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A B S T R A C T

Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hypergly-
caemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular
endothelium from GDM pregnancy show increased maximal L-arginine transport capacity via the human cationic
amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase
(eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside
adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors.
A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS
activity (i.e. the Adenosine/L-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these al-
terations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in
the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foeto-
placental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and
leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their re-
ceptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and in-
sulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review
focuses on the pathophysiology of insulin and adenosine receptors and L-arginine and adenosine membranes
transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in
GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy
Metabolic Complications edited by Luis Sobrevia.

1. Introduction

Gestational diabetes mellitus (GDM) is a disease of pregnancy as-
sociated with hyperglycaemia and maternal hyperinsulinemia with
onset or first recognized during pregnancy [1–3]. This pathology is
related to D-glucose intolerance and dysfunction of the placental vas-
culature [4–7]. GDM-associated vascular dysfunction has deleterious

consequences for the foetal development and growth, as well as peri-
natal complications, including macrosomia, hypoglycaemia, and neu-
rological disorders [8–12]. Family history of type 2 diabetes mellitus
(T2DM), polycystic ovary syndrome, ethnicity, maternal age, over-
weight before pregnancy and obesity, and maternal supraphysiological
gestational weight gain are recognized as risk factors for GDM [13,14].

The clinical manifestations of GDM have been attributed to different

https://doi.org/10.1016/j.bbadis.2018.12.021
Received 8 November 2018; Received in revised form 18 December 2018; Accepted 21 December 2018

☆ This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
⁎ Corresponding authors at: Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of

Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
E-mail addresses: mesubiabre@uc.cl (M. Subiabre), lsobrevia@uc.cl (L. Sobrevia).

BBA - Molecular Basis of Disease 1866 (2020) 165370

Available online 17 January 2019
0925-4439/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09254439
https://www.elsevier.com/locate/bbadis
https://doi.org/10.1016/j.bbadis.2018.12.021
https://doi.org/10.1016/j.bbadis.2018.12.021
mailto:mesubiabre@uc.cl
mailto:lsobrevia@uc.cl
https://doi.org/10.1016/j.bbadis.2018.12.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2018.12.021&domain=pdf


factors including the maternal [15], altered lipid metabolism [16],
hypertension [17], insulin resistance [18], and dysfunction of the foe-
toplacental micro and macrovasculature [6,19]. The effects of GDM in
the foetoplacental vascular endothelium regards with altered expres-
sion and signalling via receptors for insulin, adenosine, and adipokine.
Activation of adenosine receptors (ARs) increase the uptake of the ca-
tionic amino acid L-arginine, the substrate for nitric oxide synthases
(NOS), and the synthesis of NO in the human foetoplacental en-
dothelium in GDM pregnancy [20,21]. Interestingly, activation of in-
sulin receptors (IRs) results in reducing the GDM-increased L-arginine
transport and NO in the human foetoplacental endothelium in GDM
pregnancy [22,23]. Other studies report that insulin requires expression
of ARs and a normal adenosine-triggered signalling in the human vas-
cular endothelium [20,24]. Also, a lower plasma level of the adipokines
leptin and adiponectin and altered expression or sensitivity of their
receptors, result in reducing insulin sensitivity in most tissues [25,26].
Since GDM is a pathology where the mother, foetus, and newborn show
insulin resistance [27,28], unveiling the mechanisms associated with
the activation of ARs, IRs, and adiponectin receptors activation in GDM-
associated insulin resistance is needed.

In this review we summarized the role of insulin, adenosine, and
adipokine receptors, as well as plasma membrane transporters for
adenosine and L-arginine in the altered vascular endothelial function in
the human placenta circulation in GDM.

2. Insulin receptors

2.1. Insulin and insulin receptors

Insulin is a polypeptide hormone formed by 51 amino acids, syn-
thesized and released by the β cells of the pancreas Langerhans islets.
This peptide is released as an inactive precursor of a single polypeptide
chain, i.e. proinsulin, with an amino-terminal signal sequence that de-
termines its incorporation into secretory vesicles [29]. The proteolytic
elimination of the signal sequence and the formation of three disulfide
bridges generate the proinsulin. The proinsulin passes to the Golgi ap-
paratus where it is modified and stored in secretion vesicles [30].
Following the increase of D-glucose in the blood, the generation of in-
sulin is triggered by the conversion of proinsulin into active insulin by
proteases that cut two peptide bonds to form the functional insulin.
Insulin is the growth hormone in foetal development, promoting the
tissue deposit of carbohydrates, lipids and proteins, as well as the up-
take of D-glucose. The release of insulin is under regulation by hor-
mones and intracellular signals, as well as by the autonomic nervous
system and by its interaction with substrates, the most important being
D-glucose [30].

The biological effects of insulin are mediated by activation of cell
membrane insulin receptors [31–33]. The gene coding the human in-
sulin receptor, i.e. INSR, is located on the short arm of chromosome 19
and is composed of 22 exons and 21 introns [32–34]. Insulin receptor is
a heterotetrameric glycoprotein organized in two α and β subunits
joined through disulfide bridges [35]. The α subunit is the intracellular
regulatory subunit of insulin receptor and in the absence of the insulin
receptor ligand (i.e. insulin) this subunit inhibits the intrinsic tyrosine
kinase activity of the β subunit [36]. The β subunit of insulin receptor is
composed of a short extracellular domain, one transmembrane domain,
and one cytoplasmic domain. The β subunit cytoplasmic domain shows
intrinsic tyrosine kinase activity. Different functional regions have been
reported in the intracellular segment of the β subunit including an ATP-
binding domain, autophosphorylation sites in the intracellular region
adjacent to the plasma membrane for insulin binding and insulin re-
ceptor internalization, and a region with tyrosine kinase activity key for
insulin biological actions [36,37]. The insulin receptor includes the
isoforms A (IR-A) and B (IR-B) differing only in the absence (IR-A) or
presence (IR-B) of 12 amino acids at the C-terminal domain of the α-
subunit in IR-B [38]. The analysis of the exon-intron organization of

INSR showed that the 12-amino acid segment is encoded by exon 11 (36
base pairs), thus generating two mRNAs for the insulin receptor forms
as a consequence of alternative splicing [34].

