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On modeling social diffusion under the impact of dynamic norms

Lorenzo Zino, Mengbin Ye, and Ming Cao

Abstract— We develop and analyze a collective decision-
making model concerning the adoption and diffusion of a novel
product, convention, or behavior within a population. Motivated
by the growing social psychology literature on dynamic norms,
under which an individual is influenced by changing trends
in the population, we propose a stochastic model for the
decision-making process encompassing two behavioral mech-
anisms. The first is social influence, which drives coordination
among individuals. Consistent with the literature on social
diffusion modeling, we capture such a mechanism through
an evolutionary game-theoretic framework for a network of
interacting individuals. The second, which is the main novelty of
our model, represents the impact of dynamic norms, capturing
the tendency of individuals to be attracted to products or
behaviors with growing popularity. We analytically determine
sufficient conditions under which a novel alternative spreads to
the majority of the population. Our findings provide insights
into the unique and nontrivial role of human sensitivity to
dynamic norms in facilitating social diffusion.

I. INTRODUCTION

The past decade has witnessed an increasing interest from
the systems and control community in the mathematical mod-
eling and analysis of social dynamics [1]–[4]. Social diffusion
is a fundamental phenomenon of interest [5], referring to the
process whereby a novel alternative product, idea, or behavior
spreads across a population to replace the status quo currently
adopted by the majority [6]–[8]. Evolutionary game-theoretic
models of networks of interacting agents have been used to
capture the impact of social influence on human decision-
making [2], [9]–[12]. These works show that social influence
occurring through individual-level interactions can lead to the
emergence of collective phenomena. Importantly, it has been
shown that social diffusion can occur when the alternative
has a payoff advantage over the status quo [11].

However, in addition to social influence, human decisions
made during social interactions are often affected by other
salient behavioral mechanisms. A mechanism of particular
note is the tendency for an individual to be attracted to
products, ideas, or behaviors with growing popularity, even if
the product/behavior is currently in the minority [13]. Recent
literature refers to this as dynamic norms [14], [15]. Apart
from our recent developments [16], [17], current evolutionary
game-theoretic models for social diffusion (including those
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mentioned above) have largely omitted consideration of the
impact of dynamic norms.

This paper aims to fill this gap, and demonstrate the
nontrivial impact of dynamic norms on social diffusion.
We propose a mathematical model for social diffusion that
incorporates both social influence and dynamic norms. In our
model, a population of interacting individuals decide between
a status quo and a novel alternative, updating their decisions
in a stochastic fashion. Specifically, the stochastic process
includes a game-theoretic mechanism that captures social
influence as in existing models and a novel trend-seeking
mechanism that captures dynamic norms. The impact of these
two mechanisms is regulated by a parameter, that represents
the population’s sensitivity to dynamic norms.

Through theoretical analysis of the proposed model, we
shed light on the key role of dynamic norms in triggering
social diffusion. In fact, our findings reveal that when people
are only affected by social influence, diffusion occurs if and
only if the alternative has a sufficiently large payoff advantage
over the status quo. On the other hand, when the effect of
dynamic norms is present, we show that the alternative may
spread even in the absence of any advantage. By leveraging
tools from probability theory and dynamical systems theory,
we establish a sufficient condition for social diffusion to
occur with high probability as a threshold of the population’s
sensitivity to dynamic norms. Simulations are provided to
support and extend our theoretical findings.

The rest of the paper is organized as follows. In Section II,
we provide some mathematical preliminaries. In Section III,
we introduce the model and formalize the problem. Section IV
discusses general properties of the model. Section V presents
our main results. Conclusions are drawn in Section VI.

II. MATHEMATICAL PRELIMINARIES

We denote the set of nonnegative and strictly positive
integer numbers by N and N+, respectively. A vector x is
denoted with bold font, with ith entry xi. The all-0 column
vector is denoted by 0 (with dimension determined in the
context). For a stochastic event E, P[E] is its probability.

Definition 1 (High probability). Given a family of events
En, n ∈ N+, we say that En occurs with high probability
(w.h.p.) with respect to n if and only if there exists a constant
K > 0 such that P[En] ≥ 1−K/n, for all n ∈ N+.

