epigenetic signatures
We used Cytoscape for visualizing protein networks among all 384
antibodies utilized to identify differences in correlated protein
networks (Fig. 5). This enables a more wholistic visualization of
how the core HMM/HME (large nodes) proteins, as well as other
correlated proteins (small nodes), change between the four
signatures. This reveals that there are four protein constellations
with correlated changes across the signatures. First, PAK1
expression levels were highest in ProSig1 and progressively
decreased with increasing signature number. Many known PAK1
connections were present: PAK4, PDGFRB, PLK1, PTK2, PXN, RAF1,
SRC, and SYK. Several previously unknown PAK1 connections were
also revealed by the RPPA including negative correlations with
H3K36me3, H3K4me1-3, BCL2 and BCL2L11, HDAC1-2, and CBX7
(Supplementary Fig. 4A). Opposite of PAK1, CBX7 increased by
signature. The third set of KAT2A, ASH2L, and H3K36me3
comigrate across the protein networks. All three are low in
ProSig1, but ASH2L and KAT2A are interconnectedly high in
ProSig2, along with phosphorylated CDK1B on tyrosine 198
(CDK1B.pT198) and PRKAA1 on tyrosine 172 (PRKAA1.2.pT172)
and MSI2. The fourth set of interconnected proteins BRD4, WTAP,

Table 1 continued

CD38 (mean ± SD) 23.9 ± 27.1 21.7 ± 26.5 27.9 ± 28.3 20.2 ± 25.2 27.3 ± 33.3 0.04

CD19 (mean ± SD) 81.5 ± 18.6 62.4 ± 20.3 82.8 ± 12.7 81.2 ± 13.8 76.8 ± 22.5 2.4E-09

CD20 (mean ± SD) 77.8 ± 20.2 81 ± 23.7 77.7 ± 20.9 77.7 ± 18.8 76.4 ± 22.8 0.82

CD22 (mean ± SD) 63.3 ± 39.4 76.9 ± 35.6 69.7 ± 37.5 54.4 ± 40.1 72.2 ± 38.4 6.5E-06

CD23 (mean ± SD) 87.1 ± 17.8 79.3 ± 27.6 88.5 ± 16.5 86.5 ± 17.4 87.2 ± 19.8 0.048

CD79b (mean ± SD) 42.8 ± 37.9 46.7 ± 39 48.4 ± 44 36.8 ± 30 42.6 ± 34.3 3.4E-03

First treatment Yes 322/798 (40%) 15/41 (37%) 154/
368 (42%)

141/
351 (40%)

12/38 (32%) 0.63

TTFT (mean ±
SD years)

4.9 ± 5.0 3.0 ± 2.8 4.2 ± 4.6 6.0 ± 5.4 5.0 ± 5.3 1.4E-06

Response 165/218 (76%) 7/7 (100%) 82/108 (76%) 73/97 (75%) 3/6 (50%) 0.23

Second treatment Yes 92/320 (29%) 7/15 (47%) 49/153 (32%) 33/140 (24%) 3/12 (25%) 0.16

TTST (mean ±
SD years)

4.3 ± 3.2 2.5 ± 2.1 3.8 ± 2.8 5.0 ± 3.6 3.5 ± 3.2 1.1E-03

Vital status Alive 708/798 (87%) 29/41 (71%) 321/
368 (87%)

322/
351 (92%)

36/38 (95%) 9.8E-04

OS (mean ± SD years) 7.2 ± 5.8 4.7 ± 4.3 6.4 ± 5.5 8.5 ± 6.1 6.4 ± 5.8 4.0E-07

p-values in bold represents significant difference among the clusters.
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Fig. 3 Overall survival (OS) after first treatment and time to second treatment (TTST) durations after different treatment regimes
according to cluster membership in CLL patients only. OS and TTST per cluster after A and D chemotherapy-based therapies (including FCR),
B and E BTK inhibitors based treatment, and C and F antibody and targeted based therapies (excluding FCR). Cluster membership: ProSig1 in
pink, ProSig 2 in yellow, ProSig 3 in green, and ProSig 4 in red. The number of patients included at the different 5-year intervals is shown at the
bottom. P-value is for the four-way comparison.

