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9 A S I N G U L A R I T Y- F R E E G U I D I N G
V E C TO R F I E L D F O R R O B OT
N AV I G AT I O N

In robot navigation tasks, such as UAV highway traffic monitoring, it is
important for a mobile robot to follow a specified desired path. However, most
of the existing path-following algorithms cannot guarantee global convergence
to desired paths or enable following self-intersecting desired paths due to the
existence of singular points where algorithms return unreliable or even no
solutions. One typical example arises in vector-field guided path-following (VF-PF)
algorithms. These algorithms are based on a vector field, and the singular
points are exactly where the vector field becomes zero. Conventional VF-PF

algorithms generate a vector field of the same dimensions as those of the space
where the desired path lives. In this chapter, we show that it is mathematically
impossible for conventional VF-PF algorithms to achieve global convergence
to desired paths that are self-intersecting or even just simple closed (precisely,
homeomorphic to the unit circle). Motivated by this new impossibility result,
we propose a novel method to transform self-intersecting or simple closed
desired paths to non-self-intersecting and unbounded (precisely, homeomorphic
to the real line) counterparts in a higher-dimensional space. Corresponding to
this new desired path, we construct a singularity-free guiding vector field on
a higher-dimensional space. The integral curves of this new guiding vector
field is thus exploited to enable global convergence to the higher-dimensional
desired path, and therefore, the projection of the integral curves on a lower-
dimensional subspace converge to the physical (lower-dimensional) desired
path. Rigorous theoretical analysis is carried out for the theoretical results
using dynamical systems theory. In addition, we show both by theoretical
analysis and numerical simulations that our proposed method is an extension
combining conventional VF-PF algorithms and trajectory tracking algorithms.
Finally, to show the practical value of our proposed approach for complex
engineering systems, we conduct outdoor experiments with a fixed-wing
airplane in windy environment to follow both 2D and 3D desired paths.

This chapter is based on

• W. Yao, H. G. de Marina, B. Lin, and M. Cao, “Singularity-free guiding vector field for robot
navigation,” IEEE Transactions on Robotics (TRO), vol. 37, no. 4, 2021.

• W. Yao, H. G. de Marina, and M. Cao, “Vector field guided path following control: Singularity
elimination and global convergence,” in 2020 59th IEEE Conference on Decision and Control
(CDC), IEEE, 2020, pp. 1543–1549.
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168 a singularity-free guiding vector field for robot navigation

9.1 introduction
Although the VF-PF algorithms are intuitive and easy to implement, the rigorous
analysis remains nontrivial for general desired paths [31], [63], [156], [157].
Significant difficulty in the analysis and application of the VF-PF algorithms arises
when there are singular points1 in the vector field (see Fig. 9.1a and Fig. 9.1b).
In such a case, the convergence of trajectories to the desired path cannot be
guaranteed globally, and the normalization of the vector field at those points is
not well-defined [50], [63], [156], [157]. In [50], it is assumed that these singular
points are repulsive to simplify the analysis, while this assumption is dropped
in [63] for a planar desired path and in Chapter 4 for a desired path in 3D.
However, to the best of our knowledge, few efforts have been made on dealing
with singular points directly or on eliminating them effectively. Recently, [119]
presents a simple treatment of the singular point: the robot does not change its
course inside a ball centered at the singular point. Under some conditions, the
Lyapunov function evaluated at the exit point is proved to be smaller than that at
the entry point.

Related to the existence of singular points, one of the challenges for the VF-PF

navigation problem is to follow a self-intersecting desired path. Many existing
VF-PF algorithms (e.g., [50], [63], [74], [104], [156]) fail to fulfill this task. This is
rooted in the fact that the vector field degenerates to zero at the crossing points
of a self-intersecting desired path, leading to a zero guidance signal, and thus
a robot can get stuck on the desired path (see Fig. 9.1b). Due to the existence
of singular points on the desired path, some effective VF-PF algorithms such as
[63], [156], [157] become invalid simply because the assumptions are violated in
this case. In fact, this task is also challenging for other existing path-following
methods, since in the vicinity of the crossing points, many methods are “ill-
defined”. For example, the line-of-sight (LOS) method [40] is not applicable as
there is not a unique projection point in the vicinity of the intersection of the
desired path. Indeed, many existing path-following algorithms either focus on
simple desired paths such as circles or straight lines [104], [137], [172], or only
deal with desired paths that are sufficiently smooth [50], [63], [156], [157]. One
might retreat to the virtual-target path-following algorithm [134]. In this method,
a virtual target has its own dynamics travelling on the desired path; thus the
path-following navigation problem is implicitly converted to a target tracking
problem. Although through this conversion, it is possible for a robot to follow a
self-intersecting desired path, this method is inherently a tracking approach, and
thus may inherit the performance limitations mentioned before, such as limited
path-following accuracy.

Another challenging task arising from the VF-PF methods is the description
of the desired path, which is crucial for the derivation of the vector field. For

1 A point where a vector field becomes zero is called a singular point of the vector field [77, p. 219].
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Figure 9.1: The normalized vector fields [63] for a circle path described by φ(x, y) =
x2 + y2 − 1 = 0 in (a) and a figure “8” path described by φ(x, y) = x2 −
4y2(1− y2) = 0 in (b). The red points are the singular points of the (un-
normalized) vector fields.

generality, the desired path is usually determined by the intersection of several
hyper-surfaces represented by the zero-level sets of some implicit functions [50],
[63], [119], [127], [156], [157]. For planar desired paths, for example, the implicit
function of a star curve might be as complicated as that in [81], while for desired
paths in a higher-dimensional space, it is counter-intuitive to create hyper-surfaces
such that the intersection is precisely the desired path, such as a helix. On the
other hand, many geometric curves are described by parametric equations [35]
rather than implicit functions. It is possible to transform the parametric equations
to implicit functions and then derive the vector field, but this might not always
be feasible and is computationally expensive. The restrictive characterization of
the desired path limits the applicability of VF-PF algorithms to some extent.

In this chapter, we improve the VF-PF methodology in the sense that we address
the aforementioned three issues: the existence of singular points, the obstacle of
dealing with self-intersecting paths, and the difficulty of representing a generic
desired path. Specifically, based on the design of guiding vector fields in Chapter
4, we use an intuitive idea to eliminate singular points of the vector field so that
global convergence to the desired path, even if self-intersecting, is guaranteed.
The general idea is to extend the dimensions of the vector field and eliminate
singular points simultaneously. This procedure naturally leads to a simple way
to transform the descriptions of desired paths from parameterized forms to the
intersection of several hyper-surfaces, which are required in creating a guiding
vector field.
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It is important to clarify the terminology used throughout this chapter. In many
VF-PF algorithms, the desired path is a geometric object which is not necessarily
parameterized. In a precise mathematical language, we assume that the desired
path is a one-dimensional connected differential manifold. Therefore, we can generally
classify desired paths into two categories: those homeomorphic to the unit circle
S1 if they are compact, and those homeomorphic to the real line R otherwise
[76, Theorem 5.27]. This assumption is not a restriction, since many desired
paths in practice, such as a circle, an ellipse, a Cassini oval, a spline and a
straight line, satisfy this assumption. For ease of exposition, we refer to those
desired paths homeomorphic to the unit circle as simple closed desired paths,
and those homeomorphic to the real line as unbounded desired paths. Note
that self-intersecting paths do not satisfy this assumption. Nevertheless, we will
introduce in the sequel how to transform a self-intersecting physical desired path
to a non-self-intersecting and unbounded higher-dimensional desired path such
that the assumption holds to apply our algorithm.

9.1.1 Contributions

Firstly, we show by rigorous topological analysis that guiding vector fields with
the same dimension as the desired path (e.g., [63], [81], [89], [157]) cannot
guarantee the global convergence to a simple closed or self-intersecting desired
path (see Theorem 9.11 in Section 9.3). With the dichotomy of convergence
discussed in the chapter, this implies that singular points of the vector field
always exist for a simple closed or self-intersecting desired path regardless of which
hypersurfaces one uses to characterize the desired path. This explains why
many VF-PF algorithms in the literature cannot guarantee global convergence in
the Euclidean space to a simple closed desired path. We note that excluding
singular points is important in practice (e.g., for fixed-wing aircraft guidance and
navigation) since degenerated or pathological solutions of system dynamics can
be safely avoided. Therefore, this topological obstacle is the primary motivation
of the subsequent theoretical development including the introduction of extended
dynamics (see Section 9.4) and the creation of singularity-free guiding vector
fields (see Section 9.5).

Secondly, due to the aforementioned topological obstruction, we improve
the existing VF-PF algorithms such that all singular points are removed, and
global convergence of trajectories to the desired path is rigorously guaranteed
(see Section 9.4 and Section 9.5). We overcome this topological obstruction
by changing the topology of the desired paths. Specifically, we transform a
physical simple closed or self-intersecting desired path to a new unbounded and
non-self-intersecting desired path in a higher-dimensional space. We then derive the
corresponding guiding vector field on this higher-dimensional space, which is
guaranteed to have no singular points.
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Thirdly, our proposed method to create this new singularity-free guiding
vector field is proved to enjoy several appealing features (see Section 9.5.2). For
example, we provide theoretical guarantees for global exponential convergence
of trajectories of system dynamics to the desired path. In addition, the new
system dynamics with the singularity-free guiding vector field is robust against
perturbation, such as noisy position measurements (see Feature 3 in Section 9.5.2).
Moreover, using our proposed method, it becomes straightforward to represent
hyper-surfaces of which the intersection is the new higher-dimensional desired
path, as long as a parametrization of the physical (lower-dimensional) desired
path is available (see Feature 2 in Section 9.5.2).