Definition 2 (Markov chain). A process x(t) that takes values
in A, with t ∈ N, is a Markov chain if and only if, for any
t ∈ N and B ⊆ A, there holds P[x(t + 1) ∈ B |Ft] =
P[x(t + 1) ∈ B |x(t)], where Ft is the natural filtration
associated to x(t) [18].
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Fig. 1: Example of the action revision process; nodes in red
(green) adopt the alternative (status quo). In (a), we illustrate
a realization of the stochastic partitioning process at time t
with γ = 1/4. In (b), we illustrate a realization of the time-
varying network formation process in the social influence
mechanism with k = 3. In (c), we illustrate the action update
process with α = 0.5, assuming z(t) > z(t− 1).

Proposition 1 (Hoeffding’s inequalities [19]). Let b1, . . . , bn
be a sequence of n ∈ N+ independent and identically
distributed (i.i.d.) Bernoulli random variables (r.v.s), each
with the mean equal to p > 0. Then,

P[ 1n
∑n
i=1 bi ≤ p− δ] ≤ exp

{
−2δ2n

}
, (1a)

P[ 1n
∑n
i=1 bi ≥ p+ δ] ≤ exp

{
−2δ2n

}
. (1b)

III. MODEL AND PROBLEM FORMULATION

We consider a population of n ∈ N+ individuals, denoted
by the set V = {1, . . . , n}. At each discrete time-step t ∈ N,
each individual i ∈ V makes a binary decision on the action
to adopt in the following time-step t+ 1. Specifically, they
can choose whether to adopt the status quo action (denoted
by 0) or the alternative action (denoted by 1). We denote by
xi(t) ∈ {0, 1} the action adopted by individual i ∈ V at time
t ∈ N. The actions of all the individuals in the population at
time t are gathered in an n-dimensional vector x(t) ∈ {0, 1}n,
which we term the action state. We further define the variable
z(t) := 1

n

∑
i∈V xi(t), which counts the fraction of adopters

of the alternative action 1 in the population at time t ∈ N.
At each time-step, individuals decide on how to revise their

actions according to a stochastic procedure, which follows
three steps. First, the population is stochastically partitioned
into two sets. Second, depending on the set they belong to,
individuals may apply a decision-making mechanism based
on either social influence or dynamic norms. Third, actions
are revised according to the selected mechanism. We now
describe each step in detail, with an example in Fig. 1.

Partitioning. The population is partitioned into two time-
varying sets of T (t) and C(t); the former denotes those
individuals that at time t ∈ N base their decision on the
observation of dynamic norms, and the latter captures those
individuals that at time t base their decision on social
influence. In more detail, at each discrete time-step t ∈ N, a
constant fraction γ ≥ 0 of the population is selected uniformly
at random and assigned to the set T (t). For simplicity of
notation, we henceforth assume that γn ∈ N. The remaining
population is assigned to the set C(t) = V \ T (t). In general,
T (t) and C(t) contain different individuals at different time-
steps, and determine only whether an individual at a given
time-step uses dynamic norms or social influence in the

decision-making process. Figure 1a illustrates an example
realization of this partitioning process.

Social influence. Each individual i ∈ C(t) contacts k
individuals from the entire population V , selected uniformly
at random and each one independent of the others; we call
this set of contacted individuals the neighbors of individual
i at time t, denoted by Ni(t). Such a mechanism generates
a directed time-varying (multi-)graph of interactions G(t) =
(V, E(t)), where (i, j) ∈ E(t) ⇐⇒ j ∈ Ni(t) (possibly,
with multiple occurrences), as shown in Fig. 1b. Note that
the network formation process is similar to the one of directed
discrete-time activity-driven networks [20], [21]. Then, each
individual i ∈ C(t) makes their decision according to a
network coordination game on G(t).

