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A framework for feature selection through boosting 
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A B S T R A C T   

As dimensions of datasets in predictive modelling continue to grow, feature selection becomes increasingly 
practical. Datasets with complex feature interactions and high levels of redundancy still present a challenge to 
existing feature selection methods. We propose a novel framework for feature selection that relies on boosting, or 
sample re-weighting, to select sets of informative features in classification problems. The method uses as its basis 
the feature rankings derived from fast and scalable tree-boosting models, such as XGBoost. We compare the 
proposed method to standard feature selection algorithms on 9 benchmark datasets. We show that the proposed 
approach reaches higher accuracies with fewer features on most of the tested datasets, and that the selected 
features have lower redundancy.   

1. Introduction 

The presence of irrelevant and redundant features in a dataset can 
lower the performance of predictive models, due to over-fitting and the 
curse of dimensionality. Moreover, even if a model’s performance is 
robust to redundancy and noise, the presence of those features has other 
disadvantages, like increasing storage and computational costs, and 
limiting the model’s interpretability. Feature selection can mitigate 
these problems by identifying and selecting relevant features, and 
removing irrelevant and redundant ones. 

Model interpretability has become specially pertinent with the rise of 
interest in explainable AI (Holzinger, 2018; Gunning, 2017). The 
interprertability of machine learning models is important as it enables 
compliance with the socially relevant requirements of those models, 
such as fairness, unbiasedness, privacy, trust, and reliability (Doshi- 
Velez & Kim, 2017). 

Since modern machine learning applications contain an ever 
growing number of features, interpretability and intuitive understand
ing of prediction outcomes has become virtually impossible before some 
form of dimensionality reduction. Other aides of model interpretation, 
like data visualization, are also made easier by reducing the number of 
features. 

Furthermore, in certain biomedical applications, knowledge dis
covery is the primary task of feature selection, more so than improving 
the prediction outcome or increasing computational efficiency (Bor
boudakis & Tsamardinos, 2019). In gene expression studies, feature 

selection is used to discover the genetic networks associated with dis
eases (Tabus & Astola, 2005). In other biomarker discovery studies, the 
workflow relies heavily on feature selection, as the studies often begin - 
for practical limitation - with large feature, small sample raw data 
(Christin et al., 2013). 

Another benefit of feature selection is found in applications where 
the acquisition of features is costly. In such cases, it is useful to identify if 
a costly feature happens to be irrelevant or redundant (Early, Fienberg, 
& Mankoff, 2016; Bolón-Canedo & Alonso-Betanzos, 2019). For 
example, in medical data, a feature could be associated with a clinical 
test, which could either be expensive, inconvenient to patients, or both. 

Reducing the number of features in any dataset can be achieved with 
principally different approaches. Therefore, many methods of feature 
selection have been proposed in literature. The most popular taxonomy 
of these methods divides them into three broad categories: filter 
methods, wrapper methods, and embedded methods (Guyon & Elisseeff, 
2003). 

This categorization pertains to how the selection process and the 
associated prediction task are connected. Filter methods rank features 
independently of any prediction model, whereas wrapper methods 
evaluate the performance of candidate feature subsets on a pre-chosen 
predictor. Finally, embedded methods reduce the number of features 
in conjunction with solving a prediction problem (Guyon & Elisseeff, 
2003; Dash & Liu, 1997; Tang, Alelyani, & Liu, 2014; Kumar & Minz, 
2014). Other taxonomies may include additional application-specific 
categories, such as methods for structured or streaming features 
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(Jović, Brkić, & Bogunović, 2015; AlNuaimi, Masud, Serhani, & Zaki, 
2020), and class-specific feature selection methods (Pineda-Bautista, 
Carrasco-Ochoa, & Martinez-Trinidad, 2011; Gao, Hu, & Zhang, 2018; 
Nardone, Ciaramella, & Staiano, 2019). 

Compared to filters, wrapper methods select subsets with high ac
curacy at the expense of increased computational cost. Since an 
exhaustive search of all possible feature subsets is intractable for large 
datasets, wrapper methods make use of efficient search strategies for 
finding candidate subsets to evaluate with the wrapped predictor 
(Guyon & Elisseeff, 2003; Tang et al., 2014; El Aboudi & Benhlima, 
2016). Examples of these strategies include hill-climbing, best-first, 
genetic algorithms (Kohavi & John, 1997), particle swarm optimization 
(Ibrahim, Ewees, Oliva, Abd Elaziz, & Lu, 2019), and Whale optimiza
tion (Mafarja & Mirjalili, 2018). 

