

 University of Groningen

A framework for feature selection through boosting
Alsahaf, Ahmad; Petkov, Nicolai; Shenoy, Vikram; Azzopardi, George

Published in:
Expert systems with applications

DOI:
10.1016/j.eswa.2021.115895

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Alsahaf, A., Petkov, N., Shenoy, V., & Azzopardi, G. (2022). A framework for feature selection through
boosting. Expert systems with applications, 187, [115895]. https://doi.org/10.1016/j.eswa.2021.115895

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1016/j.eswa.2021.115895
https://research.rug.nl/en/publications/482613d7-5ef3-4fdc-9ef8-522a43e338fb
https://doi.org/10.1016/j.eswa.2021.115895

Expert Systems With Applications 187 (2022) 115895

Available online 16 September 2021
0957-4174/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A framework for feature selection through boosting

Ahmad Alsahaf a,*, Nicolai Petkov a, Vikram Shenoy b, George Azzopardi a

a Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands
b Khoury College of Computer Sciences, Northeastern University, West Village Residence Complex H, 440 Huntington Avenue 202, Boston, MA 02115, United States

A R T I C L E I N F O

Keywords:
Feature selection
Boosting
Ensemble learning
XGBoost

A B S T R A C T

As dimensions of datasets in predictive modelling continue to grow, feature selection becomes increasingly
practical. Datasets with complex feature interactions and high levels of redundancy still present a challenge to
existing feature selection methods. We propose a novel framework for feature selection that relies on boosting, or
sample re-weighting, to select sets of informative features in classification problems. The method uses as its basis
the feature rankings derived from fast and scalable tree-boosting models, such as XGBoost. We compare the
proposed method to standard feature selection algorithms on 9 benchmark datasets. We show that the proposed
approach reaches higher accuracies with fewer features on most of the tested datasets, and that the selected
features have lower redundancy.

1. Introduction

The presence of irrelevant and redundant features in a dataset can
lower the performance of predictive models, due to over-fitting and the
curse of dimensionality. Moreover, even if a model’s performance is
robust to redundancy and noise, the presence of those features has other
disadvantages, like increasing storage and computational costs, and
limiting the model’s interpretability. Feature selection can mitigate
these problems by identifying and selecting relevant features, and
removing irrelevant and redundant ones.

Model interpretability has become specially pertinent with the rise of
interest in explainable AI (Holzinger, 2018; Gunning, 2017). The
interprertability of machine learning models is important as it enables
compliance with the socially relevant requirements of those models,
such as fairness, unbiasedness, privacy, trust, and reliability (Doshi-
Velez & Kim, 2017).

Since modern machine learning applications contain an ever
growing number of features, interpretability and intuitive understand-
ing of prediction outcomes has become virtually impossible before some
form of dimensionality reduction. Other aides of model interpretation,
like data visualization, are also made easier by reducing the number of
features.

Furthermore, in certain biomedical applications, knowledge dis-
covery is the primary task of feature selection, more so than improving
the prediction outcome or increasing computational efficiency (Bor-
boudakis & Tsamardinos, 2019). In gene expression studies, feature

selection is used to discover the genetic networks associated with dis-
eases (Tabus & Astola, 2005). In other biomarker discovery studies, the
workflow relies heavily on feature selection, as the studies often begin -
for practical limitation - with large feature, small sample raw data
(Christin et al., 2013).

Another benefit of feature selection is found in applications where
the acquisition of features is costly. In such cases, it is useful to identify if
a costly feature happens to be irrelevant or redundant (Early, Fienberg,
& Mankoff, 2016; Bolón-Canedo & Alonso-Betanzos, 2019). For
example, in medical data, a feature could be associated with a clinical
test, which could either be expensive, inconvenient to patients, or both.

Reducing the number of features in any dataset can be achieved with
principally different approaches. Therefore, many methods of feature
selection have been proposed in literature. The most popular taxonomy
of these methods divides them into three broad categories: filter
methods, wrapper methods, and embedded methods (Guyon & Elisseeff,
2003).

This categorization pertains to how the selection process and the
associated prediction task are connected. Filter methods rank features
independently of any prediction model, whereas wrapper methods
evaluate the performance of candidate feature subsets on a pre-chosen
predictor. Finally, embedded methods reduce the number of features
in conjunction with solving a prediction problem (Guyon & Elisseeff,
2003; Dash & Liu, 1997; Tang, Alelyani, & Liu, 2014; Kumar & Minz,
2014). Other taxonomies may include additional application-specific
categories, such as methods for structured or streaming features

* Corresponding author.
E-mail addresses: a.m.j.a.alsahaf@rug.nl (A. Alsahaf), n.petkov@rug.nl (N. Petkov), shenoy.vi@northeastern.edu (V. Shenoy), g.azzopardi@rug.nl (G. Azzopardi).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.115895
Received 19 February 2021; Received in revised form 20 June 2021; Accepted 7 September 2021

mailto:a.m.j.a.alsahaf@rug.nl
mailto:n.petkov@rug.nl
mailto:shenoy.vi@northeastern.edu
mailto:g.azzopardi@rug.nl
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.115895
https://doi.org/10.1016/j.eswa.2021.115895
https://doi.org/10.1016/j.eswa.2021.115895
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115895&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 187 (2022) 115895

2

(Jović, Brkić, & Bogunović, 2015; AlNuaimi, Masud, Serhani, & Zaki,
2020), and class-specific feature selection methods (Pineda-Bautista,
Carrasco-Ochoa, & Martinez-Trinidad, 2011; Gao, Hu, & Zhang, 2018;
Nardone, Ciaramella, & Staiano, 2019).

Compared to filters, wrapper methods select subsets with high ac-
curacy at the expense of increased computational cost. Since an
exhaustive search of all possible feature subsets is intractable for large
datasets, wrapper methods make use of efficient search strategies for
finding candidate subsets to evaluate with the wrapped predictor
(Guyon & Elisseeff, 2003; Tang et al., 2014; El Aboudi & Benhlima,
2016). Examples of these strategies include hill-climbing, best-first,
genetic algorithms (Kohavi & John, 1997), particle swarm optimization
(Ibrahim, Ewees, Oliva, Abd Elaziz, & Lu, 2019), and Whale optimiza-
tion (Mafarja & Mirjalili, 2018).