Fig. 2 Kaplan–Meier analysis of overall survival (OS) and time to first treatment (TTFT) per protein signature cluster for CLL patients. A
OS and B TTFT of 773 CLL patients with available outcome data (773/798= 97%) stratified by cluster membership (ProSig1 in pink; ProSig 2 in
yellow; ProSig 3 in green and ProSig 4 in red). Data was shown for a follow-up period of 20 (OS) and (TTFT) years. Inset tables list p-values for
all possible comparisons using the log-rank pairwise comparison test. The number of patients included at the different 5-year intervals is
shown at the bottom.
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MEN1, and KMT2A, associated with LEF1 and RELA, was low in
ProSig1, but this entire cluster was upregulated in ProSig2.
Patients in ProSig2 were further characterized by high PAK1,
ASH2L, KAT2A, BRD4, EZH2, DNMT1, and HDAC6. Based on
correlation data, high ASH2L equals lower PI3K/Akt and SRC
signaling but increased BCL2, WNT, and mTOR (Supplementary
Fig. 4B). EZH2 was positively correlated with proteins involved in
MAPK signaling, transcriptional activation, WNT, cell cycle,
metabolism, NOTCH, chemokine, and ribosomal activity signaling

(Supplementary Fig. 4C). To demonstrate changes across the
clusters, we created a video that demonstrates the protein
network as shown in Fig. 5 in transformation (Supplementary
Video).

DISCUSSION
Predicting which CLL patients will require therapy and when it will
be necessary remains challenging, especially, as modern therapy

Fig. 4 Individual protein expression according to proteomic signature. AMEN1, B KMT2A, C HDAC6, D EZH2, E SETD1A, F ASH2L, G DNMT1,
H H2AX.pSer139, I H3K4me1, J H3K27me3, K H3K36me3, and L H3K9me2 according to proteomic signature membership relative to CD19+

normalization (dashed line). The inset box shows the 25–75% boundaries and the horizontal line in the middle shows the median expression.
Statistical comparisons between each signature are shown above, with p-values listed as ns not significant, ***p < 0.001 and ****p= 1e-04.
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has rendered several historically useful prognostic markers as
irrelevant. In this study, we identified four epigenetically distinct
proteins signatures in CLL and CLL-like diagnoses that prognos-
ticate TTFT, TTST, and OS with old and new therapies. ProSig1,
characterized by the lowest levels of histone methylation,
contained a high proportion of CLL-like diseases (46%) mixed
with CLL (54%) and predicted the worst clinical behavior for the
CLL patients independent of known risk factors and regardless of
therapy choice. The majority of CLL cases were in ProSig2 and
ProSig3, discriminated by expression of HMM and ASH2L, KAT2A,
EZH2, DNMT1, and HDAC6. Those with lower HMM (ProSig2) had
worse outcomes than those in ProSig3 with higher HMM, i.e.
H3K27me3, H3K4me1-2, H2AX.pSer139, H3K36me3 to chemother-
apy and antibody treatment, but this was ameliorated with BTK
inhibition. ProSig4 with low ASH2L, EZH2, DNMT1, HDAC6, KMT2D,
WDR5, BMI1, KMT2D, relatively high-HMM but low H3K9me2 did
prognostically well, with chemotherapy or BTKi therapy, but not
with antibody-based treatment.
The proteomic patterns of ProSig1 with markedly lower