Boosting, a popular meta-algorithm in ensemble classification, can 
also be used to modify the feature search space in wrapper-based feature 
selection. This use of boosting, or sample re-weighting, has been 
explored to limited capacity in past studies (Das, 2001; Tieu & Viola, 
2004; Liu, Liu, & Zhang, 2009; Barddal, Enembreck, Gomes, Bifet, & 
Pfahringer, 2019). In this paper, we expand on this concept and propose 
a greedy forward selection algorithm that we call FeatBoost. The algo
rithm uses embedded feature importance scores of tree ensemble models 
for choosing the candidate features, then uses boosting to update the 
importance scores, and thus the search space, after every iteration. 

Compared to past studies, we contribute the following: (1) a sample 
weighting strategy which weights each sample according to its predic
tion probability. In contrast, previous methods up-weight all mis
classified samples by the same amount, (2) a modular algorithm 
architecture, which decouples feature ranking from selection. This 
overcomes inconsistencies in feature rankings, and potentially increases 
the robustness of the selected subsets, (3) a sample weighting reset 
strategy, which prevents premature stopping of the algorithm. 

2. Article structure 

In Section 4, we describe the novel elements of the proposed 
approach in relation to existing algorithms, and give an overview of 
recent, relevant developments in feature selection with tree ensembles. 
We then give the details of the proposed algorithm in Section 5. Then, 
we give the experimental settings in Section 6, followed by the results in 
Section 7. Finally, we discuss the implications of the results and future 
developments in Section 8. 

3. Notations and definitions 

In this section, we introduce the notations used in the rest of the 
paper. Whenever possible, we unify notations describing the different 
methods we compare. Therefore, the notations do not necessarily reflect 
those used in the original works. 

Each instance of feature selection is solved on a given dataset D with 
p features, n samples, and a discrete target output y with nc classes. A 
prediction of y is referred to as ŷ. The subset of selected features for the 
given output is denoted by X . 

In methods that take as input the number of desired features to select, 
or the maximum number of features that can be selected, this number is 
denoted as p′ . The actual number of features selected is denoted as p*. If 
a method selects features sequentially, or produces a rank for the fea
tures in X , then X i refers to X at the ith iteration, for i = 1,…,p*. 

For clarity, we stress here the difference between two types of 
boosting that are present in the proposed algorithm. The first occurs 
within the ensemble model that is used to generate the feature impor
tance rankings - if a boosting method was used for that purpose - while 
the second is an outer layer of boosting (or sample re-weighting) per
formed specifically for the feature selection process, and bears no direct 
functional relation to the first type. From this point onward, mentions of 

sample re-weighting or boosting in this paper refer to the second type, 
unless otherwise specified. 

4. Background and related work 

In this section, we elaborate on the use of boosting in feature selec
tion by highlighting a number of existing methods, and how the pro
posed algorithm differs from them. We also consider more broadly 
methods that use the embedded feature importance scores of decision- 
tree models as bases for feature selection. 

4.1. Tree-based feature importance 

The embedded feature importance scores of tree-based ensembles are 
powerful starting points for feature selection (Tuv, Borisov, Runger, & 
Torkkola, 2009). This is largely due to the following factors: First, the 
versatility of those models; being scale invariant, scalable to large 
datasets, and able to handle numerical, categorical, and missing data. 
Second, the fact that the intrinsic importance scores can be derived at no 
additional cost over that of model training. 

In a decision tree, the importance of a feature is defined as the total 
value of a node-splitting criterion that the feature is responsible for (e.g. 
Information Gain or the Gini Index). When used in ensembles, it is 
commonly defined as the sum or average of the splitting criterion that a 
feature causes across all trees (Breiman, 2002; Louppe, Wehenkel, 
Sutera, & Geurts, 2013). 

In an ensemble of trees, like random forest (Breiman, 2001), the 
importance scores of two or more redundant features will be spread 
evenly among them, due to feature sub-sampling and bootstrapping. 
Using those scores as a basis for feature selection in large datasets could 
lead to falsely selecting a feature with many of its redundant copies 
(Genuer, Poggi, & Tuleau-Malot, 2010). 

Other issues with tree-derived feature scores include the bias to
wards categorical features of high cardinality (Strobl, Boulesteix, Zeileis, 
& Hothorn, 2007), sensitivity to hyper-parameters (Genuer et al., 2010), 
and inconsistencies (Lundberg, Erion, & Lee, 2018). The latter refer to 
cases where the assigned importance of a feature decreases when its true 
impact on model performance has increased. 

For the importance scores of tree models to be used reliably for 
feature selection, these shortcomings should be overcome. This can be 
partially achieved through boosting, or sample re-weighting. 

Boosting algorithms, like AdaBoost and its derivatives (Freund & 
Schapire, 1997), rely on a sequential procedure of varying the sample 
weights of weak classifiers, typically decision-trees, based on the accu
racy of previous boosting rounds. This leads the classifiers in later 
rounds of the algorithm to focus on samples that were misclassified in 
earlier rounds. Then, each classifier votes to determine the final outcome 
of the ensemble. 