Last but not least, we successfully conduct experiments using a fixed-wing
aircraft to verify the effectiveness of our proposed VF-PF algorithm in 3D (see
Section 9.6), in addition to the experiment with an e-puck robot [94] in our
previous preliminary work [164]. This verifies the practical significance of our
proposed method for highly complex autonomous vehicles. We also discuss and
conclude that our proposed VF-PF algorithm combines and extends features of the
conventional VF-PF algorithms and trajectory tracking algorithms (see Section 9.7).
While we do not claim that our proposed new singularity-free guiding vector
field is always superior than traditional trajectory tracking algorithms in every
application scenario (such as quadcopter attitude tracking), we emphasize that it
significantly improves conventional VF-PF algorithms by providing a global solu-
tion and enabling the path-following behavior of complicated or unconventional
desired paths (e.g., a self-intersecting Lissajous curve). This is imperative and
irreplaceable in applications such as fixed-wing aircraft guidance and navigation
where convergence to and propagation along a desired path from every initial
position is required.

The remainder of this chapter is organized as follows. Section 9.2 introduces
conventional guiding vector fields for path following. In Section 9.3, a theorem
about the impossibility of global convergence to simple closed or self-intersecting
desired paths using the conventional VF-PF algorithm is elaborated. This is the
main motivation for the design of higher-dimensional guiding vector fields, which
will be utilized in Section 9.4 through extended dynamics. Based on the previous
sections, the construction approach of singularity-free guiding vector fields is
presented in Section 9.5. In addition, several appealing features of this method
are highlighted in this section. Then experiments with a fixed-wing aircraft
are conducted to validate the theoretical results in Section 9.6. Following this,
Section 9.7 discusses how our proposed approach can be viewed as a combined
extension of VF-PF algorithms and trajectory tracking algorithms. Finally, Section
9.9 concludes the chapter.
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9.2 guiding vector fields for path following
In this section, we introduce the vector-field guided path-following (VF-PF) navi-
gation problem and the guiding vector fields. The VF-PF navigation problem in
Rn is the same as Problem 1.1, except thatM is changed to Rn. For completeness
of this chapter, we still state the problem as follows.

Problem 9.1 (VF-PF navigation problem in Rn). Given a desired path P ⊆ Rn

defined in (9.1), the VF-PF navigation problem is to design a continuously differen-
tiable vector field χ : Rn → Rn for the differential equation ξ̇(t) = χ

(
ξ(t)

)
such

that the two conditions below are satisfied:
1) There exists a neighborhood D ⊆ Rn of the desired path P such that

for all initial conditions ξ(0) ∈ D, the distance dist(ξ(t),P) between the tra-
jectory ξ(t) and the desired path P approaches zero as time t → ∞; that is,
limt→∞ dist(ξ(t),P) = 0;

2) If a trajectory starts from the desired path, then the trajectory stays on the
path for t ≥ 0 (i.e., ξ(0) ∈ P =⇒ ξ(t) ∈ P for all t ≥ 0). In addition, the vector
field on the desired path is non-zero (i.e., 0 /∈ χ(P)).

In this chapter, we only investigate the guiding vector field on the Euclidean
space Rn.

9.2.1 Guiding vector fields on Rn

Suppose a desired path in the n-dimensional Euclidean space is described by the
intersection of (n− 1) hypersurfaces; i.e.,

P = {ξ ∈ Rn : φi(ξ) = 0, i = 1, . . . , n− 1}, (9.1)

where φi : Rn → R, i = 1, . . . , n − 1, are of differentiability class C2. It is
naturally assumed that P in (9.1) is nonempty and connected. We further require
the regularity of the desired path as shown later in Assumption 9.5. For better
understanding, φi(·) = 0 can be regarded as (n− 1) constraints, resulting in a
one degree-of-freedom desired path.

Remark 9.2. Topologically, the desired path P itself is one-dimensional, indepen-
dent of the dimensions of the Euclidean space where it lives. However, with
slight abuse of terminology and for convenience, the desired path P is called an
n-D (or nD) desired path if it lives in the n-dimensional Euclidean space Rn and
not in any lower-dimensional subspace W ⊆ Rn (i.e., the smallest subspace the
desired path lives in). For example, a planar desired path might be defined in the
three-dimensional Euclidean space R3, but we only consider the two-dimensional
subspaceW ⊆ R2 where it is contained, and it is thus natural to call it a 2D (or
2-D) desired path rather than a 3D (or 3-D) desired path. Sometimes, for simplic-
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ity, we refer to a tangent vector field on the n-dimensional Euclidean space Rn as
an n-dimensional vector field, and we say that this vector field is n-dimensional. /

The vector field χ : Rn → Rn is designed as below:

χ = ∧(∇φ1, . . . ,∇φn−1)−
n−1

∑
i=1

kiφi∇φi, (9.2)

where ∇φi is the gradient of φi, ki > 0 are constant gains, and ∧ : Rn × · · · ×
Rn → Rn is the wedge product. In particular, let pi = (pi1, · · · , pin)

> ∈ Rn,
i = 1, . . . , n− 1, and bj ∈ Rn be the standard basis column vector with the jth
component being 1 and the other components being 0. Then an intuitive formal
expression for ∧(p1, . . . , pn−1) is

∧(p1, . . . , pn−1) =

∣∣∣∣∣∣∣∣∣∣∣

b1 b2 · · · bn

p11 p12 · · · p1n
...

...
. . .

...

pn−1,1 pn−1,2 · · · pn−1,n

∣∣∣∣∣∣∣∣∣∣∣
. (9.3)

In other words, ∧(p1, . . . , pn−1) is obtained by the cofactor expansion along the
first row of (9.3), where bi should initially be regarded as scalars, and in the final
evaluation replaced by the basis vectors [42, pp. 241-242].

To simplify the notations, we define a matrix N(ξ) =(
∇φ1(ξ), · · · ,∇φn−1(ξ)

)
∈ Rn×(n−1), a positive definite gain matrix

K = diag{k1, . . . , kn−1} ∈ R(n−1)×(n−1) and a C2 function e : Rn → Rn−1

by stacking φi; that is,

e(ξ) =
(
φ1(ξ), · · · , φn−1(ξ)

)> ∈ Rn−1. (9.4)

In addition, we define ⊥φ : Rn → Rn by ξ ∈ Rn 7→ ×
(
∇φ1(ξ), . . . ,∇φn−1(ξ)

)
.

Therefore, the vector field (9.2) can be compactly written as

χ(ξ) = ⊥φ(ξ)− N(ξ)Ke(ξ). (9.5)

Using this notation, the desired path is equivalent to

P = {ξ ∈ Rn : e(ξ) = 0}. (9.6)

We call e(ξ) the path-following error or simply error between the point ξ ∈ Rn and
the desired path P .

Remark 9.3. As mentioned in Sections 1.1.4 and 1.1.5 in Chapter 1, many vector
fields in the literature can be seen as variants of the vector field in (9.2). Note
that we do not consider time-varying gains or components in the vector field as
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[50], [74] do. For one thing, this simplifies the structure of the vector field and
facilitates the practical implementation; for another, this clarifies the topological
property of these vector fields as studied in Section 9.3. For convenience, we
refer to these (time-invariant) vector fields in the literature as conventional vector
fields. /

9.2.2 Assumptions

To justify using the norm of the path-following error ‖e(·)‖ instead of dist(·,P),
we need some assumptions that are easily satisfied in practice (see Chapter 3). To
this end, we define two sets. The singular set consisting of singular points of a
vector field is defined as below:

C = {ξ ∈ Rn : χ(ξ) = 0}. (9.7)

Another related set is

H = {ξ ∈ Rn : N(ξ)Ke(ξ) = 0} . (9.8)

It can be proved that H = P ∪ C.

Lemma 9.4. It holds that H = P ∪ C.

Proof. First, it is easy to see that for any point ξ ∈ P ∪ C, we have ξ ∈ H,
thus P ∪ C ⊆ H. Second, for any point ξ ′ ∈ H, it follows that N(ξ ′)Ke(ξ ′) =

∑n−1
i=1 kiφi(ξ

′)∇φi(ξ
′) = 0. If e(ξ ′) = 0, then ξ ′ ∈ P . If e(ξ ′) 6= 0, then the former

equation implies that ∇φi(ξ
′), i = 1, . . . , n− 1, are linearly dependent (recalling

that ki > 0); hence the first term of the vector field becomes zero (i.e., ⊥φ(ξ) = 0).
Since ξ ′ ∈ H, the second term of the vector field is also zero, thus the vector
field χ(ξ ′) = 0 and ξ ′ ∈ C. The reasoning shows that H ⊆ P ∪ C. Combining
P ∪ C ⊆ H and H ⊆ P ∪ C, it is indeed true that H = P ∪ C.

As with Chapter 7, we propose the following standard assumptions.

Assumption 9.5. There are no singular points on the desired path. More precisely,
C is empty or otherwise there holds dist(C,P) > 0.

Assumption 9.6. In view of (9.6), as the norm of the path-following error ‖e(ξ)‖
approaches zero, the trajectory ξ(t) approaches the desired path P . Similarly,
in view of (9.8), as the “error” ‖N(ξ)Ke(ξ)‖ approaches zero, the trajectory ξ(t)
approaches the set H.