Specifically, i ∈ C(t) engages in k symmetric 2-player
coordination games with each of their k neighbors j ∈ Ni(t)
(multiple occurrences of the same individuals are treated as
distinct games) [2]. The payoff that individual i would receive
for selecting action 0 and 1 at time t, denoted π(0)

i (x(t)) and
π
(1)
i (x(t)) respectively, is the sum of the payoffs from all k

coordination games, yielding:

π
(0)
i (x(t)) :=

∑
j∈Ni(t)

(1− xj(t)) , (2a)

π
(1)
i (x(t)) :=

∑
j∈Ni(t)

(1 + α)xj(t) . (2b)

where α ≥ 0 represents the evolutionary advantage of the
alternative with respect to the status quo, which is discussed
later in this section. Individuals revise their actions to
maximize their payoffs, according to best-response dynamics,
which is a standard protocol adopted in evolutionary game
theory [22]. Specifically, i ∈ C(t) revises its action to

xi(t+ 1) =


1 if π(1)

i (x(t)) > π
(0)
i (x(t)) ,

0 if π(1)
i (x(t)) < π

(0)
i (x(t)) ,

xi(t) if π(1)
i (x(t)) = π

(0)
i (x(t)) .

(3)

Note that we have adopted a “conservative” best-response,
where individual i will not change action if the two payoffs
are equal, consistent with the social psychology literature on
the presence of inertia in decision-making [23]. Figure 1c
illustrates an example of this revision protocol.

Dynamic norms. Each individual i ∈ T (t) chooses to
adopt the action whose number of adopters has increased in
the previous time-step. If the fraction of adopters of both
actions are unchanged in the previous time-step, then the
player does not revise their action. Hence, for all i ∈ T (t),
the decision is made according to the following rule:

xi(t+ 1) =

 1 if z(t) > z(t− 1) ,
0 if z(t) < z(t− 1) ,
xi(t) if z(t) = z(t− 1) .

(4)

Figure 1c shows an example of this revision protocol.
Thus, Eq. (4) captures individual i adopting the action that
has increased in popularity over the previous time-step (is
trending upward), even if the action is currently only adopted
by the minority in the population. This closely reflects
recent empirical studies and social psychology literature on
dynamic norms [14], [15], which showed individuals could be



influenced to take up a behavior/action currently adopted by a
minority, simply by being made aware that the behavior/action
was becoming increasingly popular.

The proposed model is characterized by three parameters.
The parameter γ ∈ [0, 1], termed trend-seeking, represents the
fraction of the population that makes its decision on the basis
of dynamic norms. The parameter k ∈ N+ is the number of
social contacts for each individual, and we have assumed
homogeneity in the population. The value k captures the
limited amount of social information that individuals generally
use in their decision-making processes. Finally, the parameter
α ≥ 0 models the (possible) evolutionary advantage of the
alternative action with respect to the status quo action.

Remark 1. In the absence of trend-seeking γ = 0, the
model reduces to a coordination game on a (time-varying)
network [9]–[11] or, equivalently, to a (biased) k-majority
dynamic [24]. In the special case k = 1, the dynamics reduces
to an unbiased voter model [25].

We are interested in studying the role of dynamic norms in
social diffusion. To this aim, we will specifically consider the
scenario in which the population begins with all individuals
adopting the status quo action 0. At time 0, the alternative
action is introduced into the system by selecting individuals in
the set T (0) to act as early adopters of the alternative action
1 [5]. To do this, we initialize the system by setting x(t) = 0,
for all t < 0, and x(0) such that xi(0) = 1 if i ∈ T (0) and
xj(0) = 0 if j ∈ C(0). Note that this implies z(0) = γ. In
the special case where trend-seeking is absent (γ = 0), we
will instead select a small amount of early adopters uniformly
at random in the population, so that z(0) > 0.

We wish to determine which number of social contacts
k ∈ Z+, evolutionary advantage α ≥ 0, and trend-seeking
γ ≥ 0 ensure that the alternative action diffuses across
the population. We restrict our analysis to scenarios in
which social influence is the dominant mechanisms, that
is, γ ∈ [0, 1/2]. This is because the opposite scenario is less
interesting and unrealistic; if γ > 1/2, then the alternative is
immediately adopted by the majority of the population. In
particular, we establish sufficient conditions that guarantee
social diffusion to occur. To this aim, for any ε ∈ (0, 1), we
define the random times:

Tn := inf{t ∈ N : z(t) ≥ (1− ε)n} , (5a)
Sn := inf{t ∈ N : z(t) ≤ z(t− 1)} , (5b)

writing them as explicit functions of the population size n.
Thus, Tn and Sn define the times at which the alternative
action reaches a fraction 1− ε of adopters, and the first time-
instant at which the number of adopters of the alternative
decreases, respectively (where inf(∅) = +∞). Clearly, if
Tn < Sn, then not only does diffusion occurs, but it occurs in
a monotonic fashion. Hence, determining conditions for which
Tn < Sn yields sufficient conditions for social diffusion to
occur. We formalize our research question as follows.