Through sample re-weighting, the process of boosting also affects the 
feature importance scores (and rankings) produced by the classifier 
being boosted. This presumably happens in such a way that in later 
boosting rounds, some features which initially ranked poorly, appear in 
top ranked positions due to becoming effective in classifying samples 
which were misclassified in earlier rounds. We explain this further in the 
following section. 

4.2. Boosting and feature selection 

The effect of boosting on feature importance scores has been 
exploited in the past to design feature selection algorithms (Das, 2001; 
Tieu & Viola, 2004; Liu et al., 2009). In short, this is done by relying on a 
weight-sensitive feature ranking algorithm, and a sequential procedure 
of adding features, often one at a time. At each round, the ranking al
gorithm is applied to a re-weighted version of the training data. And the 
re-weighting is done based on the classification error produced by fea
tures selected so far. The best feature from each round, according to the 
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feature ranking, is added to the selected subset. 
Early examples of directly using boosting for feature selection 

include the following: Boosted Decision Stump Feature Selection 
(BDSFS) (Das, 2001), Boosting Image Retrieval (Tieu & Viola, 2004), 
and Boosted Mutual Information Feature Selection (BMIFS) (Liu et al., 
2009). A recent example is Adaptive Boosting for Feature Selection 
(ABFS) (Barddal et al., 2019). 

Das (2001) used a tree stump as a base classifier, and followed the 
sample re-weighting strategy from AdaBoost for the purpose of feature 
selection. Namely, all training samples are initially given a weight of 1n, 
with n being the number of training samples. Then, at each subsequent 
iteration, the sample weights are given as a function of the classification 
error from the previous iteration. All misclassified samples are equally 
up-weighted according to Eq. (1). The best feature from every iteration, 
according to Information Gain, is selected. 

α = log
1 − err

err

ωi+1
j = ωi

j⋅exp(α); ∀ j = 1,⋯, n

ωi+1
j =

ωi+1
j∑n

j=1
ωi+1

j

; ∀ j = 1,⋯, n

(1)  

where err is the classification error from the previous iteration and ωi
j is 

the sample weight for sample j at the ith iteration. 
Boosted Image Retrieval follows a similar procedure to BDSFS, 

adapted for the purpose of image retrieval. The BMIFS method differs in 
that the error used for updating sample weights is estimated from an 
information metric, Mutual Information, and not from a base classifier. 
Barddal et al. (2019) use this form of feature selection to solve the 
problem of feature drift in data streams. 

Our approach follows a framework that is similar to the aforemen
tioned methods, but differs from them in a number of ways. First, we use 
a different sample re-weighting strategy. The AdaBoost weighting 
strategy, used in BDSFS (Eq. 1), re-weights all misclassified samples by 
the same amount, which disregards how far a sample is from being 
correctly predicted. To improve this, we weight each sample inversely 
proportional to its prediction probability, according to Eq. 2. 

αi = −
∑nc

c=1
Yclog(Pc)

αi
j = αi

j

/
αi− 1

j ; ∀ j = 1,⋯, n

ωi+1
j ←ωi

j⋅αi
j; ∀ j = 1,⋯, n

ωi+1
j =

ωi+1
j∑n

j=1
ωi+1

j

∀ j = 1,⋯, n

(2)  

where Yc is a one-hot encoded matrix indicating the correct class for 
each sample, Pc is an n × nc matrix containing the class probabilities for 
each sample, obtained from a classifier, and ωi

j is the sample weight for 
sample j at the ith iteration. 

For a given sample, the associated weighting term αj is decreased as 
the probability of the correct class for that sample approaches 1, and 
increased as it approaches zero. Therefore, samples which are far from 
being correctly classified are given higher weights in the next iteration. 

We use a gradient boosting trees model, XGBoost, as a base learner for 
obtaining the feature scores (Chen & Guestrin, 2016). Despite being 
computationally demanding compared to individual trees, ensembles of 
trees are more predictive in large datasets, and their feature importance 
scores reflect more complex interactions. XGBoost is a powerful example 
of such models, and it outperforms traditional tree-ensemble models in 
many applications (Luckner, Topolski, & Mazurek, 2017; Alsahaf, Azzo
pardi, Ducro, Veerkamp, & Petkov, 2018; Murauer & Specht, 2018). 

Moreover, we introduce a few procedural changes, some of which 
were inspired by Iterative Input Selection (IIS) (Galelli & Castelletti, 
2013), a tree-based forward selection method for regression problems. 

