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Abstract
Aims/hypothesis We aimed to assess and contextualise 134 potential risk variables for the development of type 2 diabetes and to
determine their applicability in risk prediction.
Methods A total of 96,534 people without baseline diabetes (372,007 person-years) from the Dutch Lifelines cohort were
included. We used a risk variable-wide association study (RV-WAS) design to independently screen and replicate risk
variables for 5-year incidence of type 2 diabetes. For identified variables, we contextualised HRs, calculated correlations
and assessed their robustness and unique contribution in different clinical contexts using bootstrapped and cross-validated
lasso regression models. We evaluated the change in risk, or ‘HR trajectory’, when sequentially assigning variables to a
model.
Results We identified 63 risk variables, with novel associations for quality-of-life indicators and non-cardiovascular
medications (i.e., proton-pump inhibitors, anti-asthmatics). For continuous variables, the increase of 1 SD of HbA1c,
i.e., 3.39 mmol/mol (0.31%), was equivalent in risk to an increase of 0.53 mmol/l of glucose, 19.8 cm of waist
circumference, 8.34 kg/m2 of BMI, 0.67 mmol/l of HDL-cholesterol, and 0.14 mmol/l of uric acid. Other variables
required an increase of >3 SD, which is not physiologically realistic or a rare occurrence in the population. Though
moderately correlated, the inclusion of four variables satiated prediction models. Invasive variables, except for glucose
and HbA1c, contributed little compared with non-invasive variables. Glucose, HbA1c and family history of diabetes
explained a unique part of disease risk. Adding risk variables to a satiated model can impact the HRs of variables already
in the model.
Conclusions Many variables show weak or inconsistent associations with the development of type 2 diabetes, and only a handful
can reliably explain disease risk. Newly discovered risk variables will yield little over established factors, and existing prediction
models can be simplified. A systematic, data-driven approach to identify risk variables for the prediction of type 2 diabetes is
necessary for the practice of precision medicine.

Keywords Contextualisation . Data-driven . Identification . Lasso regression . Machine learning . Prediction models .

Prospective . Risk variable-wide association study . Type 2 diabetes

Abbreviations
FDR False discovery rate
IFG Impaired fasting glucose

RV-WAS Risk variable-wide association study
UMCG University Medical Center Groningen

Introduction

The development of complex, multifactorial diseases such as
type 2 diabetes remains poorly understood to date. Though
many different risk variables have been identified [1],

* Chirag J. Patel
Chirag_Patel@hms.harvard.edu

1 Department of Biomedical Informatics, Harvard Medical School,
Boston, MA, USA

2 Department of Endocrinology, University Medical Center
Groningen, University of Groningen, Groningen, the Netherlands

https://doi.org/10.1007/s00125-021-05419-1

/ Published online: 12 March 2021

Diabetologia (2021) 64:1268–1278

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-021-05419-1&domain=pdf
https://orcid.org/0000-0003-1536-8011
https://orcid.org/0000-0001-9262-6921
http://orcid.org/0000-0002-8756-8525
mailto:Chirag_Patel@hms.harvard.edu


conventional risk identification approaches often focus on a
small set of variables at a time with varying relevant time
windows [2]. This leads to fragmentation of the evidence,
large inter-study heterogeneity and false positive findings
due to multiple testing. Further, the narrow focus makes it
hard to contextualise identified risk variables with others.

For some risk variables, such as fasting glucose, specific
trajectories are well documented [3]. However, it is unclear
how a more diverse set of risk variables may contribute to this
heterogeneous rise in glucose. As these variables are often
correlated (e.g., adiposity-related traits, BP and lipids), their
independent contribution to disease risk with respect to each
other is unknown and impossible to dissect in meta-analyses
where individual-level data are not available. This lack of
insight has led to the development of many risk prediction
models, with a recent systematic review identifying 145
different prospective models and scores for the development
of type 2 diabetes [2]. Although these models contain different
variables, their performance has been shown to be roughly
similar [4], suggesting that many variables predict a similar
part of disease risk and are thus interchangeable.