Problem 1 (Achieving social diffusion). Consider the triple
(k, α, γ). Determine whether Tn < Sn w.h.p., for any ε > 0.

In the rest of this work, we make the following assumption.

Assumption 1. We assume that k/(2 + α) /∈ N.

When the assumption is not satisfied, the direct analysis
of the system is made more complicated by the possibility
of having an individual i ∈ C(t) that receives the same
payoff for the two actions. In that scenario, the current
action of the individual i would play a role in the decision-
making process. Thus, the derivation of probabilistic bounds
would be significantly more complicated, but nonetheless, the
arguments used in the following analytical derivations can
be used with appropriate extensions. Moreover, sufficient
conditions to guarantee social diffusion can be directly
established from our findings through standard coupling
arguments between Markov chains [18].

IV. GENERAL PROPERTIES OF THE MODEL

We start by observing that the action update depends on the
time-varying set to which the individual belongs at time t. If
i ∈ T (t), then their next action is fully determined by Eq. (4).
In the following, we explicitly compute the probability that
i ∈ C(t) updates their state to xi(t+ 1) = 1.

Proposition 2. Let us define Πk,α(z) :=
∑k
`=k∗

(
k
`

)
z`(1 −

z)k−`, with k∗ := dk/2 + αe. If Assumption 1 holds, then

P[xi(t+ 1) = 1|i ∈ C(t)] = Πk,α(z(t)) . (6)

Proof. For the sake of readability, we drop the time-index t,
so x and z stand for x(t) and z(t), respectively. First, we
rewrite the payoff in Eq. (2a) as π(0)

i (x) = k−
∑
j∈Ni(t)

xj .
By substituting this expression and Eqs. (2b) into the condition
in Eq. (3), we observe that π(1)

i (x) > π
(0)
i (x) if and only

if
∑
j∈Ni(t)

xj > k/(2 + α). That is, the payoff for playing
xi = 1 is greater than the payoff for playing xi = 0 if there
are at least k∗ neighbors of i playing 1. Note that, because
k/(2 +α) /∈ N, the payoffs π(0)

i and π(1)
i can never be equal.

Then, we compute the probability that an individual i ∈
C(t) selects k individuals j ∈ V (with repetition) during the
network formation process at time t, and at least k∗ of them
have state xj = 1. Since each sample consists of a Bernoulli
r.v. with the success probability equal to z, independent of
the others, the number of neighbors j ∈ Ni(t) playing xj = 1
is a binomial r.v. with k trials and success probability equal
to z. Hence, the desired quantity is the probability that such
a binomial r.v. is greater than or equal to k∗ (that is, its
complementary cumulative distribution evaluated for k∗ − 1),
yielding Eq. (6). Note that this probability is independent of
i ∈ V and depends on x only through z.

Next, we establish some of the key properties of the
function Πk,α(z) that plays a key role in the revision
process of individual i ∈ C(t). The proofs, omitted due to
space constraints, follow from the properties of the binomial
cumulative probability distribution [26].

Proposition 3. The function Πk,α(z) : [0, 1] → [0, 1] is a
monotonically nondecreasing function of α, and a monotoni-
cally increasing function of z. Moreover, Πk,α(1/2) ≥ 1/2,
and the following properties hold true:



1) for any α ≥ 0, then Π1,α(z) = z;
2) if k ≥ 2 and α > k − 2, then Πk,α > z, ∀ z ∈ (0, 1);
3) if k ≥ 2 and α < k − 2, then there exists a unique

z∗ ∈ (0, 1/2] such that Πk,α(z) < z for all z ∈ (0, z∗),
and Πk,α(z) > z for all z ∈ (z∗, 1).