For instance, in FeatBoost, we use a two-step process to select the 
best feature at each iteration. First, the top ranked features are obtained 
from the embedded feature scores of a tree model trained on all features. 
Then, we use a classifier to evaluate the classification performance of the 
top-ranked features obtained from the embedded scores. This strategy is 
used in IIS, where evaluations of a regressor determine the best feature 
at each iteration (Galelli & Castelletti, 2013). We use this approach of 
model evaluation in FeatBoost by testing m of the top ranked features at 
each iteration. However, instead of evaluating each of the candidate 
features individually as a single-input model, we append each feature to 
the selected features thus far, and evaluate the classification accuracy of 
the resulting models. Namely, at the ith iteration, we evaluate m models 
of order i. With this approach, the algorithm could be viewed as a step- 
wise greedy search in which the search space in each iteration is reduced 
from p features, to a user-specified number of features. And those 
candidate features change through the process of boosting. 

The justification for this two-step process is the following: First, 
choosing the top feature from the feature ranking may not be reliable in 
the presence of feature redundancy in large datasets. Second, using 
model evaluations decouples the selection from the feature ranking al
gorithm, making it more robust (Galelli & Castelletti, 2013). Moreover, 
this process solves the issue of inconsistency highlighted by Lundberg 
et al. (2018). 

We make FeatBoost modular by allowing the model choice for the 
evaluation step to be different than the model used for feature ranking. 
The decoupling of the two procedures - ranking and model evaluation - 
could lead to improvements in computational efficiency. This could be 
achieved by choosing the second model to be a computationally efficient 
one, as opposed to the first model, which produces the feature rankings. 

Another element of IIS which we use in FeatBoost is that once a 
feature is selected, it is not dropped from the list of candidate features of 
subsequent iterations. This way, a feature may be selected twice, which 
translates to an automatic stopping condition for the algorithm. 

The motivation for using this strategy is that future iterations on re- 
weighted samples will rank new features in the presence of all other 
features. This means that if a feature ranks higher as a result of sample 
re-weighting, it does so in interaction with features that were selected 
before, and those that might be selected after. And the only difference 
between rankings of different iterations comes from sample re- 
weighting, and not from explicitly removing features from the list of 
candidates once they have been selected. 

We make further adjustments to the boosting process to make it more 
adapted to feature selection. When boosting for the purpose of classifi
cation, as in AdaBoost, it is not necessary that each classifier is trained 
on a highly different sample distribution. In other words, if sample 
weights do not change significantly after a boosting round, this will not 
necessarily hinder performance, as the final classification will be 
determined by a majority vote of all classifiers. 

On the other hand, in a feature selection context like the proposed 
method, a relevant feature is added at each boosting round. Therefore, 
classification error is expected to decrease with rounds. Consequently, 
the difference in α (Eqs. (1) and (2)) between consecutive rounds will 
decrease. If the difference becomes low enough, sample weights swill 
stop changing, and therefore the desired variation in the top ranked 
features will stop or diminish, causing the algorithm to prematurely 
terminate. 

We solve this problem with two strategies. First, we base the re- 
weighting of samples not on the performance of the base classifier of 
the current iteration, but on the relative performance between the cur
rent iteration and the preceding one, hence the normalization step of α 
in the second line of Eq. (2). Second, we use the following reset scheme: 
At any given iteration, if an existing feature is selected again, or the 
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selected feature causes no increase in performance, we re-initialize the 
samples to have equal weights, and repeat the iteration with the new 
weights. In effect, this reboots the algorithm with a non-empty feature 
set, which could allow for the selection of additional useful features. 

4.3. Ensemble tree models and feature selection 

The simplest way to use the embedded scores of ensemble tree 
models for feature selection is by thresholding, or by only retaining 
features with non-zero scores. An alternative approach is to use a simple 
forward selection procedure; relying on the feature rankings to intro
duce one feature at a time to the selected subset, if the feature causes a 
significant gain in performance (Genuer et al., 2010). This approach will 
suffer from the various inconsistencies and biases of those scores (see 
Section 1). 

More elaborate ways of using these scores have been proposed. One 
such example is to select features according to their importance scores 
when compared to artificial features, designed to trick the ranking al
gorithm (Kursa et al., 2010; Tuv et al., 2009). A popular example of this 
approach is the Boruta method (Kursa et al., 2010). It works by creating 
shadow features, which are copies of the original ones whose values are 

shuffled across samples, then computing the feature importance scores 
of the original set plus shadow features using a random forest classifier. 
Original features that score lower than the top-scoring shadow features 
are deemed irrelevant, and are subsequently removed. The process is 
repeated until all the remaining original features are relevant. This 
method, by design, does not solve issues of redundancy, as it selects all 
relevant features (Kursa et al., 2010). 

Tree-based models can also be used in combination with other ap
proaches to improve their feature selection capabilities. Rao et al. 
(2019) combine gradient boosted trees with artificial bee colony algo
rithms for feature selection. Peker, Arslan, Şen, Çelebi, and But (2015) 
combine the scores from random forest with the filter method ReliefF for 
selecting feature extracted from EEG signals. 

Other methods attempt to solve the issues with tree-based feature 
scores not through external procedures, but by modifying, or redefining 
the importance scores themselves to address particular weaknesses 
(Lundberg et al., 2018; Nguyen, Huang, & Nguyen, 2015; Strobl et al., 
2007; Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008). 