Large convenience (e.g., biobanks) and non-convenience
cohorts have amassed hundreds to millions of potential risk
variables, such as phenotypes and environmental exposures,
and it is challenging to identify which variables are predictive
of disease outcomes. Data-driven methodologies have been

applied to these cohorts to systematically screen and replicate
associations between many environmental and nutritional
variables and complex diseases [5, 6], to tentatively identify
potential risk variables with the strongest statistical support,
including larger association sizes and robust inferential statis-
tics such as lower false discovery rates [7].

So far, despite advances in understanding the transition
from prediabetes to diabetes, there is no consensus on which
risk variables drive the type 2 diabetes epidemic let alone
which variables can be used to screen populations who might
be at risk. Here, we used a data-driven risk variable-wide
association study (RV-WAS) approach to assess associations
between 134 known and novel risk variables and the 5-year
development of type 2 diabetes. Further, we contextualised
the identified variables with each other and investigated their
applicability to predict risk in different clinical contexts,
including invasive, non-invasive and questionnaire-only
variables.

Methods

Study population Lifelines is a multidisciplinary prospective
population-based cohort study examining in a three-
generation design the health and health-related behaviours of
167,729 people living in the north of the Netherlands. It
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employs a broad range of procedures to assess the biomedical,
socio-demographic, behavioural, physical and psychological
factors that contribute to the health and disease of the general
population, with a special focus onmulti-morbidity and genet-
ics, and has follow-up consisting of questionnaires at median
intervals of 1.5 and 3 years, and repeated biochemical
measurements after 5 years. We determined diabetes status
based on self-reported prior diagnosis, use of diabetes medi-
cation, elevated fasting glucose levels ≥7.0 mmol/l, or HbA1c

levels of ≥47.5mmol/mol (6.5%).We excluded all individuals
with diabetes at baseline, or without available data at follow-
up. Total person-years of follow-up were 372,007. Participant
selection is shown in the electronic supplementary material
(ESM) Fig. 1. The Lifelines Cohort Study is conducted in
accordance with the Declaration of Helsinki and the research
code of the University Medical Center Groningen (UMCG).
Before study entrance, participants gave informed consent.
The study was approved by the UMCGmedical ethics review
committee.

Potential risk variables We included 134 potential risk vari-
ables (ESM Table 1). The collection of these variables has
been described in detail elsewhere [8]. We chose these 134
variables as they are currently ascertained in the clinic and in
epidemiological studies of chronic disease (e.g., Framingham
Heart Study) and they are included in a broad array of inva-
sive, non-invasive and self-reported questionnaires on the
bulk of the population. In short, measurements were
performed by a trained research nurse, electrocardiograms
(ECGs) were assessed by a cardiologist, and biochemical
analyses were performed in blood and urine. Questionnaires
were used to evaluate age, sex, ethnicity, socioeconomic
status, smoking status, family history, medication prescrip-
tion, physical activity and intake of nutrients and vitamins.
Sleep quality was assessed using the Epworth Sleepiness
Scale, Pittsburgh Sleep Quality Index and the Munich
Chronotype Questionnaire, and health-related quality of life
was assessed using the RAND 36-Item Health Survey.
Further, data on air pollution and noise exposure were avail-
able [8]. We included prescription medications that were
being used in more than 1% of the study population. To
compare risk variables, individual observations for all contin-
uous variables were transformed into z-scores. Variables with
less than 20 unique outcomes were treated as categorical.