Boosting, a popular meta-algorithm in ensemble classification, can
also be used to modify the feature search space in wrapper-based feature
selection. This use of boosting, or sample re-weighting, has been
explored to limited capacity in past studies (Das, 2001; Tieu & Viola,
2004; Liu, Liu, & Zhang, 2009; Barddal, Enembreck, Gomes, Bifet, &
Pfahringer, 2019). In this paper, we expand on this concept and propose
a greedy forward selection algorithm that we call FeatBoost. The algo-
rithm uses embedded feature importance scores of tree ensemble models
for choosing the candidate features, then uses boosting to update the
importance scores, and thus the search space, after every iteration.

Compared to past studies, we contribute the following: (1) a sample
weighting strategy which weights each sample according to its predic-
tion probability. In contrast, previous methods up-weight all mis-
classified samples by the same amount, (2) a modular algorithm
architecture, which decouples feature ranking from selection. This
overcomes inconsistencies in feature rankings, and potentially increases
the robustness of the selected subsets, (3) a sample weighting reset
strategy, which prevents premature stopping of the algorithm.

2. Article structure

In Section 4, we describe the novel elements of the proposed
approach in relation to existing algorithms, and give an overview of
recent, relevant developments in feature selection with tree ensembles.
We then give the details of the proposed algorithm in Section 5. Then,
we give the experimental settings in Section 6, followed by the results in
Section 7. Finally, we discuss the implications of the results and future
developments in Section 8.

3. Notations and definitions

In this section, we introduce the notations used in the rest of the
paper. Whenever possible, we unify notations describing the different
methods we compare. Therefore, the notations do not necessarily reflect
those used in the original works.

Each instance of feature selection is solved on a given dataset D with
p features, n samples, and a discrete target output y with nc classes. A
prediction of y is referred to as ŷ. The subset of selected features for the
given output is denoted by X .

In methods that take as input the number of desired features to select,
or the maximum number of features that can be selected, this number is
denoted as p′ . The actual number of features selected is denoted as p*. If
a method selects features sequentially, or produces a rank for the fea-
tures in X , then X i refers to X at the ith iteration, for i = 1,…,p*.

For clarity, we stress here the difference between two types of
boosting that are present in the proposed algorithm. The first occurs
within the ensemble model that is used to generate the feature impor-
tance rankings - if a boosting method was used for that purpose - while
the second is an outer layer of boosting (or sample re-weighting) per-
formed specifically for the feature selection process, and bears no direct
functional relation to the first type. From this point onward, mentions of

sample re-weighting or boosting in this paper refer to the second type,
unless otherwise specified.

4. Background and related work

In this section, we elaborate on the use of boosting in feature selec-
tion by highlighting a number of existing methods, and how the pro-
posed algorithm differs from them. We also consider more broadly
methods that use the embedded feature importance scores of decision-
tree models as bases for feature selection.

4.1. Tree-based feature importance

The embedded feature importance scores of tree-based ensembles are
powerful starting points for feature selection (Tuv, Borisov, Runger, &
Torkkola, 2009). This is largely due to the following factors: First, the
versatility of those models; being scale invariant, scalable to large
datasets, and able to handle numerical, categorical, and missing data.
Second, the fact that the intrinsic importance scores can be derived at no
additional cost over that of model training.

In a decision tree, the importance of a feature is defined as the total
value of a node-splitting criterion that the feature is responsible for (e.g.
Information Gain or the Gini Index). When used in ensembles, it is
commonly defined as the sum or average of the splitting criterion that a
feature causes across all trees (Breiman, 2002; Louppe, Wehenkel,
Sutera, & Geurts, 2013).

In an ensemble of trees, like random forest (Breiman, 2001), the
importance scores of two or more redundant features will be spread
evenly among them, due to feature sub-sampling and bootstrapping.
Using those scores as a basis for feature selection in large datasets could
lead to falsely selecting a feature with many of its redundant copies
(Genuer, Poggi, & Tuleau-Malot, 2010).

Other issues with tree-derived feature scores include the bias to-
wards categorical features of high cardinality (Strobl, Boulesteix, Zeileis,
& Hothorn, 2007), sensitivity to hyper-parameters (Genuer et al., 2010),
and inconsistencies (Lundberg, Erion, & Lee, 2018). The latter refer to
cases where the assigned importance of a feature decreases when its true
impact on model performance has increased.

For the importance scores of tree models to be used reliably for
feature selection, these shortcomings should be overcome. This can be
partially achieved through boosting, or sample re-weighting.

Boosting algorithms, like AdaBoost and its derivatives (Freund &
Schapire, 1997), rely on a sequential procedure of varying the sample
weights of weak classifiers, typically decision-trees, based on the accu-
racy of previous boosting rounds. This leads the classifiers in later
rounds of the algorithm to focus on samples that were misclassified in
earlier rounds. Then, each classifier votes to determine the final outcome
of the ensemble.

Through sample re-weighting, the process of boosting also affects the
feature importance scores (and rankings) produced by the classifier
being boosted. This presumably happens in such a way that in later
boosting rounds, some features which initially ranked poorly, appear in
top ranked positions due to becoming effective in classifying samples
which were misclassified in earlier rounds. We explain this further in the
following section.

4.2. Boosting and feature selection

The effect of boosting on feature importance scores has been
exploited in the past to design feature selection algorithms (Das, 2001;
Tieu & Viola, 2004; Liu et al., 2009). In short, this is done by relying on a
weight-sensitive feature ranking algorithm, and a sequential procedure
of adding features, often one at a time. At each round, the ranking al-
gorithm is applied to a re-weighted version of the training data. And the
re-weighting is done based on the classification error produced by fea-
tures selected so far. The best feature from each round, according to the

A. Alsahaf et al.

Expert Systems With Applications 187 (2022) 115895

3

feature ranking, is added to the selected subset.
Early examples of directly using boosting for feature selection

include the following: Boosted Decision Stump Feature Selection
(BDSFS) (Das, 2001), Boosting Image Retrieval (Tieu & Viola, 2004),
and Boosted Mutual Information Feature Selection (BMIFS) (Liu et al.,
2009). A recent example is Adaptive Boosting for Feature Selection
(ABFS) (Barddal et al., 2019).