Algorithm 1. Pseudocode of FeatBoost. 
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5. Methodology 

For a given dataset D with p features, n training samples, and output 
y with nc classes, the FeatBoost algorithm proceeds as follows: First, the 
selected subset of features, X , is initialized to empty, and a user selected 
tree-based classifier, H1, is trained on all samples with initial weights 
equal to 1n, to produce a ranking of all features. We choose H1 to be an 
XGBoost classifier for the remainder of the paper. 

Then, a user-specified number, m, of the top ranking features are 
evaluated and compared as single-input classifiers in k-fold cross vali
dation, using either H1, or a different classifier, H2.1 The best performing 

feature with H2, according to an appropriate metric (e.g. classification 
accuracy, F-score, or area under the ROC curve) is added to the selected 
subset X . In iterations other than the first, classifier H2 is used to 
evaluate each of the m features appended to the features selected so far, 
X i− 1. 

Finally, H1 is trained on all selected features, and its prediction 
probabilities are used to update the sample weights for the following 
iteration according to Eq. (2). 

If the increase in accuracy of X with respect to the previous iteration 
is below a user-defined threshold ∊, or if a feature is selected twice, the 
algorithm is temporarily paused, and a sample weight reset scheme is 
initiated. 

The reset scheme functions as follows: If at iteration i, a feature is 
selected which already belongs to X i− 1, or if the feature does not 
improve classification performance, the algorithm normally terminates, 

Fig. 1. Accuracies of the subsets selected by each feature selection algorithm. The validation classifier used to compute the accuracy is Nearest Neighbor.  

1 Note that H2 does not need to be tree-based, nor sensitive to sample 
weights, since it is not used in the feature ranking process. 
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and X i− 1 is taken as the final subset. Under the reset scheme, this is 
temporarily overcome by resetting the sample weights to their initial 
values, and repeating iteration i. This will lead to the feature ranking 
being equal to that of the first iteration, albeit with an initial X that is 
not empty. This could lead the model evaluation step (with H2) to select 
a feature that is partially redundant to one or more features in X i− 1, but 
nonetheless having additional predictive value. If that occurs, the al
gorithm resumes its normal course from iteration i until a stopping 
condition is reached again: a feature is selected twice, or the selected 
feature does not improve accuracy. No further resets are initiated at that 
point. If the reset scheme does not lead to selecting a new useful feature, 

the algorithm stops.2 

The asymptotic time complexity of the FeatBoost, computed in terms 
of its parameters is given in Eq. (3). 

O(p′ ⋅(O(H1)+m⋅k⋅+ p⋅O(H2)logp)) (3)  

where O(H1) and O(H2) are the asymptotic complexities of the chosen 
classifiers. For reference, the time complexity of training each tree in 
XGBoost is O(nlogn) (Chen & Guestrin, 2016). The complexity of Feat
Boost, therefore, depends highly on the choices of H1 and H2, and to a 
lesser extent on the other parameters choices. 

The pseudocode of the algorithm, along with the details of weighting 

Fig. A.2. Accuracies of the subsets selected by each feature selection algorithm. The validation classifier used to compute the accuracy is XGBoost.  

2 A software implementation of the algorithm is available at https://github. 
com/amjams/FeatBoost. 
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and reset strategies are given in Algorithm 1. 

6. Experimental settings and evaluation 

In this section, we describe the data and experimental settings. Then, 
we briefly describe Boruta and ReliefF, the methods we compared 
FeatBoost with. 

We applied each algorithm to 8 real datasets, and one artificial 
dataset, Madelon, which was designed to benchmark feature selection 
algorithms (Guyon et al., 2006). Table 1 contains a description of the 
datasets, and their dimensions. 

On each dataset, we apply an l-by-k-fold cross-validated selection 
procedure, with l = 3, and k = 10: We split each dataset into ten equally 
sized folds, and apply each feature selection algorithm to the training 
folds separately. Then, we use the selected features to train a classifier 

on the training folds, and apply it to the held-out test folds, on which the 
classification performance is evaluated. The performance is measured in 
terms of the average classification accuracy of the selected subsets on the 
test data, and the computation time of the feature selection algorithm. 
We repeat the entire procedure l = 3 times with random shuffles of the 
sample set, for a total of 30 runs of each algorithm. A similar validation 
procedure is used by Song, Ni, and Wang (2013). 

In cases where an algorithm selects more than 100 features, we only 
evaluate the accuracies of the first 100. Moreover, since each algorithm 
produces multiple subsets, we exclude those that could skew the average 
performance at the validation stage. Therefore, for each algorithm, we 
evaluate only the resulting subsets with a number of features equal to or 
larger than the mode of all subset sizes for that algorithm. Subsets which 
are larger than the mode are truncated to have a number of features 
equal to the mode. 