Data-driven procedure to identify variables associated with
type 2 diabetes riskThe analytical procedure is summarised in
Fig. 1a. We created two datasets (A and B) by a 50:50 split
based on the first two numbers of the zip code [9]. This way,
we aimed to create a geographically independent replication
cohort to potentially mitigate healthcare system biases that
occur in one region and not another [10]. Each region included
both urban and rural areas. We used these datasets to

systematically investigate associations between potential risk
variables and the development of type 2 diabetes using Cox
regression models, adjusting for age and sex. First, we
screened individual variables by testing associations between
the variable and the development of type 2 diabetes in one
dataset. We selected associations that attained a Benjamini–
Yekutieli false discovery rate (FDR) <0.05 [7]. Next, we repli-
cated the selected variables in the other dataset, using a thresh-
old of p < 0.05. During the analytical procedure, multilevel
categorical variables were dichotomised into dummy vari-
ables. For replicated risk variables, we recalculated HRs and
p values in the full population. To improve interpretability for
the dichotomised variables that were replicated, we reran the
analysis using the original factors in which the most
favourable outcome was set as reference.

To analyse sensitivity, we recalculated the HRs of the iden-
tified risk variables after excluding individuals with impaired
fasting glucose (IFG). We used the more stringent WHO IFG
criterion of fasting glucose >6.0 mmol/l [11] to identify indi-
viduals with highest baseline glucose levels. When we used
the criteria from the ADA (i.e. fasting glucose >5.7 mmol/l),
we attained similar results (ESMFig. 2). Also, we recalculated
HRs of the replicated variables while additionally adjusting
for IFG. We reported variables that lost nominal significance
(p ≥ 0.05), or whose HR changed more than 10%.

Next, we aimed to contextualise the replicated risk vari-
ables with respect to others. For continuous variables, we
calculated the number of SDs needed to achieve the same
increase in hazard that 1 SD gives in the variable with the
highest HR for the corresponding groups and for all variables.
Using these SDs, we recalculated the HRs setting the variable
with the highest HR as a reference. Calculations with other
reference variables were summarised online in a Shiny appli-
cation [12].

Correlation and independence of risk variables We assessed
correlations using Pearson product-moment correlations
between numeric variables, polyserial correlations between
numeric and ordinal variables, and polychoric correlations
between ordinal variables. Correlations were arranged using
Ward’s hierarchical clustering algorithm and visualised using
a heatmap [13].We performed the analyses separately for men
and women and age tertiles (range: 18–39, 40–48, 49–
91 years). Successively, we calculated the effective number
of variables for each group taking correlation into account
[14].

Implementation of risk variables in models for different clin-
ical contexts To determine which variables predict disease
risk, we assigned a score to each variable by (1) using 10-
fold cross-validated lasso regression to select the optimal
model as a function of the tentatively replicated variables
[15], (2) assigning one point to the variables that were retained

1270 Diabetologia  (2021) 64:1268–1278



and nominally significant (p < 0.05) and (3) bootstrapping the
previous steps 100 times. Next, we used Cox proportional
hazard models to predict diabetes and assessed the saturation
of the model by monitoring the discrimination using the
concordance (c-index) while stepwise adding risk variables
to the model starting with the highest scoring variable (Fig.
1b). Further, we investigated the unique impact of individual
risk variables by removing the respective variable from the
model containing all variables of the respective group, after

which the difference in discrimination was calculated. We
reported changes in the c-index of at least 1% of the original
c-index.

We applied the methodology described above to three clin-
ically relevant models. The full model considered all replicat-
ed risk variables, the non-invasive model excluded variables
that require laboratory measurements or a trained research
nurse (i.e., biochemicals, ECG), and the third model solely
considered questionnaire-based variables. As lasso regression

Replicated variables with complete cases > 79,000 (n = 43) 

Lasso regression

Select variables with p<0.05 

Bootstrap 100x

Impact analysis

Full model – 1 variable;  