Das (2001) used a tree stump as a base classifier, and followed the
sample re-weighting strategy from AdaBoost for the purpose of feature
selection. Namely, all training samples are initially given a weight of 1n,
with n being the number of training samples. Then, at each subsequent
iteration, the sample weights are given as a function of the classification
error from the previous iteration. All misclassified samples are equally
up-weighted according to Eq. (1). The best feature from every iteration,
according to Information Gain, is selected.

α = log
1 − err

err

ωi+1
j = ωi

j⋅exp(α); ∀ j = 1,⋯, n

ωi+1
j =

ωi+1
j∑n

j=1
ωi+1

j

; ∀ j = 1,⋯, n

(1)

where err is the classification error from the previous iteration and ωi
j is

the sample weight for sample j at the ith iteration.
Boosted Image Retrieval follows a similar procedure to BDSFS,

adapted for the purpose of image retrieval. The BMIFS method differs in
that the error used for updating sample weights is estimated from an
information metric, Mutual Information, and not from a base classifier.
Barddal et al. (2019) use this form of feature selection to solve the
problem of feature drift in data streams.

Our approach follows a framework that is similar to the aforemen-
tioned methods, but differs from them in a number of ways. First, we use
a different sample re-weighting strategy. The AdaBoost weighting
strategy, used in BDSFS (Eq. 1), re-weights all misclassified samples by
the same amount, which disregards how far a sample is from being
correctly predicted. To improve this, we weight each sample inversely
proportional to its prediction probability, according to Eq. 2.

αi = −
∑nc

c=1
Yclog(Pc)

αi
j = αi

j

/
αi− 1

j ; ∀ j = 1,⋯, n

ωi+1
j ←ωi

j⋅αi
j; ∀ j = 1,⋯, n

ωi+1
j =

ωi+1
j∑n

j=1
ωi+1

j

∀ j = 1,⋯, n

(2)

where Yc is a one-hot encoded matrix indicating the correct class for
each sample, Pc is an n × nc matrix containing the class probabilities for
each sample, obtained from a classifier, and ωi

j is the sample weight for
sample j at the ith iteration.

For a given sample, the associated weighting term αj is decreased as
the probability of the correct class for that sample approaches 1, and
increased as it approaches zero. Therefore, samples which are far from
being correctly classified are given higher weights in the next iteration.

We use a gradient boosting trees model, XGBoost, as a base learner for
obtaining the feature scores (Chen & Guestrin, 2016). Despite being
computationally demanding compared to individual trees, ensembles of
trees are more predictive in large datasets, and their feature importance
scores reflect more complex interactions. XGBoost is a powerful example
of such models, and it outperforms traditional tree-ensemble models in
many applications (Luckner, Topolski, & Mazurek, 2017; Alsahaf, Azzo-
pardi, Ducro, Veerkamp, & Petkov, 2018; Murauer & Specht, 2018).

Moreover, we introduce a few procedural changes, some of which
were inspired by Iterative Input Selection (IIS) (Galelli & Castelletti,
2013), a tree-based forward selection method for regression problems.

For instance, in FeatBoost, we use a two-step process to select the
best feature at each iteration. First, the top ranked features are obtained
from the embedded feature scores of a tree model trained on all features.
Then, we use a classifier to evaluate the classification performance of the
top-ranked features obtained from the embedded scores. This strategy is
used in IIS, where evaluations of a regressor determine the best feature
at each iteration (Galelli & Castelletti, 2013). We use this approach of
model evaluation in FeatBoost by testing m of the top ranked features at
each iteration. However, instead of evaluating each of the candidate
features individually as a single-input model, we append each feature to
the selected features thus far, and evaluate the classification accuracy of
the resulting models. Namely, at the ith iteration, we evaluate m models
of order i. With this approach, the algorithm could be viewed as a step-
wise greedy search in which the search space in each iteration is reduced
from p features, to a user-specified number of features. And those
candidate features change through the process of boosting.

The justification for this two-step process is the following: First,
choosing the top feature from the feature ranking may not be reliable in
the presence of feature redundancy in large datasets. Second, using
model evaluations decouples the selection from the feature ranking al-
gorithm, making it more robust (Galelli & Castelletti, 2013). Moreover,
this process solves the issue of inconsistency highlighted by Lundberg
et al. (2018).

We make FeatBoost modular by allowing the model choice for the
evaluation step to be different than the model used for feature ranking.
The decoupling of the two procedures - ranking and model evaluation -
could lead to improvements in computational efficiency. This could be
achieved by choosing the second model to be a computationally efficient
one, as opposed to the first model, which produces the feature rankings.

Another element of IIS which we use in FeatBoost is that once a
feature is selected, it is not dropped from the list of candidate features of
subsequent iterations. This way, a feature may be selected twice, which
translates to an automatic stopping condition for the algorithm.

The motivation for using this strategy is that future iterations on re-
weighted samples will rank new features in the presence of all other
features. This means that if a feature ranks higher as a result of sample
re-weighting, it does so in interaction with features that were selected
before, and those that might be selected after. And the only difference
between rankings of different iterations comes from sample re-
weighting, and not from explicitly removing features from the list of
candidates once they have been selected.

We make further adjustments to the boosting process to make it more
adapted to feature selection. When boosting for the purpose of classifi-
cation, as in AdaBoost, it is not necessary that each classifier is trained
on a highly different sample distribution. In other words, if sample
weights do not change significantly after a boosting round, this will not
necessarily hinder performance, as the final classification will be
determined by a majority vote of all classifiers.

On the other hand, in a feature selection context like the proposed
method, a relevant feature is added at each boosting round. Therefore,
classification error is expected to decrease with rounds. Consequently,
the difference in α (Eqs. (1) and (2)) between consecutive rounds will
decrease. If the difference becomes low enough, sample weights swill
stop changing, and therefore the desired variation in the top ranked
features will stop or diminish, causing the algorithm to prematurely
terminate.

We solve this problem with two strategies. First, we base the re-
weighting of samples not on the performance of the base classifier of
the current iteration, but on the relative performance between the cur-
rent iteration and the preceding one, hence the normalization step of α
in the second line of Eq. (2). Second, we use the following reset scheme:
At any given iteration, if an existing feature is selected again, or the

A. Alsahaf et al.

Expert Systems With Applications 187 (2022) 115895

4

selected feature causes no increase in performance, we re-initialize the
samples to have equal weights, and repeat the iteration with the new
weights. In effect, this reboots the algorithm with a non-empty feature
set, which could allow for the selection of additional useful features.