Fig. A.3. Accuracies of the subsets selected by each feature selection algorithm. The validation classifier used to compute the accuracy is Gaussian Naive Bayes.  
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We used a Nearest Neighbor classifier to validate the selected sub
sets. A Nearest Neighbor classifier is a sensible choice for validating 
feature subsets, as its performance is more likely to suffer from the in
clusion of irrelevant, redundant, or noisy features, when compared to 
more complex classifiers (Loughrey & Cunningham, 2005). Validation 
with a Gaussian Naive Bayes classifier and an XGBoost classifier with 
default parameters are given in Appendix A. 

In addition to subset accuracy, we evaluate the performance in terms 
of computation time of the algorithms, and the redundancy rate (RED) 
(Yamada, Jitkrittum, Sigal, Xing, & Sugiyama, 2014; Zhao, Wang, & Liu, 
2010): 

RED(X ) =
1

p(p − 1)
∑

fi ,fj∈X ,i>j

|ρ(fi, fj)|, (4)  

where ρ(fi, fj) is the Pearson correlation coefficient between features fi 
and fj. A large value of RED(X ) means that subset X contains high 
redundancy. Thus, lower values of RED(X ) are desired in feature 
selection. 

The average computation time of each method is given in Table 2. 
The average redundancy rates for up to the top 10 and top 100 features 
selected from each method are given in Tables 3 and 4. We examine the 
top 10 as well as the complete top 100 features because in most cases, 
FeatBoost and Boruta select smaller subsets than the other methods, 
which are ranking algorithms that always select up to the user defined 
100 features. Comparing the redundancy rate of up to the top 10 features 
leads to the subsets across all compared methods to be of similar size, 
and thus a better assessment of redundancy. Moreover, smaller subsets 

Table 1 
Descriptions of datasets† used in the comparison.  

Name #Features #Samples #Classes Domain 

Madelon 500 2600 2 Synthetic 
Isolet 617 1560 2 Speech recognition 
PCMAC 3289 1943 2 Text 
Relathe 4322 1427 2 Text 
Basehock 4862 1993 2 Text 
Coil20 1024 1440 20 Face image 
ORL 1024 400 40 Face image 
WarpPIE10P 2420 210 10 Face image 
Pixar10P 10000 100 10 Face image  

† The datasets are ordered by their domain and number of features. They were 
obtained from the ASU feature selection repository. 

Table 4 
The mean and standard deviation of the redundancy rates of up to the top 100 selected features of each algorithm.   

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta 

Madelon (p = 500,n = 2600) 0.12 (0.027) 0.144 (0.029) 0.013 (0) 0.014 (0) 0.137 (0.024) 
Isolet (p = 617,n = 1560) 0.076 (0.005) 0.058 (0.012) 0.104 (0.003) 0.093 (0) 0.066 (0.005) 
PCMAC (p = 3289,n = 1943) 0.015 (0.008) 0.007 (0.004) 0.012 (0.002) 0.011 (0.001) 0.02 (0.005) 
Relathe (p = 3289,n = 1943) 0.016 (0.005) 0.018 (0.005) 0.013 (0.001) 0.014 (0.001) 0.017 (0.005) 
Basehock (p = 4862,n = 1993) 0.008 (0.002) 0.006 (0.003) 0.011 (0.001) 0.012 (0.001) 0.008 (0.002) 
Coil20 (p = 1024,n = 1440) 0.118 (0.021) 0.139 (0.031) 0.113 (0.004) 0.122 (0.004) 0.124 (0.017) 
ORL (p = 1024,n = 400) 0.16 (0.022) 0.14 (0.022) 0.154 (0.006) 0.158 (0.005) 0.142 (0.009) 
WarpPIE10P (p = 2420,n = 210) 0.32 (0.026) 0.287 (0.019) 0.31 (0.008) 0.319 (0.004) 0.275 (0.018) 
Pixraw10P (p = 10000,n = 100) 0.433 (0.03) 0.444 (0.03) 0.44 (0.011) 0.44 (0.006) 0.471 (0.001)  

Table 3 
The mean and standard deviation of the redundancy rate of up to the top 10 selected features of each algorithm.   