∆ c-index

Stepwise model building

Based on ranking of 

variables

Total population 

Dataset B

Screening

FDR <0.05

Replication

p<0.05

50:50 split per region 

Risk factors for the development of type 2 diabetes 

Dataset A

a

b

Fig. 1 Analytical pipelines to
assess risk variables for the
development of type 2 diabetes.
(a) The total population (n =
96,534) was split 50:50 into two
datasets and 134 variables were
screened for associations with the
development of type 2 diabetes.
Variables with a Benjamini–
Yekutieli FDR < 0.05 were
crossed over to the other dataset
and validated using a p value of
<0.05. (b) Bootstrapped and
cross-validated lasso-regression
models were used to score
robustness of risk variables.
Unique risk explained by
variables were investigated by
recalculating the model
discrimination after subtracting a
respective variable from the full
model. This process was applied
in three clinically relevant models
(i.e., model including all
variables, non-invasive model,
questionnaire model)
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requires complete data from each individual, we aimed to
maximise power while also including as many replicated vari-
ables as possible. This resulted in the inclusion of 43 risk
variables with available data from more than 79,000 individ-
uals (ESMTable 1). The inclusion of onemore variable would

have reduced the sample size to 46,743 individuals. For fami-
ly history, only the aggregated risk factor for first degree rela-
tives was used. To investigate whether differences in discrim-
ination between the investigated models were solely driven by
specific variables with the highest scores (e.g., blood/plasma

Fig. 2 Identified risk variables for the development of type 2 diabetes and
their effect estimate. (a) Each dot represents one of the 134 risk variables
investigated. Green dots (n = 53; 40%) were replicated in both pipelines,
orange dots (n = 10; 7%) were replicated in one pipeline and red dots (n =
71; 53%)were not replicated. p values were calculated using the complete
study population. (b) Each dot represents the HR and 95% CI of a vari-
able. Variables with a protective association are shown to the left of the
dotted line and variables with a hazardous association are shown on the

right-hand side of the dotted line. Colours correspond to the grouped
variables in the Manhattan-like plot in (a) (dark blue, anthropometrics;
red, biochemicals; light blue, lifestyle; orange, medication; grey,
predetermined; purple, quality of life). aVariables replicated in one direc-
tion. ALAT, alanine aminotransferase; ASAT, aspartate aminotransfer-
ase; GGT, γ-glutamytransferase; PM2.5, atmospheric particulate matter
with a diameter <2.5 μm
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glucose variables, adiposity-related variables), we repeated
the analysis after excluding the respective variables.

We performed all analyses using R project software (version:
3.5.2) [16]. The scripts used for the analyses have been
summarised and are available in the LIFEWAS package [17].

Results

Contextualisation of risk variables for developing type 2
diabetes In total, 96,534 participants were included in the
study. Study population characteristics are reported in ESM
Table 1. In short, the population consisted of slightly fewer
men than women (41%) and had a mean age of 45.2 years. A
total of 1494 individuals developed type 2 diabetes. Of the
134 variables, we identified 53 variables (40%) in both direc-
tions (i.e., screened and replicated in both dataset A to B and B
to A), and ten variables (7%) in a single direction (Fig. 2). The
p values, number of individuals with complete data and the
replication in one or two directions are documented in ESM
Table 2 and ESM Fig. 3.

We identified categorical risk variables, including a border-
line or pathological vs normal ECG (HR: 1.37 and 1.40), being
a current (HR: 1.62) or ex-smoker (HR: 1.11) vs non-smoker,
and having a prescription for hydrochlorothiazide, metoprolol,
atorvastatin, enalapril, simvastatin, omeprazole, pantoprazole,
salmeterol-fluticasone, or salbutamol (HR: 2.46 to 1.77).
Further, low or medium vs high education (HR: 1.87 and
1.27), having a family history of diabetes (HR: 1.81 for mother,
2.28 for sibling), and several health-related quality-of-life vari-
ables were associated with a higher diabetes risk.