4.3. Ensemble tree models and feature selection

The simplest way to use the embedded scores of ensemble tree
models for feature selection is by thresholding, or by only retaining
features with non-zero scores. An alternative approach is to use a simple
forward selection procedure; relying on the feature rankings to intro-
duce one feature at a time to the selected subset, if the feature causes a
significant gain in performance (Genuer et al., 2010). This approach will
suffer from the various inconsistencies and biases of those scores (see
Section 1).

More elaborate ways of using these scores have been proposed. One
such example is to select features according to their importance scores
when compared to artificial features, designed to trick the ranking al-
gorithm (Kursa et al., 2010; Tuv et al., 2009). A popular example of this
approach is the Boruta method (Kursa et al., 2010). It works by creating
shadow features, which are copies of the original ones whose values are

shuffled across samples, then computing the feature importance scores
of the original set plus shadow features using a random forest classifier.
Original features that score lower than the top-scoring shadow features
are deemed irrelevant, and are subsequently removed. The process is
repeated until all the remaining original features are relevant. This
method, by design, does not solve issues of redundancy, as it selects all
relevant features (Kursa et al., 2010).

Tree-based models can also be used in combination with other ap-
proaches to improve their feature selection capabilities. Rao et al.
(2019) combine gradient boosted trees with artificial bee colony algo-
rithms for feature selection. Peker, Arslan, Şen, Çelebi, and But (2015)
combine the scores from random forest with the filter method ReliefF for
selecting feature extracted from EEG signals.

Other methods attempt to solve the issues with tree-based feature
scores not through external procedures, but by modifying, or redefining
the importance scores themselves to address particular weaknesses
(Lundberg et al., 2018; Nguyen, Huang, & Nguyen, 2015; Strobl et al.,
2007; Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008).

Algorithm 1. Pseudocode of FeatBoost.

A. Alsahaf et al.

Expert Systems With Applications 187 (2022) 115895

5

5. Methodology

For a given dataset D with p features, n training samples, and output
y with nc classes, the FeatBoost algorithm proceeds as follows: First, the
selected subset of features, X , is initialized to empty, and a user selected
tree-based classifier, H1, is trained on all samples with initial weights
equal to 1n, to produce a ranking of all features. We choose H1 to be an
XGBoost classifier for the remainder of the paper.

Then, a user-specified number, m, of the top ranking features are
evaluated and compared as single-input classifiers in k-fold cross vali-
dation, using either H1, or a different classifier, H2.1 The best performing

feature with H2, according to an appropriate metric (e.g. classification
accuracy, F-score, or area under the ROC curve) is added to the selected
subset X . In iterations other than the first, classifier H2 is used to
evaluate each of the m features appended to the features selected so far,
X i− 1.

Finally, H1 is trained on all selected features, and its prediction
probabilities are used to update the sample weights for the following
iteration according to Eq. (2).

If the increase in accuracy of X with respect to the previous iteration
is below a user-defined threshold ∊, or if a feature is selected twice, the
algorithm is temporarily paused, and a sample weight reset scheme is
initiated.

The reset scheme functions as follows: If at iteration i, a feature is
selected which already belongs to X i− 1, or if the feature does not
improve classification performance, the algorithm normally terminates,

Fig. 1. Accuracies of the subsets selected by each feature selection algorithm. The validation classifier used to compute the accuracy is Nearest Neighbor.

1 Note that H2 does not need to be tree-based, nor sensitive to sample
weights, since it is not used in the feature ranking process.

A. Alsahaf et al.

Expert Systems With Applications 187 (2022) 115895

6

and X i− 1 is taken as the final subset. Under the reset scheme, this is
temporarily overcome by resetting the sample weights to their initial
values, and repeating iteration i. This will lead to the feature ranking
being equal to that of the first iteration, albeit with an initial X that is
not empty. This could lead the model evaluation step (with H2) to select
a feature that is partially redundant to one or more features in X i− 1, but
nonetheless having additional predictive value. If that occurs, the al-
gorithm resumes its normal course from iteration i until a stopping
condition is reached again: a feature is selected twice, or the selected
feature does not improve accuracy. No further resets are initiated at that
point. If the reset scheme does not lead to selecting a new useful feature,

the algorithm stops.2

The asymptotic time complexity of the FeatBoost, computed in terms
of its parameters is given in Eq. (3).

O(p′ ⋅(O(H1)+m⋅k⋅+ p⋅O(H2)logp)) (3)

where O(H1) and O(H2) are the asymptotic complexities of the chosen
classifiers. For reference, the time complexity of training each tree in
XGBoost is O(nlogn) (Chen & Guestrin, 2016). The complexity of Feat-
Boost, therefore, depends highly on the choices of H1 and H2, and to a
lesser extent on the other parameters choices.

The pseudocode of the algorithm, along with the details of weighting

Fig. A.2. Accuracies of the subsets selected by each feature selection algorithm. The validation classifier used to compute the accuracy is XGBoost.

2 A software implementation of the algorithm is available at https://github.
com/amjams/FeatBoost.

A. Alsahaf et al.

https://github.com/amjams/FeatBoost
https://github.com/amjams/FeatBoost

Expert Systems With Applications 187 (2022) 115895

7

and reset strategies are given in Algorithm 1.

6. Experimental settings and evaluation

In this section, we describe the data and experimental settings. Then,
we briefly describe Boruta and ReliefF, the methods we compared
FeatBoost with.

We applied each algorithm to 8 real datasets, and one artificial
dataset, Madelon, which was designed to benchmark feature selection
algorithms (Guyon et al., 2006). Table 1 contains a description of the
datasets, and their dimensions.

On each dataset, we apply an l-by-k-fold cross-validated selection
procedure, with l = 3, and k = 10: We split each dataset into ten equally
sized folds, and apply each feature selection algorithm to the training
folds separately. Then, we use the selected features to train a classifier

on the training folds, and apply it to the held-out test folds, on which the
classification performance is evaluated. The performance is measured in
terms of the average classification accuracy of the selected subsets on the
test data, and the computation time of the feature selection algorithm.
We repeat the entire procedure l = 3 times with random shuffles of the
sample set, for a total of 30 runs of each algorithm. A similar validation
procedure is used by Song, Ni, and Wang (2013).