It is worth noticing that the dynamics x(t), defined by
Eq. (3) and Eq. (4), is in general not a Markov process,
except for γ = 0. In fact, from Eq. (4), we observe that the
state transitions governed by the trend-seeking mechanism do
not only depend on x(t), but also depend on the state of the
system at the previous time-step, namely x(t−1). To address
this issue, and as we will later require Markov chain theory,
we define new dynamics with an augmented state space. To
do this, we introduce two new vector variables x̂(t) ∈ {0, 1}n
and ŷ(t) ∈ {0, 1}n, which roughly speaking have dynamics
equal to x(t) and x(t− 1), respectively. More precisely, we
define a 2n-dimensional Markov process (x̂(t), ŷ(t)), which
evolves according to the following rules. For all i ∈ V , we
have yi(t+1) = x̂i(t). Meanwhile, x̂i(t) is updated according
to the mechanisms described above. Specifically, if i ∈ C(t),
then the state is updated according to Eqs. (2) and (3) but
with x̂i replacing xi for all i ∈ V . If i ∈ T (t), then Eq. (4)
is substituted by the following update rule:

x̂i(t+ 1) =

 1, if
∑
x̂i(t) >

∑
ŷi(t) ,

0, if
∑
x̂i(t) <

∑
ŷi(t) ,

x̂i(t), if
∑
x̂i(t) =

∑
ŷi(t) .

(7)

Finally, observe that the processes x(t) and x̂(t) are equiv-
alent when we initialize x̂(t) = x0 and ŷ(t) = 0. Hence,
and as we shall do in the sequel, one can use the Markov
process (x̂(t), ŷ(t)) to study Problem 1, by observing that
the random times in Eq. (5) can be equivalently defined
as Tn := inf{t ∈ N :

∑
i∈V x̂i(t) ≥ (1 − ε)n} and

Sn := inf{t ∈ N :
∑
i∈V x̂i(t) ≤

∑
i∈V ŷi(t)}.

We further define the stopping time Qn := min{Tn, Sn}.
The following result guarantees that Qn is always well defined
(that is, Qn <∞) and provides a bound on such a quantity.

Proposition 4. For any γ ∈ [0, 1/2], ε ∈ (0, 1), and z(0) >
0, the stopping time Qn = min{Tn, Sn} satisfies Qn ≤
max{(1− ε− β)n, 1}, where β = max{z(0), γ}.

Proof. Our problem formulation has assumed that γn in-
dividuals initially play action 1 (or if γ = 0, then some
predetermined amount z(0) > 0). This implies that z(0) ≥ β.
Thus, if ε ≥ 1 − β, then T ≤ 1. If ε < 1 − β, we
prove the claim by contradiction. Let us hypothesize that
Qn > (1 − ε − β)n. Then the definition of Qn yields
Sn > (1− ε−β)n, which in turn implies from the definition
of Sn that z(t) > z(t − 1) for all t ≤ (1 − ε − β)n. Since
Qn > 1, it follows that z(1) ≥ β and z(t) ≥ z(t− 1) + 1/n
because for t < Qn, z(t) is increasing at each time-step
and such an increase is lower bounded by 1/n (being z(t) a
process taking values on {0, 1

n , . . . , 1}). As a consequence,
z((1 − ε − β)n) ≥ z(0) + (1 − ε − β)n · 1/n ≥ 1 − ε.
However, this would imply that Tn ≤ (1− ε− β)n, and thus
Qn ≤ (1− ε− β)n, which contradicts our hypothesis.

V. MAIN RESULTS

We will start our analysis from the case without trend-
seeking (γ = 0), with all individuals revising their action
based on social influence and T (t) = ∅. Since social influence
as in Eq. (3) is often used to study social diffusion [9]–[11],
this case will serve as a baseline for comparison, to better
understand the effect of dynamic norms in facilitating social
diffusion, which is studied in the second part of this section.