Of all risk variables, HbA1c attained the highest HR (3.65 for
1 SD increase). Next, we ‘contextualised’ the individual HRs
with respect to HbA1c or estimated the equivalence of risk
factors to HbA1c. The number of SDs of other continuous risk
variables with respect to 1 SD increase of HbA1c is presented in
Fig. 3a, as well as the population mean and the value corre-
sponding to the SD increase (Fig. 3b). The HRs adjusted for
HbA1c are depicted in Fig. 3c. Recall that a 1 SD increase in
HbA1c equates to 3.39 mmol/mol (0.31%) HbA1c. First, we
observed that serum glucose is on par with HbA1c.
Specifically, the HR for a 1 SD increase in HbA1c is equivalent
to an HR for a 1.08 SD (0.53 mmol/l; adjusted HR: 3.01)
increase in glucose. Adiposity and HDL required at least a 1.5
SD change, a significant fraction of the population. For exam-
ple, the HbA1c equivalence for waist circumference was an
increase of +1.66 SD (19.8 cm; adjusted HR: 1.60) and 1.67
SD for HDL-cholesterol (decrease of 1.67 SD; 0.67 mmol/l).
Of note, other adiposity-related anthropometrics (i.e., body
weight, WHR, BMI) needed a respective increase of 1.87,
1.88, and 2.03 SDs (27.6 kg, 0.15 units, 8.34 kg/m2) to be
equivalent to a 1 SD change in HbA1c. Apart from uric acid
(+1.95 SD; 0.14mmol/l), all other replicated risk variables were

required to increase by at least 3 SDs to be equivalent to the HR
for a 1 SD change of HbA1c. For example, a 3.04 SD increase in
leucocyte count has a HR equivalent to 1 SD increase in HbA1c.
Only 418 individuals (0.43% of the Lifelines population) had a
leucocyte count this high.

Impact of impaired fasting glucose on the risk factors for
developing type 2 diabetes After we excluded individuals
with IFG (n = 3510, 586 complete cases), all initially replicat-
ed risk factors remained nominally significant (ESM Fig. 4a).
Sublevels for ECG (pathological) and smoking (ex-smoker)
lost significance. HRs decreased for family history of diabetes
(−14%) and HbA1c (−15%) and increased for omeprazole and
individual levels of three quality-of-life indicators (+11 to
22%). When correcting for IFG status, we found HRs to
weaken for 22 risk variables (ESM Fig. 4b). HRs decreased
by more than 10% for glycaemic traits, erythrocyte indicators,
uric acid, adiposity-related variables, pathological ECG, fami-
ly history of diabetes, eight medications and social function-
ing. HRs, p values and changes (%) in respect to the main
analysis are described in ESM Table 3.

Correlation patterns between risk factors Correlation patterns
between replicated variables are presented in ESM Fig. 5. We
found correlations between variables to cluster for white blood
cells, red blood cells, liver enzymes, adiposity-related anthro-
pometrics, BP, dietary and smoking variables and quality of
life (rho: >0.5). HDL-cholesterol showed weak to moderate
inverse correlations with adiposity-related anthropometrics
and triacylglycerols (rho: −0.27 to −0.45). All correlations
remained stable across age groups and sexes. Sex-specific
negative correlations were found for medications and differed
between age groups. The number of effective variables
decreased with at least one variable for the quality of life,
anthropometric and the lifestyle group (ESM Table 4).

Risk prediction and interchangeability of variables in clinical
contexts The number of times each variable was selected, the
cumulative number of variables added to the model and the
model’s corresponding c-index and HR are shown in Fig. 4a

�Fig. 3 Contextualisation of identified continuous risk variables. (a) Each
dot represents the number of SDs needed to attain the same hazard as 1
SD increase of the largest risk variables (HbA1c). To approximate a
hazard similar to a rise in HbA1c from the mean to the diabetes
threshold, SDs should be multiplied by a factor of 3. (b) The population
mean of each variable and the required increase in the respective variable
to increase the hazard for developing type 2 diabetes as much as 1 SD of
HbA1c. Other risk variables can be set as reference via the application
online [12]. (c) Each dot represents the HR of a risk variable after
correction for the hazard of HbA1c. To compare variables with a
protective and hazardous effect, absolute coefficients were used. ALAT,
alanine aminotransferase; ASAT, aspartate aminotransferase; GGT, γ-
glutamytransferase; PM2.5, atmospheric particulate matter with a
diameter <2.5 μm
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and reported in ESM Table 5. Impact is depicted in Fig. 4b
and reported in ESM Table 6, and HR trajectories are shown
in ESM Fig. 6.