In cases where an algorithm selects more than 100 features, we only
evaluate the accuracies of the first 100. Moreover, since each algorithm
produces multiple subsets, we exclude those that could skew the average
performance at the validation stage. Therefore, for each algorithm, we
evaluate only the resulting subsets with a number of features equal to or
larger than the mode of all subset sizes for that algorithm. Subsets which
are larger than the mode are truncated to have a number of features
equal to the mode.

Fig. A.3. Accuracies of the subsets selected by each feature selection algorithm. The validation classifier used to compute the accuracy is Gaussian Naive Bayes.

A. Alsahaf et al.

Expert Systems With Applications 187 (2022) 115895

8

We used a Nearest Neighbor classifier to validate the selected sub-
sets. A Nearest Neighbor classifier is a sensible choice for validating
feature subsets, as its performance is more likely to suffer from the in-
clusion of irrelevant, redundant, or noisy features, when compared to
more complex classifiers (Loughrey & Cunningham, 2005). Validation
with a Gaussian Naive Bayes classifier and an XGBoost classifier with
default parameters are given in Appendix A.

In addition to subset accuracy, we evaluate the performance in terms
of computation time of the algorithms, and the redundancy rate (RED)
(Yamada, Jitkrittum, Sigal, Xing, & Sugiyama, 2014; Zhao, Wang, & Liu,
2010):

RED(X) =
1

p(p − 1)
∑

fi ,fj∈X ,i>j

|ρ(fi, fj)|, (4)

where ρ(fi, fj) is the Pearson correlation coefficient between features fi
and fj. A large value of RED(X) means that subset X contains high
redundancy. Thus, lower values of RED(X) are desired in feature
selection.

The average computation time of each method is given in Table 2.
The average redundancy rates for up to the top 10 and top 100 features
selected from each method are given in Tables 3 and 4. We examine the
top 10 as well as the complete top 100 features because in most cases,
FeatBoost and Boruta select smaller subsets than the other methods,
which are ranking algorithms that always select up to the user defined
100 features. Comparing the redundancy rate of up to the top 10 features
leads to the subsets across all compared methods to be of similar size,
and thus a better assessment of redundancy. Moreover, smaller subsets

Table 1
Descriptions of datasets† used in the comparison.

Name #Features #Samples #Classes Domain

Madelon 500 2600 2 Synthetic
Isolet 617 1560 2 Speech recognition
PCMAC 3289 1943 2 Text
Relathe 4322 1427 2 Text
Basehock 4862 1993 2 Text
Coil20 1024 1440 20 Face image
ORL 1024 400 40 Face image
WarpPIE10P 2420 210 10 Face image
Pixar10P 10000 100 10 Face image

† The datasets are ordered by their domain and number of features. They were
obtained from the ASU feature selection repository.

Table 4
The mean and standard deviation of the redundancy rates of up to the top 100 selected features of each algorithm.

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta

Madelon (p = 500,n = 2600) 0.12 (0.027) 0.144 (0.029) 0.013 (0) 0.014 (0) 0.137 (0.024)
Isolet (p = 617,n = 1560) 0.076 (0.005) 0.058 (0.012) 0.104 (0.003) 0.093 (0) 0.066 (0.005)
PCMAC (p = 3289,n = 1943) 0.015 (0.008) 0.007 (0.004) 0.012 (0.002) 0.011 (0.001) 0.02 (0.005)
Relathe (p = 3289,n = 1943) 0.016 (0.005) 0.018 (0.005) 0.013 (0.001) 0.014 (0.001) 0.017 (0.005)
Basehock (p = 4862,n = 1993) 0.008 (0.002) 0.006 (0.003) 0.011 (0.001) 0.012 (0.001) 0.008 (0.002)
Coil20 (p = 1024,n = 1440) 0.118 (0.021) 0.139 (0.031) 0.113 (0.004) 0.122 (0.004) 0.124 (0.017)
ORL (p = 1024,n = 400) 0.16 (0.022) 0.14 (0.022) 0.154 (0.006) 0.158 (0.005) 0.142 (0.009)
WarpPIE10P (p = 2420,n = 210) 0.32 (0.026) 0.287 (0.019) 0.31 (0.008) 0.319 (0.004) 0.275 (0.018)
Pixraw10P (p = 10000,n = 100) 0.433 (0.03) 0.444 (0.03) 0.44 (0.011) 0.44 (0.006) 0.471 (0.001)

Table 3
The mean and standard deviation of the redundancy rate of up to the top 10 selected features of each algorithm.

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta

Madelon (p = 500,n = 2600) 0.125 (0.023) 0.144 (0.029) 0.139 (0.022) 0.172 (0.005) 0.145 (0.028)
Isolet (p = 617,n = 1560) 0.074 (0.009) 0.058 (0.012) 0.067 (0.007) 0.059 (0.005) 0.066 (0.003)
PCMAC (p = 3289,n = 1943) 0.016 (0.008) 0.007 (0.004) 0.021 (0.006) 0.017 (0.003) 0.021 (0.006)
Relathe (p = 3289,n = 1943) 0.017 (0.006) 0.018 (0.005) 0.019 (0.004) 0.024 (0.002) 0.017 (0.005)
Basehock (p = 4862,n = 1993) 0.008 (0.002) 0.006 (0.003) 0.007 (0.002) 0.008 (0.002) 0.007 (0.001)
Coil20 (p = 1024,n = 1440) 0.118 (0.021) 0.139 (0.031) 0.122 (0.014) 0.176 (0.018) 0.127 (0.021)
ORL (p = 1024,n = 400) 0.162 (0.022) 0.14 (0.022) 0.148 (0.009) 0.166 (0.008) 0.142 (0.006)
WarpPIE10P (p = 2420,n = 210) 0.32 (0.029) 0.287 (0.019) 0.281 (0.007) 0.286 (0.006) 0.274 (0.016)
Pixraw10P (p = 10000,n = 100) 0.431 (0.033) 0.444 (0.03) 0.466 (0.016) 0.474 (0.004) 0.47 (0.001)

Table 2
The mean and standard deviation of computation time in minutes of each feature selection algorithm.