Due to Assumption 9.5, Lemma 5.7 holds here. Namely, the zero vector
0 ∈ Rn−1 is a regular value of the C2 function e in (9.4), and hence the desired
path P is a C2 embedded submanifold in Rn.
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Remark 9.7. Henceforth the “regularity” of the desired path is guaranteed; namely,
the desired path P is assumed to be a one-dimensional connected manifold,
which can generally be classified into those homeomorphic to the unit circle if
they are compact, and those homeomorphic the real line otherwise [76, Theorem
5.27]. Thus throughout the chapter, we use the notions of simple closed desired
paths and desired paths homeomorphic to the unit circle interchangeably. The same
applies to unbounded desired paths and desired paths homeomorphic to the real line.
Note that self-intersecting desired paths do not satisfy Assumption 9.5, as shown
later in Proposition 9.8, but we will propose a method in Section 9.5 to transform
them into unbounded and non-self-intersecting desired paths, which are then
homeomorphic to the real line R. /

9.3 issues on the global convergence to de-
sired paths

In this section, we show that, under some conditions, it is not possible to guar-
antee global convergence to desired paths using the existing VF-PF algorithms
as introduced in Section 9.2. More specifically, given a desired path P ⊆ Rn

as described in (9.1), we investigate solutions (trajectories) of the autonomous
ordinary differential equation:

ξ̇(t) = χ
(
ξ(t)

)
, (9.9)

where χ is defined in (9.5). We consider the cases of self-intersecting and simple
closed desired paths respectively.

We first show that the crossing points of a self-intersecting desired path P are
singular points of the corresponding vector field χ in (9.2).

Proposition 9.8. If the desired path P in (9.1) is self-intersecting, then the crossing
points of the desired path are singular points of the vector field χ in (9.2).

Proof. Since c ∈ P is a crossing point, we have e(c) = 0, and thus the vector field
at the crossing point is simplified to χ(c) = ⊥φ(c) in view of (9.5). Next we show
that the gradients at the crossing point ∇φi(c) are linearly dependent, and hence
χ(c) = 0. Suppose, on the contrary, the gradients are not linearly dependent.
Then we can use the implicit function theorem [49] to conclude that there is a
unique curve in a neighborhood of c satisfying e(ξ) = 0, where ξ ∈ Rn. But this
contradicts the fact that P is self-intersecting. Therefore, the gradients at the
crossing point are indeed linearly dependent.

Remark 9.9. This proposition shows that 0 ∈ χ(P) when P is a self-intersecting
desired path, and therefore, the VF-PF navigation problem (Problem 9.8) cannot
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be addressed as the second requirement about 0 /∈ χ(P) is always violated. Note
that Assumption 9.5 does not hold in this case, but we will propose in the sequel
an approach to transform a self-intersecting desired path such that Assumption
9.5 holds. /

In Fig. 9.1b, for example, the 2D desired path resembling the figure “8” is
self-intersecting. It can be numerically calculated that the vector field at the
crossing point is zero. This is intuitive in the sense that there is no “preference”
for the vector at this point to point to either the left or right portion of the desired
path, leaving the only option of zero.

Now we consider simple closed desired paths. In the planar case, due to the
Poincaré-Bendixson theorem (see Theorem 2.15), there is at least one singular
point of the 2D vector field in the region enclosed by the simple closed desired
path. Thus we can conclude that global convergence to a simple closed planar
desired path is not possible. However, this conclusion cannot be trivially gener-
alized to the higher-dimensional case since the Poincaré-Bendixson theorem is
restricted to the planar case. Nevertheless, we can still reach this conclusion with
some topological analysis.

Proposition 9.10. If an n-D desired path P ⊆ Rn described by (9.1) is simple closed,
under the dynamics (9.9) where the guiding vector field χ : Rn → Rn is in (9.2), then it
is not possible to guarantee the global convergence of trajectories of (9.9) to the desired
path P ; precisely, the domain of attraction of P cannot be Rn.

Proof. This is a direct consequence of Theorem 5.27 in Chapter 5. An alternative
proof particularized to the Rn case is provided in Section 9.8.

Based on Proposition 9.8 and Proposition 9.10, we can reach the following key
statement about the impossibility of global convergence to some desired paths.

Theorem 9.11 (Impossibility of global convergence). If an n-D desired path P ⊆ Rn

described by (9.1) is simple closed or self-intersecting, then it is not possible to guarantee
the global convergence to the desired path with respect to the dynamics in (9.9) with the
n-dimensional guiding vector field χ in (9.2); more precisely, the domain of attraction of
P cannot be Rn.

Proof. If the desired path P is self-intersecting, then by Proposition 9.8, there is
at least one singular point on the desired path. Obviously, the path-following
problem formulated by Problem 9.1 cannot be solved. If the desired path P is
simple closed, then the global convergence to the desired path is impossible by
Proposition 9.10.

Remark 9.12. We note that the topological obstacle to global convergence to the
desired path roots in two aspects: i) the geometry of the desired path: being
either simple closed or self-intersecting; ii) the time-invariance property of the
vector field. Note that a state-dependent positive scaling (e.g., the normalization)



9.4 extended dynamics and convergence results 177

of vector fields does not affect the topological properties of interest (i.e., the phase
portrait, or the convergent results) [25, Proposition 1.14]. /

To overcome this topological obstacle and let Assumption 9.5 be satisfied
even for self-intersecting desired paths, we propose a new idea in the sequel to
construct unbounded and non-self-intersecting desired paths from the originally
simple closed or self-intersecting desired paths by “cutting” and “stretching”
them in a higher-dimensional space. Indeed, such a higher-dimensional desired
path will codify or contain information about the (lower-dimensional) physical
desired path. Based on the proposed higher-dimensional desired paths, we can
derive a guiding vector field on this higher-dimensional space and show that
its singular set is empty. However, to take advantage of the new guiding vector
field, we need to transform (or project in the linear transformation case) its integral
curves into a lower-dimensional subspace that contains the information of the
physical desired path. The details of transformation into another space will
be discussed in Section 9.4, and the detailed construction of a singularity-free
guiding vector field on a higher-dimensional space will be presented in Section
9.5.

9.4 extended dynamics and convergence re-
sults

In this section and the subsequent sections, we consider an m-dimensional Eu-
clidean space Rm, where m > n. The reason is self-evident as the chapter
develops, but it is not necessary to bother with this difference now. To proceed,
we introduce the extended dynamics and derive related convergence results. The
extended dynamics relates to a transformation operator defined as follows:

Definition 9.13. A transformation operator is a function Gl : Rm → Rm which
is twice continuously differentiable and globally Lipschitz continuous with the
Lipschitz constant l.

One can observe that the corresponding Jacobian matrix function of a trans-
formation operator DGl = ∂Gl/∂x : Rm → Rm×m is locally Lipschitz continuous,
where x is the argument of Gl . The transformation operator is able to transform
a space into another space (or subspace). One example is a linear transformation
operator defined by Gl(x) = Ax, where A is a non-zero matrix, called the matrix
representation [140, Remark 6.1.15] of this particular linear transformation operator
Gl . Now we introduce the extended dynamics as follows.

Lemma 9.14 (Extended dynamics). Let χ : D ⊆ Rm → Rm be a vector field that is
locally Lipschitz continuous. Given an initial condition ξ(0) = ξ0 ∈ D, suppose that ξ(t)
is the unique solution to the differential equation ξ̇(t) = χ

(
ξ(t)

)
, then

(
ξ(t), trsξ(t)

)
∈
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R2m, where trsξ(t) := Gl
(
ξ(t)

)
and Gl is a transformation operator, is the unique

solution to the following initial value problem:ξ̇(t) = χ
(
ξ(t)

)
ξ(0) = ξ0

trs
ξ̇(t) = DGl

(
ξ(t)

)
· χ
(
ξ(t)

) trsξ(0) = Gl(ξ0).
(9.10)

Moreover, if the trajectory ξ(t) asymptotically converges to some set A 6= ∅ ⊆ Rm, then
trsξ(t) asymptotically converges to the transformed set

trsA := Gl(A) = {p ∈ Rm : p = Gl(q), q ∈ A}.

Proof. Due to the twice continuous differentiability of the transformation operator
Gl , the corresponding Jacobian matrix function DGl = ∂Gl/∂x : Rm → Rm×m

is locally Lipschitz continuous, where x is the argument of Gl . Therefore, the
product of the vector field χ and the Jacobian DGl are also locally Lipschitz
continuous. It follows that

(
ξ(t), trsξ(t)

)
∈ R2m, where trsξ(t) = Gl

(
ξ(t)

)
, is the

unique solution to (9.10) [25]. Recall that l is the (global) Lipschitz constant of Gl .
Fix t, then

dist(trsξ(t), trsA) = inf{‖ trsξ(t)− p‖ : p ∈ trsA}
= inf{‖Gl

(
ξ(t)

)
− Gl(q)‖ : q ∈ A}

≤ inf{l‖ξ(t)− q‖ : q ∈ A}
= l · dist(ξ(t),A).

Since ξ(t) asymptotically converges to A, we have dist(ξ(t),A) → 0 as t → ∞.
In other words, for any ε > 0, there exists a T > 0, such that for all t ≥ T,
dist(ξ(t),A) < ε/l; hence dist(trsξ(t), trsA) ≤ l · dist(ξ(t),A) < ε. Therefore,
dist(trsξ(t), trsA)→ 0 as t→ ∞. Thus the transformed solution trsξ(t) asymptoti-
cally converges to the transformed set trsA.

We call the ordinary differential equation with the initial condition in (9.10) the
extended dynamics. Correspondingly, trsξ(t) := Gl

(
ξ(t)

)
is called the transformed

solution or transformed trajectory of (9.10). Before presenting Corollary 9.16 related
to the VF-PF navigation problem, we first define the transformed desired path and
the transformed singular set.