Expression of IR-A and IR-B forms is tissue-dependent. IR-A ex-
pression predominates in placental and foetal tissue, spleen, heart,
kidney, pulmonary alveoli, pancreatic acini, monocytes, granulocytes,
erythrocytes, fibroblasts, brain, and lymphocytes. Interestingly, ex-
pression of IR-A in tissues other than the classical targets of insulin, i.e.
skeletal muscle, liver, and adipose tissue, suggests a predominant mi-
togenic response to insulin, i.e. higher activation of p44/42mapk com-
pared with activation of Akt (p44/42mapk/Akt> 1). In contrast, the
expression of IR-B, which mediates metabolic effects of insulin (i.e.
p44/42mapk/Akt< 1), is expressed mostly in liver, adipose tissue and
muscle [39,40]. In the placenta, the insulin receptors expression
changes as the pregnancy progresses. At the beginning, insulin re-
ceptors locate in the microvilli membrane of the syncytiotrophoblast;
however, late stages of pregnancy show preferential expression of these
receptors in the foetoplacental endothelium compared with the syncy-
tiotrophoblast [41]. Interestingly, the trophoblast shows activation of
the p44/42mapk signalling pathway supporting a mitogenic phenotype
at the beginning of gestation [42]. On the other hand, the Akt signalling
pathway activation results in a metabolic phenotype late in pregnancy
[43]. At delivery, the two isoforms of insulin receptors are expressed in
the foetoplacental endothelium, including human umbilical vein (HU-
VECs) and human placental microvascular (hPMECs) endothelium [40].

Insulin causes at dual effect in the vasculature, i.e. a vasodilator
effect associated with the generation of NO [44], a gas well char-
acterised as free radical resulting from the metabolism of L-arginine by
NO synthases (NOS) [45,46], and a vasoconstrictor effect associated
with the production of ET-1 [22,47,48], one of the three isoforms of the
human endothelin resulting from the cleavage of the preproendothelin
and proendothelin [49], by the endothelium. The signalling pathways
activated by insulin require the tyrosine kinase-dependent activation of
the insulin receptors. The latter phenomenon leads to phosphorylation
of the insulin receptor substrates 1 (IRS-1) and IRS-2 causing activation
of the phosphatidylinositol 3-kinase (PI3K) which ends in activation of
a PI3K-dependent Akt signalling. Alternatively, activation of insulin
receptors could lead to triggering of the Src homology 2 domain-con-
taining transforming protein 1 type A of 42 and 56 kDa (SHcA42/56)-
dependent p44/42mapk (SHcA42/56/p44/42mapk) signalling.

A differential biological effect of insulin results from the activation
of signalling pathways that are preferentially mediated by p44/42mapk

or protein kinase B/Akt (Akt) after activation of IR-A or IR-B, respec-
tively. The branch of insulin signalling mediated by PI3K/Akt is re-
ferred as metabolic signalling where PI3K activates the human 3-
phosphoinositide-dependent protein kinase 1 (PDK-1) leading to phos-
phorylation and activation of Akt. Increased activity of Akt results in
phosphorylation at Ser1177 and direct activation of eNOS. As a con-
sequence of PI3K/PDK-1/Akt–dependent activation of eNOS activation
a higher NO availability is seen [44,50–53]. On the other hand, the
SHcA42/56/p44/42mapk branch of the cell response to insulin is known
as the mitogenic pathway. This branch regulates a variety of biological
functions including gene transcription, protein synthesis, cell growth
and differentiation, and stimulates the release of ET-1 from the en-
dothelium [40,47].

2.2. Modulation of L-arginine/NO signalling pathway by insulin

The uptake of cationic amino acids in HUVECs is mediated by dif-
ferent membrane transport systems of which the system y+ family plays
a key role [54,55]. System y+ family of cationic amino acid transpor-
ters (CATs) is composed of at least five proteins, i.e. CAT-1, CAT-2A,
CAT-2B, CAT-3, and CAT-4 [56,57]. Transport of L-arginine is mediated
primarily via human CAT-1 (hCAT-1, ~80% of total transport) and
hCAT-2B (~20% of total transport) in primary cultured HUVECs [58].
hCAT1/2B mediated L-arginine transport shows apparent Km values
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ranging ~100 to 250 μmol/L [21,56].
Nitric oxide (NO) is generated as a coproduct of the metabolism of L-

arginine by the three known isoforms of NOS, i.e. neuronal NOS
(nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) [45,46].
NO activates the soluble guanylyl cyclase generating cGMP and causes
nonselective inhibition of calcium channels in vascular smooth muscle
cells leading to muscle relaxation and vascular dilation [46,59]. The
eNOS is constitutive and mostly expressed in the endothelium but it
also expressed in cardiomyocytes, platelets, red blood cells, and syn-
cytiotrophoblast [45,60,61]. The activity of eNOS depends on a ba-
lanced phosphorylation pattern including the activator phosphorylation
at Serine1177 (Ser1177), and the inhibitory phosphorylation at Threo-
nine495 (Thr495) [45,46,62]. The eNOS dependency on L-arginine
bioavailability is referred as the endothelial L-arginine/NO signalling
pathway [45,62].

Generation of NO by eNOS is a reaction directly related to the
ability to take up this amino acid from the extracellular milieu into the
endothelial cells through (CATs) [54,63]. Insulin increases the activity
of CATs–mediated L-arginine transport in rat pancreas [64] and rabbit
gastric mucosa [65]. Several studies report that endothelial cells, in-
cluding HUVECs, show that the L-arginine/NO signalling pathway is
modulated by insulin (Fig. 1). Transport of L-arginine and mRNA ex-
pression for hCAT-1, hCAT-2B and eNOS is increased HUVECs primary
cultures in response to insulin [58]. Insulin also causes hyperpolariza-
tion of the plasma membrane in HUVECs, likely due to the activation of
ATP sensitive K+ channel (K+ATP) [66] and increased the intracellular
level of Ca2+, L-citrulline and cGMP, and the generation of nitrites
[58,67].