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta

Madelon (p = 500,n = 2600) 58.71 (11.89) 3.56 (0.36) 0.25 (0.01) 1.02 (0.02) 20.81 (3.01)
Isolet (p = 617,n = 1560) 168.45 (31.62) 52.53 (21.78) 1.04 (0.02) 0.72 (0.01) 154.91 (3.23)
PCMAC (p = 3289,n = 1943) 186.07 (57.88) 45.07 (12.04) 1.11 (0.03) 2.81 (0.08) 105.67 (4.79)
Relathe (p = 3289,n = 1943) 163.38 (32.6) 60.92 (21.09) 1.08 (0.01) 2.77 (0.03) 91.73 (3.06)
Basehock (p = 4862,n = 1993) 217.52 (40.95) 73.33 (24.3) 1.54 (0.07) 4.34 (0.1) 131.14 (4.76)
Coil20 (p = 1024,n = 1440) 333.85 (60.68) 36.67 (9.27) 1.18 (0.04) 2.19 (0.06) 241.23 (17.47)
ORL (p = 1024,n = 400) 168.38 (48.91) 18.18 (4.65) 0.56 (0.03) 0.57 (0.03) 102.35 (12.82)
WarpPIE10P (p = 2420,n = 210) 22.91 (4.88) 5.27 (1.45) 0.25 (0) 3.28 (0.05) 24.12 (1.06)
Pixraw10P (p = 10000,n = 100) 6.91 (1.51) 3.4 (0.49) 0.37 (0.01) 5.87 (0.08) 41.15 (0.7)

A. Alsahaf et al.

Expert Systems With Applications 187 (2022) 115895

9

could better reflect the redundancy limiting ability of the feature se-
lection method when compared to larger sets, since the redundancy rate
of the latter could be a reflection of the inherent level of redundancy in
the complete dataset.

6.1. Compared methods

6.1.1. XGBoost
Since we build FeatBoost around a specific feature importance score,

one derived from an XGBoost classifier, then a suitable benchmark to
compare against is the same base score but with a simpler threshold. For
that purpose, we define the first method in the comparison to be the
feature importance scores from the same classifier used for ranking in
FeatBoost, with the threshold being the mean of all feature scores.3 That
is, features with an importance score lower than the mean of all feature
scores are discarded.

6.1.2. Boruta
The second method we compare against is Boruta. In the comparison,

we use XGBoost instead of random forest as the base ranking algorithm
for Boruta. That way, we are able to achieve a fairer comparison, and
determine which of the approaches makes better use of the same un-
derlying feature scores. Moreover, since Boruta does not rank the ele-
ments of the selected subset by default, we post-rank them with an
additional fitting of the classifier. This allows us to compare the per-
formance of all methods iteratively with each added feature.

6.1.3. ReliefF
Finally, we compare FeatBoost to the ReliefF algorithm (Kira &

Rendell, 1992). ReliefF is a powerful filter-based approach which be-
longs to the Relief family of feature selection methods (Urbanowicz,
Meeker, La Cava, Olson, & Moore, 2018; Kira & Rendell, 1992). We use
it in the comparison to represent a baseline of filter-based approaches.

Since Relief-based methods are feature ranking algorithms, a suitable
threshold is needed in order to use them for feature subset selection. As
in XGBoost, we used the mean value of the scores as a lower threshold.

We configured the algorithms as follows:

1. XGBoost: We configured XGBoost with 100 trees, and a maximum
tree depth of 20. We set the maximum depth parameter to a high
value in order to detect higher order feature interactions that might
be present in some datasets (Johnson, 2009). We set the remaining
parameters of the classifier to their default values.4

2. FeatBoost: We used FeatBoost in two configurations. In the first, we
set H1 and H2 to be the same XGBoost classifier used individually. In
the second, we set H2 as a Nearest Neighbor classifier. We set the
remaining parameters as follows: k = 3,m = 50,p′ = 100, and ∊ =

10− 18.
3. Boruta: We used Boruta with the same classifier used in XGBoost,

and default settings otherwise. We implemented the algorithm with
the BorutaPy Python package, which we modified to be compatible
with XGBoost.

4. ReliefF: We used ReliefF with a number of neighbors equal to 10 and
implemented the algorithm with the Skrebate Python package.

7. Results and discussion

The results of the feature selection comparison are summarized in
Fig. 1, which shows the average classification accuracies of the subsets
selected by the compared algorithms. The average computation times of
each algorithm on all datasets are shown in Table 2.

In all datasets, FeatBoost selects better performing features in the
leading ranks than the feature importance score on which it is based,
XGBoost. This shows that sample re-weighting and model evaluation
improve the performance of the base ranking. Moreover, the automatic
stopping conditions in FeatBoost lead to selecting significantly smaller
subsets than the mean-value threshold that we used for XGBoost.

In most datasets, FeatBoost outperforms Boruta and ReliefF as well,
reaching higher accuracies with fewer features. This is most apparent in
Isolet, PCMAC, COIL20, Orl, and WarpPIE10P. In those datasets, the
performance of subsets selected by FeatBoost converges significantly
faster than the second best method, indicating that the relevant features
are found with smaller subsets.

In terms of computation time, XGBoost is the most efficient approach
across all datasets, followed by ReliefF. This is expected since the former
ranks features with a single fitting of the data, while the latter is a filter
method that performs no model fitting. As for FeatBoost and Boruta, we
observe that the former, when configured with an XGBoost wrapped
classifier, is slightly faster than Boruta, which uses the same classifier to
provide its base feature ranking. On the other hand, when FeatBoost uses
a NN classifier, it becomes significantly faster than Boruta.

It is worth noting that this increase in efficiency in FeatBoost – ob-
tained by using NN instead of XGBoost as the evaluation classifier – does
not sacrifice the performance of the algorithm. In fact, this configuration
performs better when the validation classifier is also NN (Fig. 1). It also
performs well when XGBoost is the validation classifier (Fig. A.2). This
demonstrates that the modular architecture of the algorithm can take
advantage of a powerful ranking algorithm, that of XGBoost, while using
a simpler and more efficient evaluation classifier.