Definition 9.15. The transformed desired path trsP of P ⊆ Rm in (9.6) and the
transformed singular set trsC of C ⊆ Rm in (9.7) are defined below:

trsP := Gl(P) = {p ∈ Rm : p = Gl(q), q ∈ P} (9.11)
trsC := Gl(C) = {p ∈ Rm : p = Gl(q), q ∈ C}. (9.12)
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In some practical applications, it is desirable to scale the vector field to have
a specified constant length. This is useful if a robot takes the vector field as
the control input directly and is required to move at a constant speed. In this
case, the properties of the integral curves of the scaled vector field are stated
in the corollary below. Recall that the solution x(t) to an initial value problem
ẋ = f (x), x(0) = x0, where f (x) is sufficiently smooth, is not always possible to
be prolonged to infinity. In other words, the solution might only be well-defined
in a finite time interval [0, t∗), where t∗ < ∞ [25]. The time instant t∗ is called the
maximal prolonged time of the solution.

Corollary 9.16. Suppose the desired path P in (9.6) is unbounded (i.e., P ≈ R). Let
χ : D ⊆ Rm → Rm be the vector field defined in (9.2). Suppose ξ(t) is the unique
solution to the initial value problem ξ̇(t) = sχ̂

(
ξ(t)

)
, ξ(0) = ξ0 /∈ C, where s > 0 is a

constant and ·̂ is the normalization operator. Consider the following dynamicsξ̇(t) = sχ̂
(
ξ(t)

)
ξ(0) = ξ0 /∈ C

trs
ξ̇(t) = DGl · sχ̂

(
ξ(t)

) trsξ(0) = Gl(ξ0),
(9.13)

where Gl is a transformation operator. Suppose t∗ ≤ ∞ is the maximal prolonged time of
the transformed solution trsξ(t) to (9.13). Then trsξ(t) asymptotically converges to the
transformed desired path trsP in (9.11) as t→ ∞ or the transformed singular set trsC in
(9.12) as t→ t∗.

Proof. First consider the differential equation ξ̇ = χ(ξ). Using the same Lyapunov
function candidate as (9.25) and the argument in the proof of Proposition 9.10,
we have V̇(e) ≤ 0. In addition, the norm of the first term of the scaled vector
field sχ̂(ξ) is s‖⊥φ‖/‖χ‖, and it is obviously upper bounded in Rm. Since
the new vector field sχ̂(ξ) differs from the actual vector field χ(ξ) only by the
magnitude of each vector, the two differential equations ξ̇ = χ(ξ) and ξ̇ = sχ̂(ξ)
have the same phase portrait in Rm \ C [25, Proposition 1.14]. Therefore, from
the dichotomy convergence result proved in Proposition 4.14, the solution to
ξ̇ = sχ̂(ξ) will converge to either P or C for initial conditions ξ(0) ∈ Rm \ C.

Note that if the maximal prolonged time is t∗ < ∞, then the solution to
ξ̇ = sχ̂(ξ) must converge to the singular set C. This is shown by contradiction.
Since ‖ξ̇‖ = s < ∞, ξ∗ := lim

t→t∗
ξ(t) = ξ(0) +

∫ t∗
0 ξ̇(t)dt exists. Suppose χ(ξ∗) 6= 0,

then we can define the solution at t = t∗, then it can be further prolonged to
t∗ + ε for some ε > 0, contradicting that t∗ is the maximal prolonged time. This
shows that χ(ξ∗) = 0 and thus the solution converges to C.

Finally, suppose ξ(t) is the unique solution to the initial value problem ξ̇(t) =
sχ̂
(
ξ(t)

)
, ξ(0) = ξ0, then by Lemma 9.14,

(
ξ(t), trsξ(t)

)
is the solution to (9.13).

Therefore, the transformed trajectory trsξ(t) asymptotically converges to the
transformed desired path trsP as t→ ∞ or the transformed singular set trsC as
t→ t∗.
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Remark 9.17. Due to the normalization of the vector field in (9.13), the right-hand
side of the differential equation is not well defined at singular points of the vector
field. Therefore, if the transformed singular set trsC is bounded, then the maximal
interval to which the transformed trajectory trsξ(t) can be prolonged is only finite
when the transformed trajectory trsξ(t) is converging to trsC. This happens when
the initial value ξ(0) is in the invariant manifold of the singular set C. /

The previous lemma states that the transformed trajectory converges to either
the transformed desired path or the transformed singular set for initial conditions
trsξ(0) ∈ Rm \Gl(C), while the latter case is undesirable. A preferable situation is
where the (transformed) singular set is empty. Moreover, as indicated by Theorem
9.11, to seek for global convergence, the only possibility is to consider unbounded
and non-self-intersecting desired paths (i.e., P ≈ R). Therefore, we reach the
following corollary.

Corollary 9.18 (Global convergence to trsP). Suppose the desired path P in (9.11)
is unbounded (i.e., P ≈ R). If C = ∅ (equivalently, trsC = ∅), then the transformed
trajectory trsξ(t) of (9.13) globally asymptotically converges to the transformed desired
path trsP as t→ ∞ in the sense that the initial condition ξ(0) (and hence trsξ(0)) can
be arbitrarily chosen in Rm.

As will be shown later, only the second differential equation of (9.10) or (9.13)
is relevant to the physical robotic system. This corollary thus motivates us to
design a (higher-dimensional) vector field such that the singular set is empty, in
which case global convergence to the (transformed) desired path is guaranteed.
In the next section, we will introduce an intuitive idea to “cut” and “stretch” a
possibly simple closed or self-intersecting physical desired path and create a
higher-dimensional singularity-free vector field.

9.5 high-dimensional singularity-free guid-
ing vector fields

In this section, we explain how to implicitly construct an unbounded desired
path from the physical desired path (possibly simple closed or self-intersecting)
together with a higher-dimensional guiding vector field without any singular
points (a.k.a, singularity-free guiding vector field).

For simplicity, we restrict the transformation operator Gl : Rm → Rm to a linear
one defined by Gl(x) = Pax, where Pa ∈ Rm×m is a non-zero matrix defined by

Pa = I − ââ>, (9.14)

where I is the identity matrix of suitable dimensions and â = a/‖a‖ ∈ Rm is a
normalized non-zero vector. In this case, Gl is actually a linear transformation
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that projects an arbitrary vector to the hyperplane orthogonal to the given non-
zero vector a, and Pa is the matrix representation of Gl . One can observe that
the linear transformation Gl is globally Lipschitz continuous with the Lipschitz
constant l = ‖Pa‖ = 1, where ‖ · ‖ is the induced matrix two-norm. In addition,
the Jacobian is simply DGl = Pa.

Before formulating the problem in the sequel, we define the coordinate projection
function π(1,...,n) : Rm → Rn as

π(1,...,n)(x1, . . . , xn, . . . , xm) = (x1, . . . , xn),

where m > n. In other words, the coordinate projection function π(1,...,n) takes
only the first n components of an m-dimensional vector and generates a lower-
dimensional one.

Problem 9.19. Given an n-D physical desired path2 phyP in Rn, we aim to find
an m-D desired path hghP in Rm, where m > n, which satisfies the following
conditions:

1) There exist functions φi(·), i = 1, . . . , m− 1, such that hghP is described by
(9.1);

2) The singular set hghC of the higher-dimensional vector field hghχ : Rm → Rm

in (9.2) corresponding to hghP is empty;
3) There exists a transformation operator Gl : Rm → Rm such that

π(1,...,n)(
trsP) = phyP , where the transformed desired path trsP = Gl(

hghP).

Remark 9.20. It is important to distinguish among the physical desired path phyP ,
the higher-dimensional desired path hghP and the transformed desired path trsP . A
major difference is the dimensions of their ambient space; that is, phyP ⊆ Rn,
while hghP , trsP ⊆ Rm and m > n. Although the higher-dimensional desired
path hghP and the transformed desired path trsP both live in Rm, the transformed
desired path trsP lives in a subspaceW ⊆ Rm probably with dim(W) < m since
trsP = Gl(

hghP). Indeed, for the case of a linear transformation operator in (9.14),
the transformed desired path trsP = Pa(

hghP) lives in the orthogonal complement
subspace W of the linear space spanned by the vector a (i.e., span{a}), and
dim(W) = m− 1 < m. /

Next, we propose the solution to Problem 9.19 in Section 9.5.1. Having found
the higher-dimensional desired path hghP , then we can directly derive the corre-
sponding vector field hghχ defined on Rm by (9.2). Some features of the approach
illustrated in Section 9.5.1 are highlighted in Section 9.5.2.

2 Recall the notion of an n-D desired path in Remark 9.2.
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9.5.1 Construction of a singularity-free guiding vector field

Suppose an n-D physical path phyP is parameterized by

x1 = f1(w), . . . , xn = fn(w), (9.15)

where w ∈ R is the parameter of the desired path and fi ∈ C2, i = 1, . . . , n. We
can simply let

φ1(ξ) = x1 − f1(w), . . . , φn(ξ) = xn − fn(w), (9.16)

where ξ = (x1, . . . , xn, w) has an additional coordinate w now and is an m-
dimensional vector, where m = n + 1. So the m-D desired path is

hghP = {ξ = (x1, . . . , xn, w) ∈ Rm : φi(ξ) = 0, i = 1, . . . , n}. (9.17)

Thus the first requirement of Problem 9.19 is met. Intuitively, the new higher-
dimensional desired path hghP is obtained by “cutting” and “stretching” the n-D
desired path phyP along the additional virtual w-axis (see Fig. 9.7). From the
higher-dimensional desired path hghP ⊆ Rm in (9.17), we obtain the correspond-
ing guiding vector field on the higher-dimensional space Rm by (9.2):

hghχ = ⊥φ −
n

∑
i=1

kiφi∇φi.

It can be calculated that ∇φi =
(
0, . . . , 1, . . . ,− f ′i (w)

)> for i = 1, . . . , n, where

f ′i (w) := d fi(w)
dw and 1 is the i-th component of the gradient vector. Therefore,

⊥φ = (−1)n( f ′1(w), · · · , f ′n(w), 1)> ∈ Rm = Rn+1.