3. Adenosine and adenosine receptors

3.1. Adenosine transport and receptors

The purine endogenous nucleoside adenosine is involved in the

regulation of various biological phenomena, such as nucleotide bio-
synthesis and cellular energy generation [68,69]. Adenosine also acts as
vasodilator in the placenta, coronary, cerebral, and muscular circula-
tion, in various conditions including hypoxia and exercise [70,71].
Adenosine is generated from the degradation of ATP, ADP, and AMP
[48]. The concentration of extracellular adenosine depends on the
bioavailability of ATP, ADP and AMP, expression and activity of ecto-5′-
nucleotidase (CD73) and adenosine deaminase (ADA), and the activity
of plasma membrane nucleoside transporters (NTs) [48,72–76].

Adenosine plays important roles in a variety of biochemical pro-
cesses via activation of ARs, a phenomenon that depends on the capa-
city of the cells to regulate the intracellular and extracellular con-
centration of this nucleoside [48,74–76]. The NTs are a group of
proteins whose transport activity results in higher concentration of
adenosine in the intracellular space which correspond to a family of
solute carriers encoded by two different gene families. One group of
transcripts (SLC28) are the concentrative nucleoside transporters
(CNTs). CNTs activity is Na+-dependent and mediated by at least three
proteins, i.e. CNT1 (broadly selective for pyrimidine nucleosides, with
low affinity for adenosine), CNT2 (broadly selective for purine nu-
cleosides) and CNT3 (selective for purine and pyrimidine nucleosides)
[77]. Another group of transcripts (SLC29) are the equilibrative nu-
cleoside transporters (ENTs). ENTs mediate a Na+-independent uptake
of nucleosides via at least four members identified as part of this family
of solute carriers, i.e. ENT1, ENT2, ENT3, and ENT4. The isoforms
ENT1 and ENT2 are the main regulators of the extracellular and in-
tracellular level of adenosine in mammalian cells. ENT3 and ENT4 in-
volvement in this phenomenon is minor but might play other roles.
ENT3 may be involved in lysosomes [78] and ENT4 may also transport
monoamines at an acidic extracellular pH [75,79]. In the human foe-
toplacental tissue, particularly in HUVECs and hPMECs, adenosine
transport is regulated by human ENT1 (hENT1) covering ~80% of the
total transport. In turn, the remaining ~20% of transport is mediated by
hENT2 in these types of endothelial cells [71,80–83].

Fig. 1. Insulin modulation of the adenosine/L-arginine/nitric
oxide (ALANO) signalling pathway in human foetoplacental
endothelium from gestational diabetes mellitus. Adenosine
transport via the human equilibrative nucleoside transporter
1 (hENT1) is reduced (⇩) in GDM (dotted black arrow).
Reduced adenosine transport resulted from a lower expression
of SLC29A1 leading to reduced expression of hENT1 mRNA
and protein abundance. Reduced hENT1 expression and ac-
tivity causes extracellular accumulation (⇧) of adenosine
leading to activation of A2A adenosine receptors (A2AAR).
A2AAR activated the protein kinase C (PKC) and 42/44 kDa
mitogen-activated protein kinases (p42/44mapk) which pro-
motes a reduction (−) in adenosine transport but an increase
(+) in the L-arginine transport via the human cationic amino
acid transporter 1 (hCAT-1). Higher L-arginine transport also
resulted in higher activator phosphorylation (P) and protein
abundance of the endothelial NO synthase (eNOS) leading to
an increase in the synthesis of nitric oxide (NO). The elevated
level of NO induced the expression of SLC7A1 and hCAT-1
mRNA and protein abundance. The hyperinsulinemia de-
tected in the foetal circulation in GDM is accompanied by
increased mRNA expression of the insulin receptor A (IR-A)
with subsequent activation of the signalling cascade Src
homology 2 domain-containing transforming protein 1 type A
of 42 and 56kDa (SHcA42/56) – growth factor receptor-bound
protein 2 (Grb2) – p42/44mapk resulting in activation of eNOS
thus contributing to the supraphysiological generation of NO
in this disease of pregnancy. The NO reaches the nucleus
where the SLC7A1 (for hCAT-1) promoter activity is increased
but the SLC29A1 (for hENT1) promoter activity is reduced.
Altered expression of hCAT-1 and hENT1 result in abnormal
uptake of L-arginine and adenosine, respectively. Composed
from references [21, 24, 152].
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Cell responses to adenosine result from the activation of ARs which
belong to P1 family purinergic receptors composed of four subtypes, i.e.
A1 (A1AR), A2A (A2AAR), A2B (A2BAR), and A3 (A3AR) [84–86]. The ARs
are coupled either to G inhibitory protein for A2AAR and A2BAR sub-
types, or stimulatory protein for A1AR and A3AR subtypes [48]. A1AR,
A2AAR and A3AR receptors are activated at nanomolar concentrations of
adenosine, whereas micromolar concentrations are required to activate
A2BAR [87]. ARs are expressed in most tissues and are involved in
different mechanisms of physiological and pathophysiological regula-
tion, among which are regulation of circulation, renal blood flow, im-
mune system, glucose homeostasis, hyperlipidaemia, atherosclerosis,
angiogenesis, inflammation, and ischemia-reperfusion [88,89]. The
four subtypes of adenosine receptors have different patterns of dis-
tribution and localization. For example, A1AR is distributed with a high
expression in brain (cortex, hippocampus, cerebellum), spinal cord, eye,
adrenal gland, atria and with less expression in other brain regions,
skeletal muscles, liver, kidney, adipose tissue lungs, pancreas [90].
A2AAR is highly expressed in platelets, olfactory bulb spleen, thymus,
leukocytes and in a lower level in the heart, lung, blood vessels, nerves,
and brain [91]. Expression of A2BAR is mainly in cecum, colon, bladder
and of a lesser form in lung, blood vessels, eye, mast cells, adipose
tissue, adrenal gland, brain and kidney [92]. A3AR is localised in testis
and mast cells with low expression level in the cerebellum, hippo-
campus, thyroid, brain, adrenal gland, spleen, liver, kidney, and heart
[90]. All subtypes of ARs are expressed in HUVECs and hPMECs, with
lower expression of A1AR compared with A2AAR, A2BAR or A3AR in
these endothelia [80,93,94].