expression of SETD1A, KMT2A (also known as MLL1), MEN1
(menin), and other HMM provide insight into the biology
underlying the poor clinical outcome of these patients. Both
SETD1A and KMT2A are H3K4 methyltransferases and SETD1A
deletion has been associated with a global reduction of H3K4me1-
3 [28], a finding also observed in our study. SETD1A is required for
B cell differentiation from progenitor to precursor B cell in the BM
and maturation in the spleen and KMT2A and MEN1 are critical
during B-cell maturation in the BM [29]. In the BM, SETD1A
deficiency led to decreased H3K4me3 deposition and disrupted
gene transcription of critical B-cell development regulators (e.g.
Pax5 and Rag1-2, important for Ig heavy-chain rearrangement)
[30, 31]. SETD1A knock-out mice evince a phenotype with
enlarged spleen and leukocytopenia, concordant with our findings

of lowest lymphocyte number and high Binet staging in ProSig1
patients. These results suggest that the ~ 5% of CLL patients with
extreme loss of SETD1A, KMT2A, MEN1, and H3K4me3 may have
disrupted B-cell maturation in the progenitor to precursor cell
phase transition, and that this is an independent predictor for
poor outcome regardless of the treatment given. Although
ProSig1 had worst outcomes per treatment compared to the
other signatures, patients may do better with chemo (median OS-
post-Tx of 8.9 years) than with BTK inhibitors (median OS-post-Tx
of 2 years).
Another key protein in early B-cell development is the histone

methyltransferase EZH2 [32]. Previously, upregulated EZH2 mRNA
levels have been identified as a pro-survival marker in CLL cells,
indicating cell growth and poor outcome [12, 13]. In our study
ProSig3 and Prosig4 with lower EZH2 expression had outstanding
long-term survival, while EZH2 was overexpressed in poorer
prognostic ProSig1 and ProSig2 patients. Additionally, lower levels
of EZH2 have earlier been related to mutated IGHV CLL [12], a
finding confirmed here as low EZH2 ProSig1 displayed a high
percentage of mutated cases (62%, vs. 51% overall). Notably, EZH2
is part of the PRC2 complex that catalyzes H3K27 trimethylation,
but we observed these proteins to be inversely correlated (r=
−0.39, p < 2.23-16). Instead, H3K27me3 levels significantly asso-
ciated with: HDAC1 (r= 0.56, p < 2.2e-16), HDAC2 (r= 0.42, p <
2.2e-16) and CBX7 (r= 0.58, p < 2.2e-16), a PcG-repressor complex-
1 (PRC1) component that recognizes and binds to trimethylated
H3K27 [33] We observe an identical strong positive correlation
between EZH2 and H3K27me3 (r= 0.49, p < 2.2ep16) in a separate
pediatric T-cell acute lymphoid leukemia RPPA dataset (n= 358
cases, unpublished) supporting this interrelation. These data
suggest that in CLL patients EZH2 loss positively correlates with
the outcome, but does not impact global H3K27me3 levels, which
rather correlated with PRC1 components including CBX7.

Fig. 5 Known protein–protein associations of the 384 proteins on the CLL RPPA, including 37 HME (big nodes). Node colors represent
protein expression value relative to the protein expression in the CD19+ normal cells per cluster. Large nodes are the 37 HMM and HME
proteins in this study, smaller nodes are the other 347 proteins studied on this array. Color intensity represents expression level and is on the
same Log2 scale as in Fig. 1. Dashed lines reflect interactions identified from existing online databases (i.e. KEGG, String) or relationships
identified in this dataset. Please also see the “Supplemental Video” for a larger format dynamic visualization of how protein expression
changes between the protein signatures.
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Moreover, EZH2 correlated with proteins affecting transcription
and translation indicating higher proliferative potential. DNMT1,
which also correlated with EZH2 and HDAC6, correlated with
KRAS-mediated hypermethylation of tumor suppressors, ulti-
mately promoting growth.
ProSig4 demonstrated a global picture suggesting a loss of

histone lysine methyltransferase activity in this signature with
lower protein levels of KMT2D, DNMT1, ASH2L, HDAC6, and
H3K9me2. Interestingly, selective HDAC6 inhibition has hitherto
shown therapeutic efficacy in pre-clinical CLL models [34]. Maharaj
et al. validated HDAC6 overexpression in CLL, similar to our
dataset. They also showed that genetically silencing HDAC6 or
pharmacological inhibition has led to downregulated BCR
signaling, causing a proliferation defect and apoptosis. In our
cohort, ProSig4 patients with lower HDAC6 expression were long-
term survivors while ProSig2 with the highest HDAC6 expression
had poorer outcomes, possibly identifying these patients as ideal
candidates for HDAC6 inhibition.
The majority of CLL patients (90%) were in ProSig2 and ProSig3.