When we included all replicated risk variables, HbA1c,
HDL-cholesterol, and work-related activities were selected
in all bootstrapped lasso regression models (c-index: 0.834).
The next increase in c-index was observed after glucose was
included (detected in 81% of the models, c-index: 0.886), after
which the model satiated (c-index after all variables included:
0.892). The model’s c-index decreased when glucose (1.9%)
or HbA1c (1.3%) was removed. The inclusion of glucose
decreased the HR of HDL-cholesterol (from 0.65 [0.60;
0.71] to 0.74 [0.68; 0.81]) and HbA1c (from 3.44 [3.22;
3.68] to 2.05 [1.91; 2.20]). In contrast, the HR of male sex
increased from 0.93 (0.80; 1.07) to 0.73 (0.63; 0.84).

To test the interchangeability of glucose and HbA1c, we
excluded them as potential risk variables. This led the algo-
rithm to select a more complex model with lower discrimina-
tion that included age, sex, BMI, HDL-cholesterol, triacyl-
glycerols, the number of pack years and omeprazole, which
scored at least 99% (c-index: 0.813 vs 0.886). The full model
attained a c-index of 0.843 (vs 0.892) andwas not impacted by
individual variables (data not shown). We observed a similar
increase in HR trajectory for sex (HR after inclusion of ten
variables: from 0.97 [0.85; 1.11] to 0.67 [0.56; 0.79]).

Next, we excluded all invasive variables and ECG.We found
the most robust scores (retained in 99% of the models) for age,
BMI, WHR and omeprazole (c-index: 0.802). The full model
attained a c-index of 0.831, and was borderline impacted by
family history of diabetes (0.8%). The HR for age gradually
became weaker over the inclusion of the first ten variables (from
2.09 [1.96; 2.22] to 1.70 [1.57; 1.83]), whereas HRs of other
included variables remained stable over the inclusion process.

To investigate the interchangeability of the key variables
BMI and WHR, we excluded these respective risk variables
from the model. As a result, the algorithm selected more vari-
ables, including age, work-related activities, use of
pantoprazole, omeprazole or simvastatin, heart rate, family
history of diabetes and waist circumference, which resulted
in a similar discrimination (c-index: 0.812) and remained
stable as further variables were included (all variables:
0.828). The inclusion of waist circumference had an influence
on the HR of age (2.03 [1.89; 2.19] to 1.84 [1.71; 1.99]),
family history of diabetes (2.31 [2.04; 2.62] to 2.04 [1.80;
2.31]) and simvastatin, pantoprazole and omeprazole (range
from 2.00–2.16 to 1.62–1.87).

When solely considering questionnaire-based variables
(including age), then omeprazole, work-related activities and
vigorous intensity activities were significant in 96% of
bootstrapped models (c-index: 0.729). After adding sex, vitality,
education, and pantoprazole (≥68% score), the c-index increased