The signalling mechanisms vary depending on the subtype of re-
ceptor that is activated. Activation of A1AR and A3AR results in a de-
crease in the intracellular level of cAMP due to inactivation of the
adenylyl cyclase. However, activation of A2AAR and A2BAR leads to an
increase in the intracellular cAMP level due to activation of the ade-
nylyl cyclase [95,96]. Activation of A1AR was shown to activate K+

channels promoting the blockade of Ca2+ channels leading to in-
tracellular accumulation of Ca2+ with subsequent activation of phos-
pholipase C and synthesis of inositol-1,4,5-trisphosphate [97]. On the
other hand, activation of A2AAR increases the activity of protein kinase
A via cAMP [98]. The activation of A2BAR favours the activity of mi-
togen-activated protein kinase [99] and activation of A3AR is linked
with higher activity of the nuclear factor kB (NF-kB) and the PI3K/Akt
signalling pathway.

3.2. Modulation of L-arginine/NO signalling pathway by adenosine

It is shown that adenosine increased the L-arginine transport medi-
ated via hCAT-1 and the NO synthesis in HUVECs [20]. This phenom-
enon depends on a reduced activity of hENTs and the subsequent ac-
cumulation of adenosine in the extracellular medium. Endothelial cells
from the macrovasculature and microvasculature of the human pla-
centa show large adenosine uptake via hENT-1 isoform (~80% of total
uptake) and in a minor proportion (~80% of total uptake) mediated by
hENT-2 isoform [81,100,101]. Studies ex vivo show higher relaxation
of umbilical vein rings when incubated with nitrobenzylthioinosine
(NBTI) [102], an inhibitor of hENTs [103]. The NBTI-induced vasodi-
lation was NO- and endothelium-dependent and abolished by the use of
ARs antagonists [102]. Since adenosine increases the L-arginine trans-
port via hCAT-1 leading to higher NO synthesis in HUVECs [20], ade-
nosine acts as a key modulator of the L-arginine/NO pathway in this
type of endothelium (Fig. 1). Thus, a coordinated signalling between
adenosine transport and ARs and the L-arginine/NO signalling pathway
in human foetoplacental endothelium was proposed [104]. This phe-
nomenon was described as requiring membrane hyperpolarization due
to activation of K+ channels in response to adenosine causing increased
influx of Ca2+ and activation of eNOS and L-arginine transport. This
response of cells was reported as the ALANO signalling pathway
(standing for Adenosine/L-Arginine/NO) [20,21].

4. Adipokines

4.1. Adipokines and adipokine receptors

The adipose tissue fulfils endocrine type functions since its capacity
to synthesise and release a variety of bioactive molecules called adi-
pokines or adipocytokines. These molecules are involved in different
physiological processes playing key roles in the development of a
normal pregnancy and in pathologies of pregnancy such as GDM
[22,105,106]. The adipokines leptin and adiponectin contribute to the
generation of the sustained increase in insulin resistance in the target
tissues to insulin leading to reduced insulin sensitivity. Leptin is a
16 kDa protein hormone product of the ob gene [105–108] and is
synthesized by the white adipose tissue [105,109]. The ob transcript
presents a wide variety of physiological and metabolic functions in-
cluding its potential to regulate the endocrine function, the in-
flammatory and immune response, the reproductive process, and an-
giogenesis. In addition, leptin is key in the synthesis and response to
insulin due to its modulation of D-glucose and fatty acids metabolism
[105,106,109,110]. The concentration of leptin is directly proportional
to the amount of adipose tissue [105,109]. Adiponectin is a 30 kDa
protein that acts as an anti-inflammatory and antiatherogenic factor,
and insulin sensitizer [111–113]. In addition, adiponectin regulates the
uptake of D-glucose by the skeletal muscle and is involved in the
modulation of the hepatic gluconeogenesis [114]. Plasma level of adi-
ponectin is affected by multiple external factors, such as gender, age,
and lifestyle. Along with this, the development of certain diseases such
as T2DM, insulin resistance, obesity, hypertension, and GDM relate
with decreased plasma level of adiponectin [106,115]. Interestingly,
adiponectin gene knockout pregnant mice developed D-glucose intol-
erance and insulin insufficiency demonstrating the role for adiponectin
as a protective factor against GDM also in a mouse model [116].

4.2. Adiponectin receptors

Signalling pathways activated by adiponectin results from its in-
teraction with two isoforms of the adiponectin receptors, i.e. AdipoR1
and AdipoR2. These receptors are membrane proteins with seven
transmembrane domains sharing high homology and identity [117].
Expression of AdipoR1 is ubiquitous being more abundant in skeletal
muscle, whereas AdipoR2 is expressed mainly in the liver [118]. In the
liver, AdipoR1 increases the influx of Ca2+ and is involved in activation
of AMP activated kinase (AMPK). AdipoR2 is involved in the activation
of peroxisome proliferator-activated receptor α (PPARα) increasing the
sensitivity to insulin [118]. AdipoR1 and AdipoR2 activation upregu-
late the D-glucose and lipids metabolism partly through activation of the
mitochondrial biogenesis [118]. Also, in cardiac myocytes, pancreas β
cells, and hepatocytes, the biological action of circulating adiponectin
on AdipoR1 and AdipoR2 results in reduced ceramide but increased
sphingosine 1-phosphate level, a phenomenon that may relates with the
anti-apoptotic effect of this cytokine [119]. Consistent with the latter,
adiponectin-activation of AMPK increased the activity of the PI3K/Akt
signalling pathway [120]. It is also known that activation of the adi-
ponectin receptors and increased AMPK activity result in higher acti-
vator phosphorylation of eNOS in the human vasculature [62].