Table 3, which shows the redundancy rates of up to the top 10
selected features, indicates that FeatBoost in either of its iterations se-
lects subsets with lower redundancy than the other compared methods.
When the top 100 features in ReliefF and XGBoost are examined
(Table 4), FeatBoost with an NN classifier still retains its advantage,
performing best in 4 out of 9 datasets. In both cases, Boruta performs
best on a single dataset; WarpPIE10P.

The algorithm’s ability to reduce redundancy, at least in the top
ranked features, is very promising, since this resulted only from the
sample re-weighting and model evaluation procedures, and not from
explicit minimization of redundancy, as is the case in other feature se-
lection approaches (Peng, Long, & Ding, 2005; Zhao et al., 2010;
Yamada et al., 2014).

8. Conclusion

We showed that the proposed FeatBoost algorithm, which is based on
boosting, and a stage-wise greedy procedure, is able to use the feature
importance scores derived from an ensemble of decision-trees to select
high performing feature subsets for classification problems. The result-
ing subsets outperform those obtained by simple thresholding of the
baseline scores. They also outperform in most cases the Boruta algo-
rithm, which we configured to use the same feature scores as a basis, and
improved with a post-ranking of the selected subsets.

The computational cost of the algorithm is sensitive to several design
choices, most importantly, the ranking algorithm, the parameter m, and
the wrapped classifier. We have shown that changing the latter from
XGBoost to the much simpler Nearest Neighbor improved the speed of
the algorithm without significantly affecting the performance of the
selected features.

The proposed boosting framework, and the two-step selection pro-
cedure, circumvent the weaknesses in the importance scores of tree-
based models externally, without changing how the scores are
computed. The algorithm is therefore independent of the particular
scores being used, or the wrapped classifier. It would be useful to
investigate the use of other classifiers, and to test if other ranking al-
gorithms, like filter-based Relief methods, would react similarly within
the same algorithm.

3 We used the feature importance type Gain as it was defined in XGBoost’s
stable Python release 0.90.

4 Default values as per XGBoost’s stable Python release 0.90.

A. Alsahaf et al.

Expert Systems With Applications 187 (2022) 115895

10

CRediT authorship contribution statement

Ahmad Alsahaf: Conceptualization, Methodology, Data curation,
Software, Formal analysis, Investigation, Writing - original draft. Nic-
olai Petkov: Conceptualization, Funding acquisition, Methodology,
Resources, Supervision, Writing - review & editing. Vikram Shenoy:
Data curation, Formal analysis, Methodology, Investigation, Software.
George Azzopardi: Conceptualization, Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration, Re-
sources, Supervision, Validation, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We thank Nik Dijkema for his work on time complexity analysis of
the algorithm. This paper is part of the Breed4Food research program,
project Smart animal breeding with advanced machine learning with
project number 14295, which is financed by the Netherlands Organi-
sation for Scientific Research (NWO), the Dutch Ministry of Economic
Affairs (TKI Agri & Food project 12018) and the Breed4Food Partners
Cobb Europe CRV, Hendrix Genetics, and Topigs Norsvin.

Appendix A. Validation with other classifiers

In this appendix, we give the results of the main feature selection
comparison (described in Section 6) with two additional validation
classifiers, XGBoost, and Gaussian Naive Bayes. The results are shown
Figs. A.2 and A.3.

References

AlNuaimi, N., Masud, M. M., Serhani, M. A., & Zaki, N. (2020). Streaming feature
selection algorithms for big data: A survey. In Applied Computing and Informatics.

Alsahaf, A., Azzopardi, G., Ducro, B., Veerkamp, R. F., & Petkov, N. (2018). Predicting
slaughter weight in pigs with regression tree ensembles. In APPIS (pp. 1–9).

Barddal, J. P., Enembreck, F., Gomes, H. M., Bifet, A., & Pfahringer, B. (2019). Boosting
decision stumps for dynamic feature selection on data streams. Information Systems,
83, 13–29.

Bolón-Canedo, V., & Alonso-Betanzos, A. (2019). Ensembles for feature selection: a
review and future trends. Information Fusion, 52, 1–12.

Borboudakis, G., & Tsamardinos, I. (2019). Forward-backward selection with early
dropping. The Journal of Machine Learning Research, 20, 276–314.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Breiman, L. (2002). Manual on setting up, using, and understanding random forests v3.

1. Statistics Department University of California Berkeley, CA, USA, 1, 58.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings

of the 22nd acm sigkdd international conference on knowledge discovery and data mining
(pp. 785–794).

Christin, C., Hoefsloot, H. C., Smilde, A. K., Hoekman, B., Suits, F., Bischoff, R., &
Horvatovich, P. (2013). A critical assessment of feature selection methods for
biomarker discovery in clinical proteomics. Molecular & Cellular Proteomics, 12,
263–276.

Das, S. (2001). Filters, wrappers and a boosting-based hybrid for feature selection. In Icml
(Vol. 1) (pp. 74–81).

Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1,
131–156.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608.

Early, K., Fienberg, S., & Mankoff, J. (2016). Cost-effective feature selection and ordering
for personalized energy estimates. In Workshops at the thirtieth AAAI conference on
artificial intelligence.

El Aboudi, N., & Benhlima, L. (2016). Review on wrapper feature selection approaches.
In 2016 International conference on engineering & MIS (ICEMIS) (pp. 1–5). IEEE.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences, 55,
119–139.

Galelli, S., & Castelletti, A. (2013). Tree-based iterative input variable selection for
hydrological modeling. Water Resources Research, 49, 4295–4310.

Gao, W., Hu, L., & Zhang, P. (2018). Class-specific mutual information variation for
feature selection. Pattern Recognition, 79, 328–339.

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random
forests. Pattern Recognition Letters, 31, 2225–2236.

Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research
Projects Agency (DARPA), nd Web, 2.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of Machine Learning Research, 3, 1157–1182.

Guyon, I., Li, J., Mader, T., Pletscher, P. A., Schneider, G., & Uhr, M. (2006). Feature
selection with the CLOP package. Technical Report.

Holzinger, A. (2018). From machine learning to explainable ai. In 2018 World symposium
on digital intelligence for systems and machines (DISA) (pp. 55–66). IEEE.