It is interesting that the m-th coordinate of this vector is a constant (−1)n re-
gardless of the specific parametric form of the desired path. This means that
‖⊥φ(ξ)‖ 6= 0 for ξ ∈ Rm globally. From Lemma 5.1, we know that the prop-
agation term ⊥φ of the vector field is always linearly independent from the
convergence term ∑n

i=1 kiφi∇φi unless they are zero vectors. However, as we have
shown that ‖⊥φ‖ 6= 0 in Rm globally, this reveals the appealing property that
the vector field hghχ(ξ) 6= 0 for any point ξ ∈ Rm, implying that there are no
singular points in the higher-dimensional space Rm; i.e., hghC = ∅. Thus, the
second requirement of Problem 9.19 (as well as a related condition in Corollary
9.18) is satisfied.

To let the third requirement of Problem 9.19 be satisfied, we retreat to a linear
transformation operator with a matrix representation Pa. One of the simplest
linear transformation operators corresponds to a = bn+1 ∈ Rm, which is a
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standard basis column vector with the (n + 1)-th component being 1 and the
other components being 0. This is used to transform an m-dimensional space to
an n-dimensional subspace by “zeroing” the last coordinate. Specifically, we let
a = bn+1, then the matrix representation of the linear transformation operator is
Pa =

[
In×n 0

0 0

]
, where 0 are zero vectors of suitable dimensions. Observe that the n-

D desired path phyP ⊆ Rn is the orthogonal projection of the higher-dimensional
desired path hghP ⊆ Rm on the plane where w = 0; i.e.,

π(1,...,n)(
hghP) = π(1,...,n)(

trsP) = phyP .

Therefore, the third requirement of Problem 9.19 is also satisfied. By the construc-
tion in (9.17), the higher-dimensional desired path hghP ⊆ Rm satisfying all the
conditions in Problem 9.19 is thus found. Ultimately, we can take advantage of
the new “well-behaved” guiding vector field hghχ ∈ Rm derived from hghP ⊆ Rm

as mentioned above. This result is formally stated in the following theorem.

Theorem 9.21. Suppose an n-D physical desired path phyP ⊆ Rn is parameterized
by (9.15). If φ1, . . . , φn are chosen as in (9.16), then there are no singular points in
the corresponding guiding vector field hghχ : Rn+1 → Rn+1 defined on the (n + 1)-
dimensional space Rn+1. Let a = bn+1 for the linear transformation operator Pa.
Suppose the transformed trajectory of the extended dynamics (9.13) is trsξ(t) :=(

x1(t), . . . , xn(t), w(t)
)>. Then the projected transformed trajectory

prjξ(t) := π(1,...,n)
( trsξ(t)

)
=
(
x1(t), . . . , xn(t)

)>
globally asymptotically converges to the physical desired path phyP as t→ ∞.

Proof. By (9.2) and (9.16), the guiding vector field on the (n + 1)-dimensional
space Rn+1 is

hghχ(x1, . . . , xn, w) =


(−1)n f ′1(w)− k1φ1

...

(−1)n f ′n(w)− knφn

(−1)n + ∑n
i=1 kiφi f ′i (w)

 . (9.18)

As discussed before, the singular set hghC = ∅. According to Corollary
9.18, trsξ(t) globally asymptotically converges to the transformed desired path
trsP = Gl(

hghP) = Pa(
hghP) as t → ∞. Since a> trsξ = a>Paξ = 0, the

(n + 1)-th coordinate w(t) of the transformed trajectory trsξ(t) is equal to 0,
meaning that the transformed trajectory trsξ(t) lies in the subspace W :=
{(x1, . . . , xn+1) ∈ Rn : xn+1 = 0}. Therefore, the projected transformed trajec-
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tory prjξ(t) = π(1,...,n)
( trsξ(t)

)
globally asymptotically converges to the physical

desired path phyP .

Remark 9.22. Note that the proof of convergence to the physical desired path phyP
is indirect. The norm of the path-following error ‖e(·)‖ = ‖

(
φ1(·), . . . , φn(·)

)
‖

captures the distance to the higher-dimensional desired path hghP , taking into
account the additional coordinate w as well. It is shown first that in the higher-
dimensional space Rn+1, the norm of the path-following error ‖e(·)‖ approaches
zero asymptotically. Then the convergence to the transformed desired path trsP
is obtained from Corollary 9.16 (or Corollary 9.18). Due to the special choice of
the linear transformation operator Pa, where a = bn+1, the transformed desired
path trsP is “almost” the same as the physical desired path phyP , except that it
has an additional but constant coordinate w(t) ≡ 0. /

We have shown that, by extending the vector field from Rn to Rn+1, the new
guiding vector field does not have any singular points. Therefore, by using the
extended dynamics, the convergence to the physical desired path is guaranteed
globally. When n > 3, this case corresponds to some configuration spaces, such
as the robot arm joint space in a smooth manifold embedded in Rn. See Chapter
5 for more details.

9.5.2 Features of the approach

There are several intriguing features of our proposed approach discussed above
in Section 9.5.1. These features are summarized below. For ease of narration
and without loss of generality, we take the case of a 2D physical desired path
phyP ⊆ R2 for discussion (i.e., n = 2).

Feature 1. The corresponding higher-dimensional desired path hghP = {ξ ∈
R2+1 : φ1(ξ) = 0, φ2(ξ) = 0} is not self-intersecting. This is due to the fact that a
crossing point must be a singular point (see Proposition 9.8), but we have shown
that there are no singular points in the higher-dimensional guiding vector field. In
fact, the parameter of the desired path w in (9.15) is implicitly transformed to an
additional coordinate of the higher-dimensional desired path. Thus the physical
planar desired path phyP is “cut” and “stretched” into the three-dimensional
Euclidean space, and becomes unbounded and non-self-intersecting along the
additional dimension (see Fig. 9.7). The significance of this feature is that even a
self-intersecting physical desired path phyP described by (9.15) can be successfully
followed by using the new singularity-free guiding vector field, which in fact
corresponds to a non-self-intersecting “stretched” desired path hghP .

Feature 2. This approach facilitates the expression of hypersurfaces characterized
by implicit functions φi. Usually, a parameterized form of the desired path is more
readily available than the hypersurfaces of which the intersection is the desired
path. Therefore, given the parameterized form in (9.15), we do not need to convert
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them into φ(x, y) = 0 and derive the corresponding 2D vector field. Instead, by
simply defining two φ functions as in (9.16), we obtain a singularity-free vector
field hghχ defined on R2+1.

Feature 3. One only needs to examine the boundedness of | f ′i (z)|, i = 1, 2, in
the vicinity of the higher-dimensional desired path hghP to guarantee both the
property of local exponential vanishing of the norm of the path-following error
‖e‖ and the property of robustness against disturbance of the system dynamics
(9.9), while these properties usually require more conditions to be satisfied for
general vector fields (see Chapter 4).

Feature 4. Only Assumption 9.6 is required. Since the new guiding vector field
does not have any singular points, the other assumption, Assumption 9.5, is
vacuously true. This is independent of the specific parametrizations of the
desired path in (9.15).

Feature 5. The additional virtual coordinate can be used to realize scalable dis-
tributed multi-robot coordinated path-following navigation by adding a consen-
sus term (see Chapter 10).

9.6 experiments with an autonomous aircraft
In this section, we demonstrate the effectiveness of our path-following approach
with an autonomous fixed-wing aircraft. In particular, we verify the tracking of
both 2D and 3D self-intersecting desired paths. All the related software has been
developed within the open-source project for autopilots Paparazzi [47]. The codes
only require the corresponding parametric equations to implement other desired
paths3.

9.6.1 The autonomous aircraft and airfield

For the experiments, we use one Opterra as shown in Fig. 9.2. Two elevons actuate
the aircraft at the wings and one motor acts in pushing the configuration. The
vehicle’s electronics consists of the autopilot Apogee, an Ublox GPS receptor, a
Futaba receiver, and a X-Bee S1 radio modem. The Apogee’s core is an STM32F4

microcontroller where our algorithm runs with a fixed frequency of 50Hz, and
all the relevant data are logged in an SD card at 100Hz. The ground segment
consists of a standard laptop with another X-Bee S1 radio modem to monitor the
telemetry and a Futaba transmitter in case of taking over manual control of the
vehicle. The flights took place on July 18, 2020, in Ciudad Real (Spain) with GPS

3 https://github.com/noether/paparazzi/tree/gvf_advanced/sw/airborne/modules/guidance/
gvf_parametric.

https://github.com/noether/paparazzi/tree/gvf_advanced/sw/airborne/modules/guidance/gvf_parametric
https://github.com/noether/paparazzi/tree/gvf_advanced/sw/airborne/modules/guidance/gvf_parametric
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Figure 9.2: Autonomous Opterra 1.2m equipped with Paparazzi’s Apogee autopilot. The
airframe is built by E-Flite / Horizon Hobby company.

coordinates (39.184535,−4.020797) degrees. The weather forecast reported 36◦C
and a South wind of 14 km/h.

9.6.2 Aircraft’s guidance system design

We employ a decoupled vertical and horizontal model for setting the aircraft’s
guiding reference signals. In particular, accounting for the nonholonomic lateral
constraint of the aircraft, we consider the following unicycle model

ẋ = v cos θ ẏ = v sin θ θ̇ = uθ ż = uz, (9.19)

where (x, y, z) is the 3D position, θ is the heading angle on the XY plane, v is
the ground speed, uθ is the angular velocity control/guiding signal to change
the heading, and uz is the guiding signal for the climbing velocity. We will show
how to design the guiding signals uθ and uz, which are injected into the control
system of the aircraft that deals with the nontrivial couplings of the lateral and
vertical modes. Particularly, uθ is tracked by banking the aircraft depending on
the current speed v and the pitch angle to achieve a coordinated turn, and uz is
tracked by controlling the pitch angle and the propulsion to vary the lift and
the vertical component of the pushed force coming from the propeller4. The
experiments will show that our algorithm is compatible with the model (9.19)
and the low-level controller employed in Paparazzi for a fixed-wing aircraft.