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta 

Madelon (p = 500,n = 2600) 0.125 (0.023) 0.144 (0.029) 0.139 (0.022) 0.172 (0.005) 0.145 (0.028) 
Isolet (p = 617,n = 1560) 0.074 (0.009) 0.058 (0.012) 0.067 (0.007) 0.059 (0.005) 0.066 (0.003) 
PCMAC (p = 3289,n = 1943) 0.016 (0.008) 0.007 (0.004) 0.021 (0.006) 0.017 (0.003) 0.021 (0.006) 
Relathe (p = 3289,n = 1943) 0.017 (0.006) 0.018 (0.005) 0.019 (0.004) 0.024 (0.002) 0.017 (0.005) 
Basehock (p = 4862,n = 1993) 0.008 (0.002) 0.006 (0.003) 0.007 (0.002) 0.008 (0.002) 0.007 (0.001) 
Coil20 (p = 1024,n = 1440) 0.118 (0.021) 0.139 (0.031) 0.122 (0.014) 0.176 (0.018) 0.127 (0.021) 
ORL (p = 1024,n = 400) 0.162 (0.022) 0.14 (0.022) 0.148 (0.009) 0.166 (0.008) 0.142 (0.006) 
WarpPIE10P (p = 2420,n = 210) 0.32 (0.029) 0.287 (0.019) 0.281 (0.007) 0.286 (0.006) 0.274 (0.016) 
Pixraw10P (p = 10000,n = 100) 0.431 (0.033) 0.444 (0.03) 0.466 (0.016) 0.474 (0.004) 0.47 (0.001)  

Table 2 
The mean and standard deviation of computation time in minutes of each feature selection algorithm.   

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta 

Madelon (p = 500,n = 2600) 58.71 (11.89) 3.56 (0.36) 0.25 (0.01) 1.02 (0.02) 20.81 (3.01) 
Isolet (p = 617,n = 1560) 168.45 (31.62) 52.53 (21.78) 1.04 (0.02) 0.72 (0.01) 154.91 (3.23) 
PCMAC (p = 3289,n = 1943) 186.07 (57.88) 45.07 (12.04) 1.11 (0.03) 2.81 (0.08) 105.67 (4.79) 
Relathe (p = 3289,n = 1943) 163.38 (32.6) 60.92 (21.09) 1.08 (0.01) 2.77 (0.03) 91.73 (3.06) 
Basehock (p = 4862,n = 1993) 217.52 (40.95) 73.33 (24.3) 1.54 (0.07) 4.34 (0.1) 131.14 (4.76) 
Coil20 (p = 1024,n = 1440) 333.85 (60.68) 36.67 (9.27) 1.18 (0.04) 2.19 (0.06) 241.23 (17.47) 
ORL (p = 1024,n = 400) 168.38 (48.91) 18.18 (4.65) 0.56 (0.03) 0.57 (0.03) 102.35 (12.82) 
WarpPIE10P (p = 2420,n = 210) 22.91 (4.88) 5.27 (1.45) 0.25 (0) 3.28 (0.05) 24.12 (1.06) 
Pixraw10P (p = 10000,n = 100) 6.91 (1.51) 3.4 (0.49) 0.37 (0.01) 5.87 (0.08) 41.15 (0.7)  
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could better reflect the redundancy limiting ability of the feature se
lection method when compared to larger sets, since the redundancy rate 
of the latter could be a reflection of the inherent level of redundancy in 
the complete dataset. 

6.1. Compared methods 

6.1.1. XGBoost 
Since we build FeatBoost around a specific feature importance score, 

one derived from an XGBoost classifier, then a suitable benchmark to 
compare against is the same base score but with a simpler threshold. For 
that purpose, we define the first method in the comparison to be the 
feature importance scores from the same classifier used for ranking in 
FeatBoost, with the threshold being the mean of all feature scores.3 That 
is, features with an importance score lower than the mean of all feature 
scores are discarded. 

6.1.2. Boruta 
The second method we compare against is Boruta. In the comparison, 

we use XGBoost instead of random forest as the base ranking algorithm 
for Boruta. That way, we are able to achieve a fairer comparison, and 
determine which of the approaches makes better use of the same un
derlying feature scores. Moreover, since Boruta does not rank the ele
ments of the selected subset by default, we post-rank them with an 
additional fitting of the classifier. This allows us to compare the per
formance of all methods iteratively with each added feature. 

6.1.3. ReliefF 
Finally, we compare FeatBoost to the ReliefF algorithm (Kira & 

Rendell, 1992). ReliefF is a powerful filter-based approach which be
longs to the Relief family of feature selection methods (Urbanowicz, 
Meeker, La Cava, Olson, & Moore, 2018; Kira & Rendell, 1992). We use 
it in the comparison to represent a baseline of filter-based approaches. 

Since Relief-based methods are feature ranking algorithms, a suitable 
threshold is needed in order to use them for feature subset selection. As 
in XGBoost, we used the mean value of the scores as a lower threshold. 

We configured the algorithms as follows:  

1. XGBoost: We configured XGBoost with 100 trees, and a maximum 
tree depth of 20. We set the maximum depth parameter to a high 
value in order to detect higher order feature interactions that might 
be present in some datasets (Johnson, 2009). We set the remaining 
parameters of the classifier to their default values.4  

2. FeatBoost: We used FeatBoost in two configurations. In the first, we 
set H1 and H2 to be the same XGBoost classifier used individually. In 
the second, we set H2 as a Nearest Neighbor classifier. We set the 
remaining parameters as follows: k = 3,m = 50,p′ = 100, and ∊ =

10− 18.  
3. Boruta: We used Boruta with the same classifier used in XGBoost, 

and default settings otherwise. We implemented the algorithm with 
the BorutaPy Python package, which we modified to be compatible 
with XGBoost.  