4.3. Leptin receptors

The leptin receptor or the obesity receptor (Ob-R) belongs to the
family of class I cytokine receptors [121]. Ob-R is expressed in six
different isoforms generated by the alternative RNA splicing of the
diabetes gene (db) [110,122]. Interestingly, this gene is also involved as
a factor leading to GDM and C57 BL/KsJdb/+ mice are utilized as ge-
netic GDM model [123]. Circulating Ob-R binds serum leptin and in-
hibits its signal transduction pathways. Also, Ob-R regulates the con-
centration of serum leptin and serves as a carrier protein that releases
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the hormone to its membrane receptors [124]. Ob-R includes three
distinct classes, i.e. long (Ob-Rb), short (Ob-Ra, Ob-Rc, Ob-Rd, and Ob-
Rf), and soluble (Ob-Re) receptors [121]. The Ob-Rb isoform of this
receptor is highly expressed in the hypothalamus, where it participates
in the modulation of energy homeostasis and the secretory activity of
different organs. The Ob-Rb is also expressed in all types of immune
cells with a major involvement in innate and adaptive immunity
[125–129]. The soluble Ob-Re binds leptin helping to maintain a
normal leptinaemia, thus limiting the biological actions of this cytokine
[121,124]. Indeed, increased soluble Ob-Re concentration is reported to
reduce the risk of developing certain pathological conditions such as
GDM [130] and the state of insulin resistance [131].

Ob-R is also expressed in the human placenta, chorion, and amnion
[132]. Also, these receptors are described in endothelial cells of the
umbilical cord [133]. The short receptor forms for leptin contain the
motif in box 1 to bind Janus kinases (JAK) leading to activation of
several signal transduction cascades. This subtype of leptin receptors is
related to the internalization of leptin and its subsequent degradation
[134]. The Ob-Ra isoform is the most common in many cells and tis-
sues, including the kidneys, lungs, liver, spleen, and macrophages
[122]. The Ob-Rb is an active isoform that causes full transduction of
signals into target cells due to the presence of intracellular motifs to
activate the Janus kinase/signal transducers and activators of tran-
scription (JAK/STAT) signalling pathway and specific activator tyrosine
residues [121,122,135].

5. GDM effect on the foetoplacental tissue

Arteries and veins of the human placental vasculature from preg-
nancies with GDM show increased NO synthesis [71,136]. Similarly,
earlier reports showed increased NO synthesis in primary cultures of
HUVECs from women with GDM [104,137] and higher NO level in the
amniotic fluid in this disease of pregnancy [138]. These results corre-
lated with higher number of copies of eNOS mRNA and total eNOS
protein abundance and activity in this type of cells from GDM
[20,23,71,82,83]. The increase in the synthesis of NO in HUVECs from
GDM paralleled the increase in the activity, mRNA expression and
protein abundance of hCAT-1 (Table 1) [20,23,24]. The changes in
transport of L-arginine in GDM were due to higher maximal velocity
(Vmax), unaltered apparent Michaelis-Menten parameter (Km), and a
subsequent increase in the maximal transport capacity (Vmax/Km)
[23,24].

The GDM-associated alterations in the transport of L-arginine and
NO synthesis are replicated in HUVECs from normal pregnancies in-
cubated in a hyperglycaemic medium. HUVECs incubated in high ex-
tracellular D-glucose (from 11 to 25mmol/L) showed higher synthesis
of L-citrulline from L-arginine (indicator of NOS activity), and higher
level of intracellular cGMP (indicator of NO bioactivity) [58,139].
Therefore, it is proposed that GDM associates with higher uptake of L-
arginine which is then used as substrate for eNOS leading to over-
production of NO in this disease of pregnancy. Therefore, increased NO
level in the foetoplacental tissue could be a detrimental factor resulting
in endothelial dysfunction in GDM [24,140].

The increased activity of the L-arginine/NO signalling pathway in
HUVECs from GDM was shown to be reversed by antagonists of A2AAR
(e.g. ZM-241385) [20,24]. Also, increased activity of this pathway was
reported in HUVECs from normal pregnancies exposed to A2AAR ago-
nists (e.g. CGS-21680). Thus, a role for ARs, particularly A2AAR, in the
activation of the ALANO signalling pathway in GDM was suggested
[20,21,54] (Fig. 1). The activity and expression (mRNA and protein) of
hENT1 and hENT2 is reduced in HUVECs and hPMECs from GDM
pregnancies [71,81] (Table 1). hENT1 protein abundance is lower in
these cell types from GDM, a phenomenon associated with the in-
creased level of NO generated in these cells from this disease. Inter-
estingly, increased NO was shown to increase the activity of the tran-
scription factors hCHOP/C-EBPα leading to reduced expression of

SLC29A1 [82]. Recent studies show that hCHOP activation results from
ER stress in HUVECs [141] suggesting that GDM may course with this
condition reducing the adenosine uptake. Interestingly, hENT2 ex-
pression and activity was shown unaltered in the macrovascular en-
dothelium, but it was shown to be reduced in the microvasculature in
human placentas from GDM pregnancies [80,81]. The mechanisms re-
sponsible for the reduced hENT2 activity seems to be increased NO in
GDM suggesting a differential regulation of adenosine transporters
depending on the type of vasculature, i.e. macro versus micro-
vasculature, in the human placenta from GDM.