Fig. 4 Applicability of risk variables for predicting type 2 diabetes. (a)
The discrimination of prediction models for the development of type 2
diabetes containing an increasing number of risk variables. Models
including non-invasive and invasive variables were satiated after four risk
variables were included. Glucose and HbA1c were solely responsible for
the rise in discrimination between the full and non-invasive model,
suggesting that other invasive variables do not contribute more to risk

prediction than non-invasive variables do. Removing high scoring non-
invasive measurements (i.e., BMI, WHR) appeared to lead to slightly
larger models with similar discrimination, implying that these variables
are more or less interchangeable. (b) Change in discrimination (c-index
[%]) after the removal of one risk variable from the model containing all
related variables including all variables, non-invasive variables and ques-
tionnaire variables. Differences of at least 1% were annotated
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to 0.749. The full model reached a c-index of 0.796, which was
impacted by age (1.3%) and family history of diabetes (1.4%).
When more variables were added to the model, HRs declined
for age (from 2.17 [2.07; 2.30] to 1.59 [1.46; 1.75]) and omep-
razole (from 2.09 [1.76; 2.50] to 1.63 [1.35; 1.97]).

Discussion

Here, we used a data-driven RV-WAS approach to systemat-
ically assess associations between 134 risk variables (to our
knowledge the largest set to date) and the 5-year development
of type 2 diabetes. We were able to identify, replicate and
contextualise 63 risk variables robust to IFG. Next, we
assessed their correlation and applicability in clinical risk
prediction models using bootstrapped and cross-validated
lasso-based linear regression models.

Identification of risk variables for type 2 diabetes Over the
past decades, a plethora of different risk variables have been
reported for the development of type 2 diabetes. By applying a
RV-WAS approach to a population-based cohort, we screened
potential risk variables in one cohort while accounting for
multiple testing and subsequently replicated significant vari-
ables in a second, independent dataset. We identified a similar
proportion of variables as a recent umbrella review of meta-
analyses (47% vs 32%) [1], and the majority of identified risk
variables have been described previously [1, 2, 4]. However,
to the best of our knowledge, the prescription of proton-pump-
inhibitors and quality of life have not been reported as risk
variables for type 2 diabetes development before. Further, we
found novel health-related quality-of-life variables that predict
type 2 diabetes. These variables indicate the potential value of
personal health perception on disease development.

Risk variables put into context Many identified risk variables
showed relatively small HRs, such as inflammation and liver
biomarkers. When we calculated how many SDs were needed
to attain the same hazard as 1 SD increase in HbA1c associa-
tion, we found that 11 out of 23 biochemical variables were
associated with a difference of at least 7 SDs, which is phys-
iologically extreme, and adjusted HRs often attenuated to
1.00. When considering that 3 SDs were needed to increase
HbA1c concentrations from the population mean to the cut-off
for diabetes, only glucose would be able to approximate a
similar risk on its own. Therefore, although statistical signifi-
cance may be important for aetiological investigation, these
variables do not have clinically significant associations in risk.
Interestingly, HRs for several lifestyle variables were larger
compared with biochemical variables, suggesting that much
debated food questionnaires are in fact on par with biochem-
ical variables. In future studies, we will attempt to replicate the
identified risk variables in an independent study population.

Contextualisation of risk variables in clinical risk prediction
models The difference in discrimination between the full
model and the non-invasive model were largely due to
glycaemic variables. Some variables can now be seen in a
new light, such as the difference between household-level
and specific environmental factors. We found having a posi-
tive family history of diabetes to be uniquely represented in
the non-invasive and questionnaire models. Family history
contains information on both genetics and shared household
environment or lifestyle [18]. In contrast, behaviours, such as
smoking, in the presence of family history, may be indicative
of individual and not shared exposure. In fact, smoking is
represented in 70–85% of the clinical models as the risk vari-
able ‘number of pack years’ and explains disease risk inde-
pendent of its categorical counterpart.

Our data suggests that, prior to overt type 2 diabetes, many
individuals were already being treated for complications of
diabetes, such as CVDs. So far, medication has been sparsely
used in risk prediction and limited to antihypertensive medi-
cation [4]. We identified the medications simvastatin, omep-
razole and pantoprazole as robust risk variables. Interestingly,
our method identified previously unrecognised questionnaire-
based risk variables such as the health-related quality-of-life
marker ‘physical functioning’. This variable was selected
more often than established variables including indicators of
energy intake, macronutrients and physical activity domains.