4. ReliefF: We used ReliefF with a number of neighbors equal to 10 and 
implemented the algorithm with the Skrebate Python package. 

7. Results and discussion 

The results of the feature selection comparison are summarized in 
Fig. 1, which shows the average classification accuracies of the subsets 
selected by the compared algorithms. The average computation times of 
each algorithm on all datasets are shown in Table 2. 

In all datasets, FeatBoost selects better performing features in the 
leading ranks than the feature importance score on which it is based, 
XGBoost. This shows that sample re-weighting and model evaluation 
improve the performance of the base ranking. Moreover, the automatic 
stopping conditions in FeatBoost lead to selecting significantly smaller 
subsets than the mean-value threshold that we used for XGBoost. 

In most datasets, FeatBoost outperforms Boruta and ReliefF as well, 
reaching higher accuracies with fewer features. This is most apparent in 
Isolet, PCMAC, COIL20, Orl, and WarpPIE10P. In those datasets, the 
performance of subsets selected by FeatBoost converges significantly 
faster than the second best method, indicating that the relevant features 
are found with smaller subsets. 

In terms of computation time, XGBoost is the most efficient approach 
across all datasets, followed by ReliefF. This is expected since the former 
ranks features with a single fitting of the data, while the latter is a filter 
method that performs no model fitting. As for FeatBoost and Boruta, we 
observe that the former, when configured with an XGBoost wrapped 
classifier, is slightly faster than Boruta, which uses the same classifier to 
provide its base feature ranking. On the other hand, when FeatBoost uses 
a NN classifier, it becomes significantly faster than Boruta. 

It is worth noting that this increase in efficiency in FeatBoost – ob
tained by using NN instead of XGBoost as the evaluation classifier – does 
not sacrifice the performance of the algorithm. In fact, this configuration 
performs better when the validation classifier is also NN (Fig. 1). It also 
performs well when XGBoost is the validation classifier (Fig. A.2). This 
demonstrates that the modular architecture of the algorithm can take 
advantage of a powerful ranking algorithm, that of XGBoost, while using 
a simpler and more efficient evaluation classifier. 

Table 3, which shows the redundancy rates of up to the top 10 
selected features, indicates that FeatBoost in either of its iterations se
lects subsets with lower redundancy than the other compared methods. 
When the top 100 features in ReliefF and XGBoost are examined 
(Table 4), FeatBoost with an NN classifier still retains its advantage, 
performing best in 4 out of 9 datasets. In both cases, Boruta performs 
best on a single dataset; WarpPIE10P. 

The algorithm’s ability to reduce redundancy, at least in the top 
ranked features, is very promising, since this resulted only from the 
sample re-weighting and model evaluation procedures, and not from 
explicit minimization of redundancy, as is the case in other feature se
lection approaches (Peng, Long, & Ding, 2005; Zhao et al., 2010; 
Yamada et al., 2014). 

8. Conclusion 

We showed that the proposed FeatBoost algorithm, which is based on 
boosting, and a stage-wise greedy procedure, is able to use the feature 
importance scores derived from an ensemble of decision-trees to select 
high performing feature subsets for classification problems. The result
ing subsets outperform those obtained by simple thresholding of the 
baseline scores. They also outperform in most cases the Boruta algo
rithm, which we configured to use the same feature scores as a basis, and 
improved with a post-ranking of the selected subsets. 

The computational cost of the algorithm is sensitive to several design 
choices, most importantly, the ranking algorithm, the parameter m, and 
the wrapped classifier. We have shown that changing the latter from 
XGBoost to the much simpler Nearest Neighbor improved the speed of 
the algorithm without significantly affecting the performance of the 
selected features. 

The proposed boosting framework, and the two-step selection pro
cedure, circumvent the weaknesses in the importance scores of tree- 
based models externally, without changing how the scores are 
computed. The algorithm is therefore independent of the particular 
scores being used, or the wrapped classifier. It would be useful to 
investigate the use of other classifiers, and to test if other ranking al
gorithms, like filter-based Relief methods, would react similarly within 
the same algorithm. 

3 We used the feature importance type Gain as it was defined in XGBoost’s 
stable Python release 0.90.  

4 Default values as per XGBoost’s stable Python release 0.90. 
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Appendix A. Validation with other classifiers 

In this appendix, we give the results of the main feature selection 
comparison (described in Section 6) with two additional validation 
classifiers, XGBoost, and Gaussian Naive Bayes. The results are shown 
Figs. A.2 and A.3. 
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