Note that the wind has a noticeable impact on the ground speed of the aircraft.
Nevertheless, as the experimental results indicate, such a wind speed does not
impact the intended performance of the algorithm. In practice, we consider θ
as the heading angle (given by the velocity vector), not the attitude yaw angle.
If there is no wind, both angles are the same in our setup. When we consider

4 We leave the reader to check the details of the employed low-level controllers at http://wiki.
paparazziuav.org/wiki/Control_Loops.

http://wiki.paparazziuav.org/wiki/Control_Loops
http://wiki.paparazziuav.org/wiki/Control_Loops
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the heading instead of the yaw for the model (9.19), the aircraft compensates the
lateral wind by crabbing such that aerodynamic angle sideslip is almost zero.5

For following 3D paths (including 2D paths at a constant altitude), we will
employ a higher-dimensional 4D vector field. The generalized 4D velocity vector
of the aircraft is defined as ξ̇ = (ẋ, ẏ, ż, ẇ)>, where (ẋ, ẏ) is the actual ground
velocity of the aircraft, ż is the vertical speed, and ẇ is the velocity in the additional
coordinate to be determined. Now we present the control algorithm design; that
is, the design of uθ and uz in (9.19) with the following proposition:

Proposition 9.23. Suppose the 3D physical desired path phyP ⊆ R3 to follow is
parameterized by (9.15). Then a corresponding 4D vector field χ : R4 → R4 can be
constructed by Theorem 9.21. Assume that the vector field satisfies χ1(ξ)

2 + χ2(ξ)
2 6= 0

for ξ ∈ R4, where χi denotes the i-th entry of χ. Consider the model (9.19), and let the
dynamics of the additional coordinate w be

ẇ =
vχ4√

χ2
1 + χ2

2

. (9.20)

Let the angular velocity control input uθ and the climbing velocity input uz be

uθ =

( −1
‖χp‖

χ̂p>EJ(χp)ξ̇

)
︸ ︷︷ ︸

:=θ̇d

−kθ ĥ>Eχ̂p, (9.21a)

uz =
vχ3√

χ2
1 + χ2

2

, (9.21b)

where kθ > 0 is a gain constant, h = (cos θ, sin θ)>, E =
[ 0 −1

1 0

]
, χp = (χ̂1, χ̂2)

> and
J(χp) is the Jacobian matrix of χp with respect to the generalized position ξ = (x, y, z, w)

and ξ̇ = (ẋ, ẏ, ż, ẇ)> is the generalized velocity. Let the angle difference directed from χ̂p

to ĥ be denoted by β ∈ (−π, π]. If the initial angle difference satisfies β(0) ∈ (−π, π),
then it will vanish asymptotically (i.e., β(t) → 0). Furthermore, the actual robot
trajectory (x(t), y(t), z(t)) will converge to the physical desired path phyP asymptotically
as t→ ∞.

Proof. Let

χ′ :=
1√

χ2
1 + χ2

2

χ

5 Crabbing happens when the inertial velocity makes an angle with the nose heading due to wind.
Slipping happens when the aerodynamic velocity vector makes an angle (sideslip) with the body
ZX plane. Slipping is (almost) always undesirable because it degrades aerodynamic performance.
Crabbing is not an issue for the aircraft.
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be the scaled 4D vector field. We aim to let the generalized robot velocity
ξ̇ = (ẋ, ẏ, ż, ẇ)> eventually align with and point towards the same direction as
the scaled vector field. Specifically, let the orientation error be defined by

eori(t) = ξ̇ − vχ′ (9.20),(9.21b)
= v


cos θ − χ′

1

sin θ − χ′
2

0

0

 =

[
h− g

0

]
∈ R4,

where h = (cos θ, sin θ)> and g = (χ′1, χ′
2)
>. It is obvious that eori → 0 if and only

if h− g→ 0. Therefore, it suffices to show that the orientation of h asymptotically
aligns with that of g. Note that

χ̂p =
1√

χ̂2
1 + χ̂2

2

[
χ̂1

χ̂2

]
=

1√
χ2

1 + χ2
2

[
χ1

χ2

]
= g

and ĥ = h. Therefore, we can define a new orientation error as eor := ĥ− χ̂p ∈ R2.
Choose the Lyapunov function candidate V = 1/2 e>oreor and its time derivative is

V̇ = ė>oreor = (θ̇Eĥ− θ̇dEχ̂p)
>
(ĥ− χ̂p)

= (θ̇ − θ̇d)ĥ>Eχ̂p (9.21a)
= −kθ(ĥ>Eχ̂p)2,

(9.22)

which is negative semi-definite. The second equation makes use of the identities:
˙̂h = θ̇Eĥ and ˙̂χp = θ̇dEχ̂p, where θ̇d is defined in (9.21a). The third equation
is derived by exploiting the facts that E> = −E and a>Ea = 0 for any vector
a ∈ R2. Note that V̇ = 0 if and only if the angle difference between ĥ and
χ̂p is β = 0 or β = π. Since it is assumed that the initial angle difference
β(t = 0) 6= π, it follows that V̇(t = 0) < 0, and thus there exists a sufficiently
small ε > 0 such that V(t = ε) < V(t = 0). It can be shown by contradiction
that |β(t)| is monotonically decreasing with respect to time t 6. By (9.22), one
observes that |β(t)| and V(t) tends to 0, implying that the generalized velocity
ξ̇ will converge asymptotically to the scaled vector field vχ′. Note that the
integral curves of the state-dependent positive scaled vector field χ′ has the same
convergence results as those for the original vector field χ [25, Proposition 1.14].
Therefore, the generalized trajectory (x(t), y(t), z(t), w(t)) will converge to the
higher-dimensional desired path hghP in (9.17). From Theorem 9.21, the actual

6 Suppose there exist 0 < t1 < t2 such that |β(t1)| < |β(t2)|. It can be calculated that V(t) =
1− cos β(t), and thus V(t1) < V(t2), contradicting the decreasing property of V̇. Thus |β(t)| is
indeed monotonically decreasing.
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robot trajectory (i.e., the projected transformed trajectory) (x(t), y(t), z(t)) will
converge to the physical desired path phyP asymptotically as t→ ∞.

We set our aircraft to fly at a constant airspeed (around 12m/s) and a constant
altitude; therefore, we have a bounded speed v (estimated onboard with an
Inertial Navigation System) when we account for the wind. For tracking 3D
paths, the aircraft will nose down or change the propeller’s revolutions per
minute (r.p.m.); nevertheless, the airspeed is also bounded between 9m/s and
16m/s. Note that both ground and airspeed are not control/guiding signals;
therefore, we do not face any saturation problems regarding these variables.

9.6.3 Accommodating the guidance to the aircraft’s dynamics

An arbitrary function φi(·) in (9.16), which depends on a specific parametrization
fi(·), may result in a highly sensitive coordinate w. This can lead to considerable
vibrations of the guidance signals, due to noisy sensor readings or disturbances
of the position, that cannot be tracked effectively by the aircraft.

We propose two approaches, which can be combined to mitigate this practical
effect. The first one is to re-parameterize the equations for the 3D desired
path phyP ; this does not affect the convergence result. Suppose phyP is re-
parameterized by

x = f1
(

g(w)
)
, y = f2

(
g(w)

)
, z = f3

(
g(w)

)
,

where g : R → R is a smooth bijection with non-zero derivative (i.e., dg
dw (w) 6= 0

for all w ∈ R). A simple example of g is g(w) = βw, where β is a positive
constant. This is adopted for the experiments. Let φ1, φ2, and φ3 be chosen as
in (9.16), then the first term of the higher-dimensional vector field becomes (for
simplicity, the arguments are omitted)

∧(∇φ1,∇φ2,∇φ3) = −
(

d f1

dg
dg
dw

,
d f2

dg
dg
dw

,
d f3

dg
dg
dw

, 1
)>

.

To reduce the effect of the “virtual speed” from the fourth coordinate of the
equation above, the “gain” dg

dw can be chosen large such that (d f1
dg ·

dg
dw )

2 + (d f2
dg ·

dg
dw )

2 + (d f3
dg ·

dg
dw )

2 � 1, which implies that

‖∇φ1 ×∇φ2 ×∇φ3‖ ≈
∣∣∣∣ dg
dw

∣∣∣∣
√
(

d f1

dg
)2 + (

d f2

dg
)2 + (

d f3

dg
)2.
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However, from the analytic expression of the vector field

χ =


− dg

dw ·
d f1
dg − k1φ1

− dg
dw ·

d f2
dg − k2φ2

− dg
dw ·

d f3
dg − k3φ1

−1 + dg
dw

(
k1φ1

d f1
dg + k2φ2

d f2
dg + k3φ3

d f3
dg

)

 ,

one observes that, when ‖(φ1, φ2, φ3)‖ is large, (i.e., the aircraft is far from the
desired path), the additional coordinate of the vector has also been enlarged
approximately by a factor of dg

dw . Thus, the “gain” | dg
dw | should not be chosen too

large.
The second approach is to scale down the functions φi. That is, the equations

(9.16) are changed to
φ̃i(x, y, z, w) = Lφi, i = 1, 2, 3,

where L ∈ (0, 1). The corresponding 3D vector field is thus changed to

χ̃ = L


−L2 d f1

dw − k1φ1

−L2 d f2
dw − k2φ2

−L2 d f3
dw − k3φ3

−L2 + k1φ1
d f1
dw + k2φ2

d f1
dw + k3φ3

d f1
dw

 .