A. Absence of trend-seeking with γ = 0

We assume that the system starts with a positive (small)
fraction of early adopters of the innovation z(0) = β ∈
(0, 1/2]. In the following, we establish a condition for the
alternative to spread for any β > 0 (solving Problem 1).
Consistent with the literature of social diffusion and coordina-
tion games on networks [9]–[11], we find that the alternative
spreads if and only if it has a sufficiently large evolutionary
advantage α (dependent on the number of social contacts, k).

Theorem 1. Under Assumption 1, a triple (k, α, 0) solves
Problem 1 for any β > 0 if and only if k ≥ 2 and α > k− 2.

Proof. First, we observe that z(t) = 1
n

∑
i∈V x̂i(t) is a

Markov chain [18]. In fact, since all the individuals revise
their action according to social influence, i ∈ C(t) for all
i ∈ V and t ∈ N. Based on Proposition 2, we can write

z(t+ 1) = 1
n

∑n
`=1 b`(t) , (8)

where b1(t), . . . , bn(t) is a sequence of i.i.d. Bernoulli r.v.s,
each one with the mean equal to Πk,α(z(t)). Hence, the
probability distribution of z(t+1) depends only on t through
Πk,α(z(t)), and, ultimately, on z(t).

For k = 1, the system reduces to a voter model, for which
the probability of z(t) reaching 1 − ε before reaching 0 is
β/(1− ε) [25]. However, the definitions of Tn and Sn yield
P[Tn < Sn] ≤ β/(1 − ε). Unless β ≥ 1 − ε (which is not
verified by a generic β ∈ (0, 1/2] and ε > 0), P[Tn < Sn]
never converges to 1, and therefore does not occur w.h.p.

For k ≥ 2, and α > k − 2, item 2) of Proposition 3
guarantees that Πk,α(z) > z, for all z ∈ (0, 1). Hence, by
continuity, there exists a constant δ > 0 such that Πk,α(z) >
z+ δ, for all z ∈ [β, 1− ε], for any ε > 0. Then, Hoeffding’s
inequality in Eq. (1a) applied to Eq. (8) yields

P [z(t+ 1) ≤ z(t)|Ft] ≤ exp{−2δ2n} , (9)

for all t < Qn, where Ft is the natural filtration associated
to (x̂(t), ŷ(t)) at time t. We use the law of total probability
with respect to the conditioning on Qn, and we write

P[Tn < Sn] = P[@ t < Qn : z(t+ 1) ≤ z(t)] (10)

=

∞∑
s=0

P[Qn = s]P[@ t < s : z(t+ 1) ≤ z(t)]

=

∞∑
s=0

P[Qn = s]

s∏
k=0

P[z(k + 1) > z(k)|Fk]

=

(1−β−ε)n∑
s=0

P[Qn = s]

s∏
k=0

(1− P[z(k + 1) ≤ z(k)|Fk]) ,



where the last equality holds since Qn ≤ (1 − β − ε)n
(Proposition 4). Finally, substituting Eq. (9) into Eq. (10),
and then bounding the convex combination on the right-hand-
side with its minimum, we obtain

P[Tn < Sn] ≥
∑(1−β−ε)n
s=0 P[Qn = s]

(
1− e−2δ2n

)s
≥
(
1− e−2δ

2n
)(1−β−ε)n ≥ 1−K/n , (11)

for some constant K > 0, which yields the claim.
For k ≥ 2 and α < k − 2, item 3) of Proposition 3

guarantees that Πk,α(z) < z, for all z ∈ (0, z∗). Hence, for
any β < z∗, by continuity, there exists a constant δ > 0 such
that Πk,α(β) < β − δ. Then, we bound P[Tn < Sn] with the
probability of not changing the trend at the first step (which
is a necessary condition for Tn < Sn), obtaining

P[Tn < Sn] ≤ P [z(1) > z(0)] ≤ exp{−2δ2n} , (12)

where the last inequality is obtained by applying Hoeffding’s
inequality in Eq. (1b) to Eq. (8). Note that Eq. (12) never
converges to 1, and therefore does not occur w.h.p.

B. Presence of trend-seeking with γ > 0

In the previous section, we concluded that in the absence of
trend-seeking, the coordination mechanism induced by social
influence hinders social diffusion, unless the novel alternative
provides a sufficiently large evolutionary advantage α. Here,
we will show how sensitivity to dynamic norms —captured
by the parameter γ— can facilitate to unlock social diffusion,
even in the absence of any evolutionary advantage.