Other studies show that GDM associates with alterations in the ex-
pression of IRs, IRS-1 and PI3K p85α in the apical (maternal side) and
basal (foetal side) membranes of the trophoblasts [4,142,143] and in
abdominal subcutaneous adipose tissue of women with GDM [144].
These phenomena related with a decrease in the uptake of D-glucose in
placentas from pregnancies with GDM [145,146]. Interestingly, the
expression of GLUT-1 and GLUT-4 in placentas from GDM pregnancies
is also altered. Expression of GLUT-1 was higher but GLUT-4 was lower
in placentas from women with GDM under insulin therapy compared
with women treated with diet or normal pregnancies [4]. Thus, the
above-described results suggest that GDM is a pathology that will result
in differential modulation of the expression of key plasma membrane
transporters depending on the therapeutic approach to the women
during pregnancy.

5.1. Insulin

Pregnant women that develop GDM show alterations in key proteins
involved in insulin signalling resulting in the development of insulin
resistance. Women with GDM show reduced expression of IRS-1 in the
skeletal muscle [147] and adipocytes [144] but increased expression of
IRS-2 and PI3-K p85α in in the skeletal muscle [147]. Since these tis-
sues are target of insulin it is expected a defective control of the gly-
caemia due to reduced uptake and metabolism of D-glucose by these
tissues. GDM-associated alterations in the insulin signalling are also
reported in the foetoplacental tissue. Maximal binding of insulin was
reported to be lower in placentas from GDM where the mother was
treated with diet but higher when the mother was treated with insulin
as compared to placentas from normal pregnancies [148]. Placental
tissue from this disease also show increased expression of key proteins
involved in the insulin signalling, such as IRS-1 and PI3-K p85α [142].
These findings suggest that changes in the expression and function of
proteins required for insulin signalling in GDM may contribute main-
taining the condition of insulin resistance seen in this disease. It is
worth notice that the potential abnormal function of the foetoplacental
endothelium seen in GDM may also result from the type of treatment
that women received (i.e. diet, exercise, diet plus exercise, insulin, diet
plus insulin, antidiabetic pharmacological drugs, life style, etc.)
[7,14,149–151] to counteract the hyperglycaemia concomitant to
GDM.

GDM is also a pathology that associates with changes in the ex-
pression of IR-A and IR-B leading to modifications in their corre-
sponding signalling pathways as described in HUVECs [23,71,81,152]
and hPMECs [81], respectively (Table 1). In HUVECs, GDM associated
with higher number of mRNA copies for IR-A, without significant al-
terations in IR-B mRNA expression. Also, the signalling pathways trig-
gered results in preferential increase of the phosphorylation of p44/
42mapk without altering the Akt phosphorylation (Fig. 1). Increased IR-
A mRNA expression leads to reduced promoter activity of the SLC29A1
and lower levels of hENT1 at the plasma membrane in these cells from
GDM. This phenomenon results in lower uptake of adenosine and ac-
cumulation of this nucleoside in the extracellular space. Since IR-B
mRNA expression was lower than IR-A mRNA in HUVECs from normal
pregnancies, it is expected that a change in the expression and signal-
ling mediated by IR-A could have major consequences in this type of
endothelial cells. This will not be the case in endothelial cells from the
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placental microcirculation since they show similar expression of IR-A
and IR-B mRNA in normal pregnancies [81].

GDM associated with higher IR-A mRNA expression in HUVECs but
reduced in hPMECs, suggesting that metabolic alterations associated
with this disease of pregnancy result in a differential modulation of the
expression of INSR in the foetoplacental endothelium. Interestingly, the
IR-B mRNA expression was higher in hPMECs from GDM compared
with normal pregnancies suggesting a role for this form of IRs in the
microcirculation but not in the microcirculation in the human placenta.
Since incubation of HUVECs and hPMECs with exogenous insulin
(1 nmol/L, 8 h) restored the alterations in the mRNA expression for the
two forms of IRs, it is conceived that the expression of INSR is under
modulation by its natural ligand in the foetoplacental endothelium.
Furthermore, since the plasma insulin level measured in the umbilical
cord was reported to be ~40 pmol/L in normal pregnancies but
~80 pmol/L in GDM pregnancies, and because increasing the con-
centration of insulin to 1 nmol/L in vitro restored the altered mRNA
expression to values in cells from normal pregnancies, it seems that
more insulin than what is achieved physiologically in normal preg-
nancies or pathologically in GDM pregnancies is required in the foetal
circulation. HUVECs and hPMECs from GDM pregnancies show in-
creased ALANO signalling pathway activity involving reduced SLC29A1
expression and A2AAR activation [20,21]. This phenomenon is also
restored by insulin in this type of endothelia, suggesting the involve-
ment of IR-A and IR-A/IR-B in HUVECs [23,152] and hPMECs [81],
respectively.

5.2. Adenosine

The metabolic machinery required for the cells and tissues to re-
spond to adenosine is altered in the mother, foetus and the newborn in
GDM. The physiological plasma adenosine concentration (~190 nmol/
L) in pregnant women without pathologies is unaltered in GDM
(~260 nmol/L) [152]. However, adenosine concentration was higher in
the human umbilical whole blood from GDM pregnancies

[81,152,153]. Other studies show that the plasma concentration of
adenosine in the blood of the umbilical vein but not in the umbilical
artery was higher in GDM compared with normal pregnancies [81]. The
latter resulted in activation of A1AR and A2AAR in HUVECs and hPMECs
[24,71,80,81,93,94,154]. Since the foetoplacental endothelium from
GDM pregnancies show reduced uptake of adenosine [6,83] altered
expression and signalling resulting from ARs activation is proposed to
be involved in the vascular alterations seen in GDM [155]. Interest-
ingly, incubation of HUVECs or hPMECs with insulin restored the GDM-
associated alterations seen in the adenosine and L-arginine transport,
and NO synthesis [24,71,152]. The response to insulin in these types of
endothelia was abolished when cells were coincubated with A1AR an-
tagonists (v.g. 8-cyclopentyl-1,3-dipropylxanthine) or in cells knock-
down for this ARs [24]. These results suggest that this subtype of
adenosine receptors activation and expression is required for insulin
beneficial effects in the foetoplacental vasculature in GDM pregnancies.
Furthermore, insulin and adenosine are acting as interdependent factors
in the foetoplacental vasculature as proposed in the insulin/adenosine
signalling axis in these types of endothelium [48] (Table 1).