The new guiding vector field is scaled down; thus, it helps to lower the sensitivity
of the additional coordinate w.

9.6.4 The 2D trefoil curve

We start with following a 2D self-intersecting desired path, the trefoil curve, at a
constant altitude zo = 50m over the ground level. The parametric equations of
the trefoil curve are given by

f1(w) = cos(βw ω1)(a cos(βw ω2) + b)

f2(w) = sin(βw ω1)(a cos(βw ω2) + b)

f3(w) = 0,

where we have set β = dg
dw = 0.45 (the “gain" introduced in Section 9.6.3),

ω1 = 0.02, ω2 = 0.03, a = 80, and b = 160. In order to fit into the available flying
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Figure 9.3: Flight results I. (a) illustrate the trajectories of the aircraft, which flies at a
constant altitude of 50 meters. The blue dot, representing ( f1(w), f2(w)),
moves forward but waits for the aircraft at time t = 321. Afterward, the aircraft
converges to the desired path as the first two plots in (b) indicate with φ1 and
φ2 fluctuating around 0. The third plot in (b) shows the evolution of the virtual
coordinate w, of which the grow rate varies as it is in the closed-loop with the
aircraft’s position to facilitate the path convergence.
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Figure 9.4: The screenshot of the ground control station corresponding to Fig. 9.3. The
green circle is the stand-by trajectory before the aircraft starts following the
trefoil curve. The blue line is the 2D trajectory of the aircraft.

space, these parametric equations have been rotated by α and shifted adequately
by (xo, yo) in the autopilot; i.e.,

f ∗1 (w) = cos(α) f1(w)− sin(α) f2(w) + xo

f ∗2 (w) = sin(α) f1(w) + cos(α) f2(w) + yo

f ∗3 (w) = f3(w) + zo.

Note that the same affine transformation must be done for both f ′i and f ′′i (needed
for the Jacobian of χ as we will see shortly). In particular, for the presented flight,
we set xo = 79, yo = −68.10 and zo = 50 meters and α = 0. We set the scaling
factor L = 0.1 for the construction of φ̃i as in Section 9.6.3, and we choose the
gains k1 = k2 = k3 = 0.002. We finally set kθ = 1 for the control/guidance signal
uθ in Proposition 9.23.

Note that for computing all the control signals (9.21), we need fi(w) and their
derivatives f ′i (w) and f ′′i (w) with respect to w. For the sake of completeness, we
provide the Jacobian J(χp) in (9.21a) which is given by

J(χp) = FJ(χ̂) = F(I − χ̂χ̂>)J(χ)/‖χ‖,

where F =
[

1 0 0 0
0 1 0 0

]
, and J(χ) is shown below

J(χ) =

L


−k1L 0 0 − f ′′1 (βw)L2β2 + k1βL f ′1(βw)

0 −k2L 0 − f ′′2 (βw)L2β2 + k2βL f ′2(βw)

0 0 −k3L − f ′′3 (βw)L2β2 + k3βL f ′3(βw)

k1βL f ′1(βw) k2βL f ′2(βw) k3βL f ′3(βw) β2 ∑3
i=1
[
kiφi f ′′i (βw)− kiL f ′2i (βw)

]


The flight results for the trefoil curve are shown in Figure 9.3.
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Figure 9.5: Flight results II. (a) illustrates the trajectories of the aircraft. The blue dot,
representing ( f1(w), f2(w), f3(w)), moves forward quickly but waits for the
aircraft at time t = 204. This quick movement is due to the fast variation
of w in the beginning (see the fourth plot in (b)). Afterward, the vehicle
converges to the desired path as the first three plots in (b) indicate with
φ1, φ2, and φ3 fluctuating around 0. The aircraft has been trimmed to fly at a
constant altitude, but the desired path requires the vehicle to track a sinusoidal
ascending/descending trajectory, and any disturbance (e.g., unsteady wind)
makes the aircraft sensitive to track accurately a climbing/descending speed.
In addition, the Lissajous curve demands aggressive turnings slightly beyond
the capabilities of the aircraft when the aircraft descends and achieves the
maximum speed. The fourth plot in (b) shows the evolution of the virtual
coordinate w, of which the grow rate varies as it is in the closed-loop with the
aircraft’s position to facilitate the path convergence.
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Figure 9.6: The screenshot of the ground control station corresponding to Fig. 9.5. The
green circle is the stand-by trajectory before the aircraft starts following the
Lissajous curve. The blue line is the 2D trajectory of the aircraft. In particular,
the aircraft passes by the middle waypoint corresponding to the highest point of
the desired path.

9.6.5 The 3D Lissajous curve

We consider the 3D Lissajous curve described as below:

f1(w) = cx cos(βw ωx + dx)

f2(w) = cy cos(βw ωy + dy)

f3(w) = cz cos(βw ωz + dz),

where we have set β = dg
dw = 0.01, ωx = 1, ωy = ωz = 2, cx = cy = 225, cz = −20,

dx = dz = 0, and dy = π/2. This selection of parameters gives us an eight-shaped
desired path that is bent along the vertical axis. As with the trefoil curve, we
have added an affine transformation of fi(w), f ′i (w) and f ′′i (w) in the autopilot
to fit the Lissajous curve into the available flying space. In particular, we have
set xo = 79, yo = −68.10, zo = 50, α = 0.66). Finally, for the construction of φ̃i, we
have chosen L = 0.1, k1 = k2 = 0.002 and k3 = 0.0025. We finally set kθ = 1 for
the control/guiding signal uθ in Proposition 9.23. We show the flight results in
Figure 9.5.

9.7 discussion: path following or trajectory
tracking?

In this section, we show that our proposed higher-dimensional VF-PF algorithm
is an extension that combines elements from both conventional VF-PF algorithms
(e.g., [63], see Remark 9.3) and trajectory tracking algorithms (e.g., [131, p. 506]).
While our generated guiding vector field is the standard output for the path-
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following approach, we will argue that our algorithm can also be seen as a
fair extension of a trajectory tracking approach. Therefore, our algorithm, to
some extent, combines and extends elements from both approaches. For ease of
explanation and without loss of generality, we restrict our focus to a physical
planar desired path in R2; that is, phyP ⊆ R2.

Compared to trajectory tracking algorithms, a similarity exists in the sense
that the additional coordinate w in the proposed VF-PF algorithms acts like the
time variable in trajectory tracking algorithms. However, our approach is an
extension in the sense that the time-like variable is in fact state-dependent. In
trajectory tracking algorithms, a desired trajectory

(
xd(t), yd(t)

)
is given. Then,

at any time instant t, the algorithm aims to decrease the distance to the desired
trajectory point

(
xd(t), yd(t)

)
, which moves as time t advances. Note that the

dynamics of the desired trajectory point
(

xd(t), yd(t)
)

is open-loop in the sense
that it does not depend on the current states of the robot, but only depends
on time t. From (9.16), if we let φi = 0, i = 1, 2, then we may call the point(

f1(w(ξ(t))), f2(w(ξ(t)))
)

the guiding point, since it always stays on the desired
path and may be regarded as the counterpart of the desired trajectory point in
trajectory tracking algorithms. But as we will show later, the guiding point is
essentially different from the desired trajectory point. Note that the guiding point(

f1(w(ξ(t))), f2(w(ξ(t)))
)

in our VF-PF algorithm depends on the evolution of
the additional coordinate w

(
ξ(t)

)
, of which the dynamics is state-dependent

as shown in (9.20). This might be roughly regarded as a closed-loop version of
the desired trajectory point. An intuitive consequence of this difference is that the
desired trajectory point

(
xd(t), yd(t)

)
in trajectory tracking algorithms always moves

unidirectionally along the desired trajectory as t monotonically increases, while the
guiding point can move bidirectionally along the desired path, subject to the current
state (i.e., the robot position). In fact, when the initial position of the guiding point(

f1(w(ξ(0))), f2(w(ξ(0)))
)

is far from the initial position of the robot, the guiding
point “proactively” moves towards the robot along the desired path to accelerate
the path-following process. This feature, along with better robustness against
perturbation in some cases, are experimentally studied in our previous work
[164, Section VII]. To illustrate this closed-loop feature more intuitively, after the
robot has successfully followed the desired path, we manually move the robot
far away from the desired path and keep it stationary (to mimic the situation
of erroneous localization and operation failure of the robot). As is clear in the
supplementary video7, although the robot is kept stationary, the guiding point(

f1(w(ξ(t))), f2(w(ξ(t)))
)

can still move in the reverse direction to approach the
robot along the desired path such that the norm of the path-following error
decreases, and the guiding point eventually stops at some place on the desired
path. After that, the guiding point does not move until the robot is released to
move again.