When γ > 0, we can study the dynamics of the stochastic
process z(t) up to the stopping time Qn by using a similar
approach to the one used for γ = 0. In fact, we will observe
that z(t) is a Markov process, when conditioning to t < Qn.
Such an observation allows us to use Hoeffding’s inequalities
to bound z(t + 1) through a function of Πk,α, and of the
parameter γ. The following result establishes our findings.

Lemma 1. If Assumption 1 is verified, then, for any t < Qn
and for any constant δ > 0,

P[z(t+ 1) ≤ (1− γ)Πk,α(z(t)) + γ − δ|Ft] ≤ e−Kn,

with constant K = 2δ2/(1− γ) > 0.

Proof. Proposition 4 guarantees that the stopping time Qn is
always well defined. Up to the stopping time Qn, z(t) is a
Markov chain on {γ, γ+ 1

n , . . . , 1−ε}. In fact, the definition
of Qn yields that

∑
i∈V x̂i(t) >

∑
i∈V ŷi(t) for any t < Qn.

Along with Eq. (7), this implies that x̂i(t+ 1) = 1, for all
i ∈ T (t), independent of the previous history of the process.
We now focus our analysis on the Markov chain z(t), up to the
stopping time Qn. Similar to the case without trend-seeking,
and because z(0) = γ, we can write

z(t+ 1) = γ + 1
n

∑(1−γ)n
`=1 b`(t), (13)

where b1(t), . . . , b(1−γ)n(t) is a sequence of i.i.d. Bernoulli
r.v.s, with the mean equal to Πk,α(z(t)). Hoeffding’s inequal-

ity in Eq. (1a) applied to the second term of the right-hand-
side of Eq. (13) yields

P
[
1
n

∑(1−γ)n
`=1 b`(t) ≤ (1− γ)Πk,α(z(t))− δ

∣∣Fk]
= P

[
1

(1−γ)n
∑(1−γ)n
`=1 b`(t) ≤ Πk,α(z(t))− δ

1−γ
∣∣Fk]

≤ exp{−2δ2n/(1− γ)} , (14)

for any constant δ > 0. Using Eq. (13) and Eq. (14), we
prove the claim.

Thus, for a given number of social contacts k ∈ N+ and
evolutionary advantage α ≥ 0, we can define the function:

fγ(z) := (1− γ)Πk,α(z)− z + γ , (15)

which allows us to establish the following result.

Theorem 2. Let the number of social contacts k ∈ N+

and evolutionary advantage α ≥ 0 be given, satisfying
Assumption 1. Then (k, α, γ) solves Problem 1 if

γ > γ∗k,α := inf{γ ∈ [0, 1/2] : fγ(z) > 0, ∀z ∈ (0, 1)},
(16)

where fγ(z) is defined in Eq. (15). Moreover, γ∗k,α = 0 if
k = 1 or α > k − 2, otherwise γ∗k,α > 0.

Proof. Given γ such that fγ > 0, ∀z ∈ (0, 1), there then
exists by continuity a δ > 0 such that fγ(z) > δ, for all z ∈
[γ, 1− ε], for any ε > 0. This implies that (1− γ)Πk,α(z) +
γ − δ > z. Hence, Lemma 1 guarantees that

P[z(t+ 1) ≤ z(t)|Ft] ≤ exp{−Kn} (17)

for each t < Qn. Hence, we can prove that the triple (k, α, γ)
solves Problem 1, by using arguments and calculations similar
to those used in Eqs. (10) and (11) in the proof of Theorem 1.
Briefly speaking, the arguments rely on conditioning on the
time-instant Qn, using the law of total probability to express
P[Tn < Sn], to bound the sum obtained using Proposition 4,
and substituting in Eq. (17).

Then, we observe that fγ in Eq. (15) is monotonically
nondecreasing with respect to γ. Therefore, if a triple (k, α, γ)
solves Problem 1, then (k, α, γ′) also solves Problem 1, for
any γ′ ≥ γ. Thus, either the set in Eq. (16) is empty, or it is
an interval from γ∗k,α to 1/2.