Other studies show that leukocytes from women with GDM express
higher levels of A2AAR and A2BAR mRNA compared with normal
pregnancies [156,157]. Also, overexpression of A2BAR correlated po-
sitively with the degree of hyperglycaemia [157] or the altered oral
glucose tolerance test after 120min [156] suggesting that it is a phe-
nomenon that could be generated by the high plasma D-glucose con-
centration detected in these patients. Interestingly, overexpression of
leukocyte A2BAR was found to parallel altered expression of 19 genes
involved in various aspects of insulin action, D-glucose and lipid me-
tabolism, oxidative stress, and inflammation. Thus, complex gene net-
works associated with GDM in the mother is also likely [156,157]. Since
adenosine concentration in the maternal blood is unaltered in GDM it is
likely that ARs present with changes in their affinity for adenosine, the
time of permanence at the receptors, or altered cell signalling in ma-
ternal tissues.

Fig. 2. Involvement of adipokines receptors in the reduced
response to insulin in human foetoplacental endothelium
from gestational diabetes mellitus. In normal pregnancies, the
insulin receptor B (IR-B) form is activated by insulin ending in
increased synthesis of nitric oxide (NO). In gestational dia-
betes mellitus, the low (⇩) plasma level of the adiponectin
detected in the maternal circulation results in reduced acti-
vation of the adipokine receptors 1 and 2 (Adipor1/2) ending
in lower activity of adenosine monophosphate protein kinase
(AMPK) due to a defective signalling mediated by adaptor
protein containing pleckstrin homology domain, phosphotyr-
osine binding (PTB) domain and leucine zipper motif (APPL1)
and peroxisome proliferator-activated receptors (PPARs).
AMPK behaves as a negative regulator of mammalian target of
rapamycin (mTOR), which is an inhibitor of insulin receptor
substrates 1 and 2 (IRS-1/2). Thus, lower activity of AMPK
results in reduced AMPK-mediated repression of mTOR
leading to inhibition of IRS-1/2 limiting the response to in-
sulin. Reduced signalling via IRS1/2 leads to lower activity of
phosphatidylinositol 3 kinase (PI3K) and protein kinase B/Akt
(Akt). Reduced activation of Akt, a natural activator of en-
dothelial nitric oxide synthase (eNOS), results in lower eNOS
activity and NO generation. On the other hand, the elevated
(⇧) plasma level of leptin seen in the maternal circulation in
GDM increases the signalling through the leptin receptors
(Ob-R) activating c-Jun N-terminal kinases (JNK) which in-
hibits IRS1/2. Thus, activation of Adipor1/2 and Ob-R result
in reduced signalling via IRS1/2-PI3K-Akt leading to reduced
eNOS activity due to reduced activator phosphorylation at
serine1177 (P) in this enzyme. Composed from references [18,
106, 186].
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5.3. Adipokines

A series of clinical studies indicate that the plasma adiponectin level
in women with GDM is decreased [105,158–163]. Reduced maternal
plasma adiponectin concentration is a factor predisposing to the de-
velopment of foetal macrosomia [164] and subclinical inflammation
[165]. Adiponectin level is also lower in the umbilical arteries and vein
blood in GDM pregnancies [166]. Thus, reduced plasma level of this
adipokine in the mother and the foetus may contribute to the macro-
somia and inflammation, and to the foetoplacental endothelial dys-
function seen in this disease of pregnancy (Fig. 2, Table 1). It is also
shown that the syncytiotrophoblast generates adiponectin and the
placental tissue expresses AdipoR1 and AdipoR2 [167]. Placentas from
GDM pregnancies show increased AdipoR1 but not AdipoR2 mRNA
expression compared with placentas from normal pregnancies. It is
proposed that placental adiponectin and its receptors play a role in the
maternal-foetal interface contributing to the metabolism of D-glucose
[167]. However, the adiponectin mRNA expression and protein abun-
dance in placental tissue is lower in GDM pregnancies [168]. Thus,
increased expression of placental AdipoR1 in GDM may result as a
compensatory response of this tissue to the reduced synthesis and re-
lease from the syncytiotrophoblast in this disease. Since there are also
reports showing unaltered placental expression of adiponectin receptors
in GDM, it is likely that this disease of pregnancy will associate with
changes in the expression of adiponectin rather than its receptors in the
foetoplacental unit [169,170].

There is not agreement in the literature regarding the effect of GDM
in the maternal plasma level of leptin. The disparity of the available
results could be explained by several factors including the weeks of
gestation when the measurements were made [105]. Some studies show
that the maternal plasma level of leptin is increased [158,171,172],
reduced [173,174], or unaltered [175] in GDM pregnancies compared
with normal pregnancies. Interestingly, a significant increase in the
maternal leptin serum level prior to the development of GDM was re-
ported [106,176], suggesting leptinaemia as a potential metabolic
maker in the development of this disease of pregnancy. However, fur-
ther studies are required to validate this possibility. Other results sug-
gest that GDM will increase the foetoplacental bioavailability of leptin
as detected to be higher in the amniotic fluid in pregnancies where the
mother developed GDM compared to those with normal pregnancies
[177]. Increased plasma level of leptin may also result in foetoplacental
endothelial dysfunction since this adipokine activates Ob-R leading to
increased activity of TNF which is known to generate inhibition of
IRS1/2 thus limiting the cell signalling in GDM [18] (Table 1). This
phenomenon results in reduced synthesis of NO due to reduced sig-
nalling through IRS1/2–PI3K–Akt activation in foetoplacental en-
dothelium from this disease of pregnancy (Fig. 2).