7 http://tiny.cc/video_tro21yao

http://tiny.cc/video_tro21yao
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In existing VF-PF algorithms, a two-dimensional vector field on R2 is created
for guiding the robot movement (see Remark 9.3). However, as we aim to create
a higher-dimensional (i.e., three-dimensional) vector field, our approach can
be roughly regarded as utilizing an infinite number of layers of projected two-
dimensional vector fields, and thus might be seen as a dynamic two-dimensional
vector field. The dynamic property is due to the dynamics of the additional
coordinate w. For example, consider a circular desired path parameterized by

x = f1(w) = cos(4w) y = f2(w) = sin(4w),

where w ∈ R is the parameter. In conventional VF-PF algorithms, a 2D vector field
can be created, as shown in Fig. 9.1a, but there exists a singular point at the center
of the circle. Nevertheless, using our approach, we can generate a singularity-free
3D vector field, as illustrated in Fig. 9.7. For clarity of visualization, we plot the
3D vectors, which originate from three planes where the w values are 0, 0.6, and
1.4, respectively. For each value of the additional coordinate w, we can obtain
a projected 2D vector field, as shown in Fig. 9.8. Therefore, we can observe
that these 2D vector fields change dynamically as w varies. As a result of the
dynamics of w, the guiding point

(
f1(w(ξ(t))), f2(w(ξ(t)))

)
moves along the 2D

desired path (not necessarily unidirectionally). Again, we note that this point is
not the same as the desired trajectory point in trajectory tracking algorithms since
the integral curves of the 2D vector field do not converge to this point, as can be
seen graphically from Fig. 9.8 or analytically from the expression of the vector
field in (9.5): the second term leads to convergence to the guiding point, while the
first term “deviates” this convergence, since it controls the propagation along the
higher-dimensional desired path.

In many existing VF-PF algorithms, the desired path is usually not parameterized
but is described by the intersection of hyper-surfaces, while the latter case
might be restrictive in describing more complicated desired paths. However, our
approach enables the possibility to use a parameterized desired path directly
in the design of a higher-dimensional vector field. Our approach thus extends
the flexibility of conventional VF-PF algorithms. The desired path can now be
described by either the intersection of hyper-surfaces or parameterized functions.
In the latter case, the parametric equations can be easily converted using (9.15),
(9.16) and (9.17) and leads to a higher-dimensional desired path and singularity-
free guiding vector field. Theoretically, the parametrization is not instrumental,
since it is only utilized to derive the expressions of functions φi, of which the
zero-level sets are interpreted as hyper-surfaces. The subsequent derivation of
the vector field is based on φi, independent of the specific parametrization of the
desired path.
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Figure 9.7: Three layers of the 3D vector field corresponding to a circle. The solid line is the
2D desired path while the dashed line is the corresponding 3D (unbounded)
desired path. Three layers of the 3D vector field evaluated at w = 0, 0.6, 1.4
respectively are illustrated.

9.8 an alternative proof
In this section, we give an alternative proof of Proposition 9.10. Given an
autonomous differential equation ẋ(t) = f (x(t)), where f is continuously differ-
entiable in x, and let t 7→ Ψ(t, x0) be the solution to the differential equation with
the initial condition Ψ(0, x0) = x0, then Ψ is a flow [25]. In the literature, the
notation Ψt(x0), which is adopted in the sequel, is often used in place of Ψ(t, x0).
To assist the proof of Proposition 9.10, we state a more general result in the
following lemma regarding any time-invariant autonomous system that admits
a (locally) asymptotically stable limit cycle. Note that similar to the definition
of Lyapunov stability of an equilibrium point [66, Chapter 4], a limit cycle L is
(locally) asymptotically stable if for every neighborhood U ⊇ L of the limit cycle
L, there exists a smaller neighborhood V ⊆ U , such that every trajectory starting
from V always stays within U and L is locally attractive.

Lemma 9.24 (Asymptotically stable limit cycles are not GAS). Consider an au-
tonomous differential equation ẋ(t) = f (x(t)), where f : Rn → Rn is continuously
differentiable in x. Suppose there is a (locally) asymptotically stable limit cycle L ⊆ Rn,
then global convergence of trajectories to the limit cycle is not possible; namely, the
domain of attraction of the limit cycle cannot be Rn. In other words, the limit cycle
cannot be globally asymptotically stable (GAS) in Rn.

Proof. We prove by contradiction: Suppose that global convergence to the limit
cycle L holds. Since the limit cycle is compact, it is an embedded submanifold
in Rn [77, Proposition 5.21]. So we can take a tubular neighborhood O ⊇ L of
the limit cycle [77, Theorem 6.24]. Then due to the asymptotic stability of the
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Figure 9.8: The projected 2D vector field corresponding to w = 0, 0.6, 1.4 respectively. The
solid line is the projected 2D desired path. The solid dots represent the guiding
point

(
cos(4w), sin(4w)

)
.

limit cycle, there exists a smaller neighborhood U ⊆ O of the limit cycle such that
every trajectory starting from U will remain within the tubular neighborhood O
perpetually. Since the limit cycle is compact, we can find a closed ball B ⊆ Rn

centered at 0 ∈ Rn sufficiently large such that the limit cycle lies in its interior
(i.e., L ⊆ B). Due to the global convergence assumption, for any point w ∈ B,
there exists a time instant Tw > 0 such that ΨTw(w) ∈ U , where Ψ denotes the
flow of the differential equation ẋ = f (x). Due to the continuous dependence
on initial conditions [66, Theorem 3.5], there exists an open set Vw 3 w, such
that ΨTw(Vw) ⊆ U . Therefore, according to the uniqueness of solutions to the
differential equation (see Theorem 2.1) and the asymptotic stability discussed
before, we further have Ψt(Vw) ⊆ O for all t ≥ Tw. Thus, for every point w ∈ B,
we can associate an open set Vw and a time instant Tw as discussed before. Since
D := {Vw ⊆ Rn : w ∈ B} is an open cover of the compact ball B, there exists a
finite number of points wi ∈ B, i = 1, . . . , k, and Vwi ∈ D, such that

⋃k
i=1 Vwi ⊇ B

[140, Theorem 1.5.8]. Thus, we can take T > maxi=1,...,k{Twi}, and therefore, we
have ΨT(B) ⊆ O.

Let r : O → L be a retraction8 of O onto L; i.e., r ◦ iL = idL, where iL : L → O
is the inclusion map of L in O and id is the identity map. Now let i′L : L → B be
another inclusion map, and note that for any t ∈ R, Ψt(·) is a diffeomorphism
of L [25, p. 13]. Then it is easy to check that idL = Ψ−T ◦ r ◦ΨT ◦ i′L, where we
view ΨT as a map from B to O and Ψ−T a map from L to L. It is conventional
to use (·)∗ and π1(·) to denote the homomorphism and the fundamental group
respectively. Then

(idL)∗ = (Ψ−T ◦ r ◦ΨT ◦ i′L)∗

= (Ψ−T)∗ ◦ (r)∗ ◦ (ΨT)∗ ◦ (i′L)∗,
(9.23)

8 The existence of r is guaranteed by Proposition 6.25 in [77].
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where (idL)∗ : π1(L) → π1(L), (i′L)∗ : π1(L) → π1(B), (ΨT)∗ : π1(B) →
π1(O), r∗ : π1(O) → π1(L) and (Ψ−T)∗ : π1(L) → π1(L) are the homomor-
phisms of fundamental groups induced by the corresponding maps [77, Proposi-
tion A.64, A.65]. Since B is contractible and π1(B) ∼= {0}, where ∼= denotes the
isomorphic relation, both (i′L)∗ and (ΨT)∗ are zero morphisms, and so is the com-
position (Ψ−T)∗ ◦ (r)∗ ◦ (ΨT)∗ ◦ (i′L)∗. But this contradicts with the left-hand side
of (9.23), where (idL)∗ is the identity map (and an isomorphism) of π1(L) ∼= Z.
The contradiction implies that global convergence is not possible.

Based on Lemma 9.24, we can prove Proposition 9.10.

Proof of Proposition 9.10. We consider the autonomous systems (9.9). Without loss
of generality, we assume that the flow of (9.9) is complete, since otherwise we can
replace the vector field χ by χ/(1 + ‖χ‖) without changing the phase portrait
[25, Proposition 1.14].

Given α > 0, we define a neighborhood of the desired path P by

Eα = {ξ ∈ Rn : ‖e(ξ)‖ < α}. (9.24)

Therefore, the value of ‖e(·)‖ encodes the distance to the desired path in view of
the definition of P in (9.6). From Lemma 5.1, we have N>χ = N>(⊥φ − NKe) =
−N>NKe. We define a Lyapunov function candidate

V(e) =
1
2

e>Ke, (9.25)

and take the time derivative of it, obtaining

V̇(e) =
1
2
(ė>Ke + e>Kė)

=
1
2
(χ>NKe + e>KN>χ)

= −e>Qe = −‖NKe‖2 ≤ 0,

(9.26)

where the (n− 1)× (n− 1) matrix

Q(ξ) = K>N>(ξ)N(ξ)K (9.27)

is positive semidefinite. Based on the LaSalle’s invariance principle (Theorem 2.6),
one can show that the desired path P is the limit cycle of (9.9) by construction,
and that P is Lyapunov stable. The claim then easily follows from Lemma
9.24.
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9.9 conclusions
In this chapter, we first show that the integral curves of a time-invariant con-
tinuously differential vector field as in (9.2) cannot guarantee global converge
to desired paths which are simple closed (i.e., homeomorphic to the unit circle)
or self-intersecting. Motivated by this general topological result, we propose a
novel approach to create unbounded desired paths from simple closed or self-
intersecting ones, and construct a singularity-free higher-dimensional guiding
vector field. One of the advantages of this approach is that global convergence to
the desired paths, which can be even self-intersecting, is now rigorously guaran-
teed. This is achieved by the introduction of a transformation operator and the
extended dynamics. Another advantage is that, given a parameterized desired
path, we can easily describe the hyper-surfaces as the zero-level set of some im-
plicit functions, and then the proposed vector field on a higher-dimensional space
can be directly constructed. This increases the applicability of conventional VF-PF

algorithms. In addition, we highlight five features of our approach, with rigorous
theoretic guarantees. We also show that our approach is a combined extension of
both conventional VF-PF algorithms and trajectory tracking algorithms. Finally, we
conduct outdoor experiments with a fixed-wing aircraft under wind perturbation
to validate the theoretical results and demonstrate the practical effectiveness for
complex robotic systems.
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