Finally, we prove that the set in Eq. (16) is always
nonempty. For k = 1, we recall that Πk,α(z) = z. Notice
that fγ(z) > 0 reduces to (1 − γ)z + γ − z > 0, which
holds for any γ > 0. Hence γ∗1,α = 0, for any α ≥ 0. For
k > 1 and α > k − 2, Theorem 1 guarantees that (k, α, 0)
solves Problem 1, and thus γ∗k,α = 0. Finally, we analyze the
case k > 1 and α < k − 2 (which implies that k∗ ≥ 2) by
observing that γ = 1/2 always verifies the condition fγ > 0.
In fact, for z < γ = 1/2, we observe that both the first term
and the sum of the second and third terms in fγ are positive,
that is, −z+γ > 0. This implies that fγ > 0 for z < γ = 1/2.
For z = 1/2, we have f1/2(1/2) = Πk,α(1/2) > 0. Lastly,
for z ∈ (1/2, 1), the function f1/2 is strictly concave, and one
further has f1/2(1/2) > 0 and f1/2(1) = 0, which implies
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Fig. 2: Simulated trajectories of the diffusion process with
n = 100, 000, k = 3, α = 0, and two different values of γ.

that f1/2(z) > 0 for z ∈ (1/2, 1). Hence γ = 1/2 always
belongs to the set in Eq. (16), which is not empty.

Remark 2. When Assumption 1 is not satisfied, standard
coupling arguments between Markov chains [18] can be
used to show that if a triple (k, α, γ) solves Problem 1, then
(k, α′, γ) also solves Problem 1, for any α′ ≥ α (even if α′

does not satisfy Assumption 1).

Consider the case in which k = 1. In the absence of trend-
seeking γ = 0, Problem 1 has no solution, while a nonzero
presence of trend-seeking γ > 0 is sufficient to guarantee that
the alternative spreads across the population, since γ∗1,α = 0.
For k = 2 and α > 0, the alternative always spread, even
in the absence of trend-seeking (and thus γ∗2,α = 0). As k
increases, the behavior of the system becomes more complex.
Indeed, complex emergent phenomena can be already found
for k = 3, as shown in the following corollary and supporting
simulations. In particular, the alternative requires a sufficiently
large evolutionary advantage (α > 1) to guarantee diffusion
in the absence of trend-seeking. However, when trend-seeking
is present, diffusion of the alternative can be achieved even
for α ≤ 1, provided γ is sufficiently large.

Corollary 1 (The case of k = 3). A triple (3, α, γ) solves
Problem 1 if i) α > 1 or ii) γ > 1/9.

Proof. For α > 1 = k−2, Theorem 1 (γ = 0) and Theorem 2
(γ > 0) yield the claim. For α ∈ [0, 1), we compute k∗ =
b3/(2 +α)c+ 1 = 2 and Πk,α(z) = 3z2(1− z) + z3. Hence,
fγ(z) = (1−γ)(3z2(1−z)+z3)−z+γ is a cubic curve that
is positive for all z ∈ (0, 1) if and only if γ > γ∗3,α = 1/9.
Theorem 2 and Remark 2 (for α = 1) yield the claim.

The simulations in Fig. 2 illustrate the behaviors described
in Corollary 1 in the absence of evolutionary advantage.
Interestingly, these simulations suggest that the sufficient
condition γ > γ∗3,0 might define a sharp transition, as below
such a threshold (red curve) diffusion seems not to occur.

VI. CONCLUSIONS

In this paper, we proposed and analyzed a model for social
diffusion under the impact of dynamic norms. Our findings
revealed that individual sensitivity to emerging trends plays
a key role into enabling social diffusion. Building on these
preliminary results, several avenues of future research may be
outlined. First, a complete characterization of the asymptotic
behavior of the diffusion process is still missing. Second, the
impact of a heterogeneous population should be investigated,
whereby individuals may have different tendency to follow
dynamic norms, social contacts, and, possibly, a pattern of

preferred interactions. Third, the proposed model should be
validated against real-world data on social diffusion processes.
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