These signatures differed based on clinical features with a higher
percentage of trisomy 12, positive ZAP-70, and unmutated IGHV in
ProSig2 compared to 3. Moreover, ProSig2 had significantly
shorter median OS and TTST after chemotherapy-based treatment.
Compared to ProSig3, these patients had low expression of the
HMM, including H3K27me3, H3K36me3, and H2AX.pSer139. In
AML, we have recently reported that global loss of H3K27me3
independently predicts poor prognosis in all and p53 mutated
patients [16]. Similarly, we identified the H3K27me3 level in CLL as
an independent clinical predictor for TTFT and TTST, regardless of
IGHV status. Expressions of EZH2, DNMT1, HDAC6, and H4K27me3,
but not ASH2L, also discriminates between bulk CLL signatures
ProSig2 and ProSig3. EZH2 as part of PRC2 modulate DNA
methylation via DNMT1 recruitment. DNMT1 is a methyltransfer-
ase that adds methyl groups to gene promotors that lead to
epigenetic gene silencing. In myeloid malignancies, overexpres-
sion of DNMT1 has been linked to altered hypermethylated tumor
suppressor genomic regions [35] HDAC6 is not directly inter-
connected to EZH2 or DNMT1 but has been linked via heat shock
factor 90 (hsp90), which is a critical molecular chaperone for
maintaining EZH2 stability. Pan-HDAC inhibition via Panobinostat
treatment leads to decreased levels of HDAC6, subsequent heat
shock factor 90 (hsp90) acetylation, and EZH2 depletion suggest-
ing HDAC6 plays part in regulating hsp90 and indirectly EZH2
protein stability and DNMT1 recruitment [35, 36]. ProSig2 patients
also overexpressed ASH2L which we found was associated with
poor prognosis in adult AML [15]. Although ProSig2 patients had
lower OS-post-Tx after chemotherapy (77% after 10 years), 95%
survived 10 year OS-post-Tx when treated with BTK inhibitor-
based regimes. We hypothesize that patients with the
ProSig2 signature may be eligible candidates for ibrutinib with
or without HDAC6 inhibitors, as synergy between these has
already been reported in follicular lymphoma [37]. Based on the
biological processes influenced by EZH2, DNMT1, and HDAC6,
ProSig3 (and ProSig4) represent a more indolent CLL phenotype.
Over the past two decades, most studies of epigenetics in CLL

focused on DNA methylation profiling, concluding that distinct
methylome patterns that symbolize stable molecular marks exist
in the CLL cell of origin, but lacked functional impact [10, 38]. The
novelty of this study is shown by the simultaneous analysis of HME
and HMM at the proteomic level. We show here for the first time
that histone and chromatin-modifying proteins form patterns in
CLL and that these correlate with patient characteristics and
therapy-specific outcomes. Using RPPA, we observed that EZH2,
DNMT1, and HDAC6, which individually yield prognostic value in
our CLL cohort, were significantly positively correlated with each
other. When levels of these three proteins and ASH2L are lower,
CLL patients had outstanding overall survival rates and a median
TTFT of more than 9 years. In contrast, in ProSig2, characterized by

simultaneous overexpression of EZH2, DNMT1, and HDAC6, a
poorer outcome was observed after chemotherapy, but that this is
mitigated by BTK inhibition. Thus, the integrated proteomic
signatures identify patients that are more (ProSig2) and less likely
(ProSig1) to benefit from modern CLL therapy. We conclude that
an analysis of epigenetic protein biomarkers is valuable for
prognostication and treatment selection in CLL and complements
prior genomic and methylomic CLL classifications.
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