Since it is shown that the increase level of leptin in the maternal
serum in GDM returns to values seen in women that did not develop this
pathology [178], GDM pregnancy would be a condition where either
the mother, the placenta, or the foetus are factors leading to hy-
perleptinemia in pregnancy. In the latter study there were no significant
differences between serum level of the soluble Ob-Re in GDM compared
with normal pregnancies [178]. Thus, this type of leptin receptors may
not play a role in GDM. However, the latter is unlikely when con-
sidering that leptin receptors in placentas from women with GDM show
increased activator phosphorylation in tyrosine107 (Tyr1077) in the
syncytiotrophoblast suggesting a potential higher responsiveness to
leptin, at least in this syncytial, in GDM [143,179]. Interestingly, it is
also reported that the maternal plasma concentration of the soluble Ob-
Re was inversely associated with GDM [130]. Since the soluble Ob-Re
binds the circulating leptin, it is likely that a higher concentration of
these receptors results in a reduced pro-GDM effect of leptin. We em-
phasise that further studies are required for better understanding the
role of these proteins in this disease of pregnancy.

Leptin plays crucial roles in the function of the placenta in health

and disease [180] playing a variety of physiological actions including
its mitogenic and proangiogenic effects, and its involvement in the
immune modulation and regulation of placental nutrient transport
[181]. Placentas from GDM pregnancies show higher synthesis of leptin
compared with placentas from normal pregnancies [182,183]. Inter-
estingly, leptin activates monocytes and macrophages [184] resulting
in overproduction of proinflammatory molecules such as interleukin 6
(IL-6) and tumour necrosis factor-α (TNF-α) [185]. These cytokines are
regarded as related to insulin resistance in GDM pregnancies [186].
Therefore, increased synthesis and release of leptin in GDM is a detri-
mental condition for the wellbeing of the mother and foetus. Leptin is
also reported to cause structural and functional alterations of the
human placenta in several diseases, including an increase in the inter-
villous space volume in patients with type 1 diabetes mellitus [187] and
reduced placental weight but increased fibrin deposition, syncytial
nuclear aggregates, decreased terminal villi in newborns with hypo-
plastic left heart syndrome [188]. Interestingly, expression of the long
and short membrane and soluble receptor forms is differently affected
by GDM. An increase in the expression of the soluble Ob-Re is reported
in the placenta but no changes were detected in the placental leptin
receptors in GDM [189]. Therefore, it was suggested that the soluble
leptin receptor would act as a leptin binder preventing the bioavail-
ability of this cytokine for activation of the membrane receptors. Thus,
increased levels of Ob-Re will regulate the biological actions of leptin in
GDM. However, the latter results disagree with other studies showing
increased expression of the long and short forms of leptin receptors in
the placenta from GDM [142,179]. Since the long form Ob-Rb of this
receptor generates the entire signal transduction for leptin, a potential
Ob-Re – Ob-Rb dependency in terms of expression and potential their
activity may happens in GDM. The available literature does not describe
whether the latter is a possibility in this disease which merits further
characterisation.

6. Conclusions

Foetoplacental endothelial dysfunction is one of the clearest effects
of GDM. Since the correct function of the foetoplacental vasculature is
restricted in this disease of pregnancy, there is a negative consequence
in the foetus leading to altered foetal development as well as increasing
the risk to develop pathologies related to the metabolic syndrome in
adulthood (Fig. 3). The alterations described at the foetoplacental en-
dothelium in GDM include an increase in the concentrative transport of
L-arginine mediated by hCAT-1 likely resulting in higher synthesis of
NO by eNOS (i.e. the L-arginine/NO signalling pathway). These
anomalies associated with GDM in the foetoplacental endothelium is
closely related to other mechanisms in this type of epithelium such as
increased activation of A2AAR due to increased extracellular con-
centration of adenosine (i.e. the ALANO signalling pathway). A role in
these mechanisms is attributed to the altered expression of the IRs and
in their cell signalling. IR-A form is predominantly altered in the mi-
crocirculation in GDM but both IR-A and IR-B forms are involved in the
effect of this disease of pregnancy in the microcirculation in the human
placenta. Interestingly, an elevated insulin synthesis and bioavailability
in the foetoplacental blood is not enough to restore the GDM-associated
alterations in the function of the endothelium and the vascular response
in this disease.

Adipokines are also involved in several physiological functions and
according to current studies adiponectin and leptin would be playing
important roles in diseases of pregnancy including GDM. Plasma level
of adiponectin is lower in women with GDM, a phenomenon that could
result in exacerbation of the insulin resistance state characteristic of
this pathological condition. On the other hand, the majority of women
with GDM show high plasma level of leptin which correlates with a
potential amplified inflammatory process and insulin resistance seen in
women with GDM. Because most women diagnosed with GDM also
show overweight or obesity, a correlation between the rate of
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gestational weight gain and GDM is proposed to be a factor in the ae-
tiology of a defective cell signalling to insulin and the role of leptin and
adiponectin in this phenomenon in the placenta. However, the available
literature is not clear to address the mechanisms associated with an
abnormal effect of adipokines on the integrity and functionality of the
placenta from women with GDM and normal weight nor from women
with GDM and obesity. Although, an increased synthesis and release of
leptin in GDM is proposed to result from increased adiposity in this
disease of pregnancy [181,190,191]. However, further studies re-
garding the physiological and pathophysiological roles of these adipo-
kines in GDM are required. It would be of interest to unveil whether the
abnormal plasma level the adipokines is a condition collaborating with
altered L-arginine/NO and ALANO signalling pathways in the devel-
opment and progression of the pathophysiology of GDM. Searching for
links between adipokine, adenosine and insulin receptor-associated
signalling mechanisms, and adenosine and L-arginine membrane
transport mechanisms as modulators of the endothelial function in
GDM, is something that once unveiled could be of benefit for a better
approach to the existing therapeutic protocols for these patients. In-
terestingly, since women that show only with GDM are a group of pa-
tients different to those women with GDM and obesity, a condition
recently referred as ‘gestational diabesity’ [192], different mechanisms
involving adipokines/adenosine/insulin receptors and membrane
transporters are likely in this adverse metabolic condition of pregnancy.
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