Further, we observed that the contribution of each variable
in a model is co-dependent on the other variables in the model.
For example, the HRs of HbA1c and HDL-cholesterol
decreased in the full model when glucose was added. A simi-
lar effect was seen when waist circumference was added to the
non-invasive model without BMI and WHR. Comparing
effect sizes and prediction across studies only makes sense if
adjustment is made for the same or similar factors.

Interchangeability of risk variables Because only summarised
data is available, it is impossible to assess correlations
between variables in a meta-analysis. We uncovered an under-
lying tension between the (1) correlation pattern and (2) corre-
lation size of risk variables. For example, (1) the observed
correlations demonstrate a clustering pattern that can poten-
tially be explained by their physiological origin; however, (2)
the majority of correlations are modest to moderate (<0.5).
Therefore, a priori selection of these variables in a risk model
without extensive multivariate approaches makes it a chal-
lenge to discover their interchangeability and generalisability.
This is exemplified in the clinical risk prediction models,
which showed that most risk variables, albeit significant in
the univariate analysis, did not contribute to risk prediction
in addition to a few robust variables.

Implementation of risk variables in future prediction models
In our data-driven assessment of 134 variables in three clinical
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models, we were not able to extensively outperform existing
models [4]. In line with our findings, prediction models using
a large number of omic measures, such as metabolites from a
metabolomic assay, report many novel risk variables. However,
when considering these variables in risk prediction next to
established risk variables such as polygenic risk scores, BMI,
glucose, smoking or physical activity, they add little incremental
disease risk [19, 20, 21]. As evidenced by our data-driven
approach, we believe that new discovery efforts should proceed
with caution, as newmodels may show little incremental predic-
tion benefit, albeit shining light on new aetiological paths.

In addition, the models reported here did not markedly
improve after the inclusion of three of the most robust risk
variables (HbA1c, HDL-cholesterol and work-related activities)
and glucose. Externally validated prediction models for the
development of type 2 diabetes include six to 13 risk variables
[4]. These variables may contribute little or inconsistently to
risk prediction and will need to be revisited to assess robust
prediction across different cohorts. For example, omitting
BMI and WHR from the non-invasive model led to a more
complex model with similar discrimination. Using a systematic
and data-driven approach can help to simplify and enhance
generalisability of models for type 2 diabetes through transpar-
ent comparison of the interchangeability of potential variables.

Limitations Most Lifelines participants are white, so we were
not able to reliably investigate associations with ethnicity.
Moreover, this study is based on a Dutch population. The
prevalence of diabetes in the Netherlands is similar to the
average of other European countries (age-adjusted compara-
tive prevalence: 5.4% vs 6.3%), yet lower than in the USA
(10.8%) [22]. Also, some variables might be region specific.
For example, it is common in the Netherlands to travel by
bicycle (i.e., physical activity while commuting).

Further, we did not analyse some variables because of
missingness. Althoughmost of these variables were expensive
and hard to obtain and therefore possibly not eligible for risk
prediction in the first place, they may have been robust and
unique risk variables.

Conclusions In conclusion, we demonstrated that a data-driv-
en, RV-WAS method can be used to assess and contextualise
a wide variety of potential risk variables for type 2 diabetes.
Starting with 134 variables, we were able to identify 63 risk
variables for the 5-year development of type 2 diabetes.
However, we found that HRs for many replicated variables
are negligible, leaving a small set of relevant variables.
Moreover, only a small proportion of risk variables explain
disease risk in a robust and unique fashion in prediction
models for the development of type 2 diabetes. Adding vari-
ables to a satiated model can impact the HRs of those already
included in the model. Therefore, association sizes of risk
variables should only be compared across studies when

models include the same or similar variables. We recommend
a systematic approach in the assessment, contextualisation and
clinical implementation of risk variables that are sensitive to
the complex aetiology of the disease.
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