Ibrahim, R. A., Ewees, A. A., Oliva, D., Abd Elaziz, M., & Lu, S. (2019). Improved salp
swarm algorithm based on particle swarm optimization for feature selection. Journal
of Ambient Intelligence and Humanized Computing, 10, 3155–3169.

Johnson, N. (2009). A study of the nips feature selection challenge.
Jović, A., Brkić, K., & Bogunović, N. (2015). A review of feature selection methods with

applications. In 2015 38th International convention on information and communication
technology, electronics and microelectronics (MIPRO) (pp. 1200–1205). Ieee.

Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine
Learning Proceedings 1992 (pp. 249–256). Elsevier.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97, 273–324.

Kumar, V., & Minz, S. (2014). Feature selection: a literature review. SmartCR, 4,
211–229.

Kursa, M. B., Rudnicki, W. R., et al. (2010). Feature selection with the boruta package.
Journal of Statistical Software, 36, 1–13.

Liu, H., Liu, L., & Zhang, H. (2009). Boosting feature selection using information metric
for classification. Neurocomputing, 73, 295–303.

Loughrey, J., & Cunningham, P. (2005). Using early stopping to reduce overfitting in
wrapper-based feature weighting. Technical Report Trinity College Dublin, Department
of Computer Science.

Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable
importances in forests of randomized trees. In Advances in neural information
processing systems (pp. 431–439).

Luckner, M., Topolski, B., & Mazurek, M. (2017). Application of xgboost algorithm in
fingerprinting localisation task. In IFIP international conference on computer
information systems and industrial management (pp. 661–671). Springer.

Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2018). Consistent individualized feature
attribution for tree ensembles. arXiv preprint arXiv:1802.03888.

Mafarja, M., & Mirjalili, S. (2018). Whale optimization approaches for wrapper feature
selection. Applied Soft Computing, 62, 441–453.

Murauer, B., & Specht, G. (2018). Detecting music genre using extreme gradient
boosting. In Companion Proceedings of the web conference 2018 (pp. 1923–1927).

Nardone, D., Ciaramella, A., & Staiano, A. (2019). A sparse-modeling based approach for
class specific feature selection. PeerJ Computer Science, 5, Article e237.

Nguyen, T.-T., Huang, J. Z., & Nguyen, T. T. (2015). Unbiased feature selection in
learning random forests for high-dimensional data. The Scientific World Journal,
2015.

Peker, M., Arslan, A., Şen, B., Çelebi, F. V., & But, A. (2015). A novel hybrid method for
determining the depth of anesthesia level: Combining relieff feature selection and
random forest algorithm (relieff+ rf). In 2015 International symposium on innovations
in intelligent systems and applications (INISTA) (pp. 1–8). IEEE.

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27, 1226–1238.

Pineda-Bautista, B. B., Carrasco-Ochoa, J. A., & Martinez-Trinidad, J. F. (2011). General
framework for class-specific feature selection. Expert Systems with Applications, 38,
10018–10024.

Rao, H., Shi, X., Rodrigue, A. K., Feng, J., Xia, Y., Elhoseny, M., Yuan, X., & Gu, L. (2019).
Feature selection based on artificial bee colony and gradient boosting decision tree.
Applied Soft Computing, 74, 634–642.

Song, Q., Ni, J., & Wang, G. (2013). A fast clustering-based feature subset selection
algorithm for high-dimensional data. IEEE Transactions on Knowledge and Data
Engineering, 25, 1–14.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional
variable importance for random forests. BMC Bioinformatics, 9, 307.

Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest
variable importance measures: Illustrations, sources and a solution. BMC
Bioinformatics, 8, 25.

Tabus, I., & Astola, J. (2005). Gene feature selection. Genomic Signal Processing and
Statistics, 67–92.

Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data
Classification: Algorithms and Applications, 37.

Tieu, K., & Viola, P. (2004). Boosting image retrieval. International Journal of Computer
Vision, 56, 17–36.

Tuv, E., Borisov, A., Runger, G., & Torkkola, K. (2009). Feature selection with ensembles,
artificial variables, and redundancy elimination. Journal of Machine Learning
Research, 10, 1341–1366.

Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., & Moore, J. H. (2018). Relief-
based feature selection: introduction and review. Journal of Biomedical Informatics.

Yamada, M., Jitkrittum, W., Sigal, L., Xing, E. P., & Sugiyama, M. (2014). High-
dimensional feature selection by feature-wise kernelized lasso. Neural Computation,
26, 185–207.

Zhao, Z., Wang, L., & Liu, H. (2010). Efficient spectral feature selection with minimum
redundancy. In Proceedings of the AAAI Conference on Artificial Intelligence.
volume 24.

A. Alsahaf et al.

http://refhub.elsevier.com/S0957-4174(21)01251-3/h0005
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0005
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0015
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0015
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0015
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0020
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0020
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0025
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0025
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0030
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0040
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0040
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0040
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0045
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0045
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0045
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0045
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0050
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0050
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0055
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0055
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0065
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0065
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0065
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0070
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0070
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0075
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0075
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0075
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0080
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0080
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0085
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0085
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0090
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0090
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0100
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0100
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0105
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0105
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0110
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0110
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0115
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0115
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0115
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0125
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0125
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0125
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0130
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0130
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0135
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0135
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0140
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0140
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0145
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0145
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0150
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0150
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0155
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0155
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0155
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0160
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0160
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0160
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0165
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0165
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0165
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0175
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0175
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0180
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0180
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0185
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0185
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0195
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0195
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0195
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0195
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0200
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0200
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0200
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0205
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0205
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0205
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0210
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0210
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0210
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0215
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0215
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0215
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0220
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0220
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0225
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0225
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0225
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0230
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0230
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0235
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0235
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0240
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0240
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0245
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0245
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0245
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0250
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0250
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0255
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0255
http://refhub.elsevier.com/S0957-4174(21)01251-3/h0255

	A framework for feature selection through boosting
	1 Introduction
	2 Article structure
	3 Notations and definitions
	4 Background and related work
	4.1 Tree-based feature importance
	4.2 Boosting and feature selection
	4.3 Ensemble tree models and feature selection

	5 Methodology
	6 Experimental settings and evaluation
	6.1 Compared methods
	6.1.1 XGBoost
	6.1.2 Boruta
	6.1.3 ReliefF

	7 Results and discussion
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Validation with other classifiers
	References

